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Strip Blowing from a Wedge at Hypersonic Speeds
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and
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Surface pressure distributions are derived when gas is injected through a strip at the surface of a thin wedge in
uniform flow at high Mach number. The blowing velocities are such that the flow separates ahead of the blowing
region, but the layer of blown gas remains thin. Asymptotic descriptions of the separation region and the blowing
region are reviewed and extended, for weak laminar viscous interaction and a cooled surface. An example with
blowing through two strips is also given.

Introduction

SURFACE pressure distributions on a body in high-speed flow
can be drastically altered if gas is injected at the body surface,

through the distortion of the flown* eld as well as through the mo-
mentum flux at the surface. One case of blowing from a strip on
a flat plate was studied by Smith and Stewartson.1 In this case the
supersonic laminar boundary layer separates somewhat ahead of
the blowing region and moves away from the surface as a free shear
layer at nearly constant pressure. Between the separation region and
the location where blowing begins, a small part of the injected gas
moves upstream at a low velocity to supply the mass needed for
entrainment in the lower part of the shear layer.2 In the neighbor-
hood of blowing a favorable pressure gradient turns the blown gas
toward the downstream direction. The layer of blown gas is still thin
but gradients are small enough that viscous stresses are small, and
the flow here is described by inviscid boundary-layer equations.3
Downstream of the blowing region the pressure is assumed con-
stant and equal to its undisturbed value, with no reversed flow near
the wall.2

The flow properties in the laminar free interaction at separation
are nearly independent of downstream conditions, and are described
asymptotically at large Reynolds numbers by a variation of the triple-
deck theory. The formulation relevant to self-induced separation at
supersonic speeds was given by Stewartson and Williams4 and by
Neiland.5 In effect the length scales are reduced near separation, and
locally the flow is approximately a rotational inviscid flow with a
new thinner boundary layer close to the wall. The asymptotic form of
the solution somewhat downstream of separation, as the appropriate
scaled variable becomes large, was described by Stewartson and
Williams.6

As the Mach number increases, the length of the local-interaction
region grows, as does the thickness of the viscous sublayer, until
the interaction is no longer local, when the hypersonic viscous-
interaction parameter is no longer small. In different terms, if the
Mach number is large, the boundary layer has only a small effect
on the external flow at points sufficiently far downstream: the inter-
action is weak. But closer to the leading edge the streamline slopes
are no longer small in comparison with the slopes of characteristics
in the external flow, and the boundary-layer thickness can not be
neglected in a first approximation: the interaction is strong.

If separation occurs in the weak-interaction region, the asymptotic
description is still local, as explained by Brown et al.7 Moreover, the
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scale of the interaction shrinks as the wall temperature decreases.
This was noted first by Neiland8 and has been discussed further by
Brown et al.9 and Kerimbekov et al.10 At high Mach numbers, if the
wall is cooled, the first approximation to the boundary-layer solu-
tion satisfies a condition of zero wall temperature. This, of course,
must be corrected at small distances from the wall, as explained
by Neiland8 and later by Seddougui et al.11 in a discussion of the
effect of wall cooling on stability. In a particular limit it is found
that the triple-deck solution must be augmented, since the displace-
ment effect of the changes in the main boundary layer is no longer
of higher order than that of the sublayer.7"10 For still smaller wall
temperatures, the scales continue to decrease; a detailed asymptotic
description for this case has recently been given by Kerimbekov
et al.10 In the blowing region, the pressure changes must be com-
patible in the subsonic blown gas and the supersonic outer flow. If
the transverse pressure gradient remains small, the problem can be
reduced to solution of an integral equation for the pressure. Results
for the pressure distribution and for the location of separation were
given in Ref. 1 in the case of uniform blowing.

In the present work the analysis of Smith and Stewartson1 is
extended to flow past a wedge at high Mach number. A description of
separation from a cooled wall similar to that of Brown et al.9 is given
in terms of the physical coordinate rather than the Dorodnitsyn-
Howarth variable. A complete asymptotic flow description leads to
a simpler expression for a constant in the pressure-displacement
relation. This part of the present derivation, given initially in the
1991 conference version of this paper, closely resembles that of
Kerimbekov et al.10 The formulation for the blowing region is the
same as in Ref. 1 and is applied to some specific examples, including
a case with blowing through two strips. Some representative pressure
distributions are shown.

Formulation
A thin wedge of length L and small half-angle a «; 1 is placed

at zero incidence in a uniform hypersonic flow at a Mach number
MOO ^> l-'A perfect gas is assumed, with constant specific heats.
Coordinates jc* and y* are measured along and normal to the upper
wedge surface, respectively. Gas is injected in a direction normal to
the surface from a slot occupying the region XQ < x* < x*, where
XQ > 0 and x\ < L, as shown in Fig. 1. (Slopes of shock waves
and characteristics in Fig. 1 have been exaggerated in an attempt at
greater clarity.) The blowing velocity is such that the flow separates
from the surface at a location x* == ;c* upstream of the slot. The value
of x* is unknown in advance and is determined as part of the solution,
in terms of parameters including slot length and blowing velocity.
It is assumed that the added mass is not so large that the separation
point has moved to the wedge vertex; i.e., 0 < x* < XQ. Separation
of the laminar boundary layer occurs through a hypersonic free
interaction in a small neighborhood of jt* = jc*, where the pressure
rises to a constant plateau value determined through a local triple-
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Fig. 1 Wedge flow with strip blowing.

deck analysis of the separation region. The pressure begins to drop at
x* = XQ , and for XQ < x* < x% the blown gas is turned downstream
by the favorable pressure gradient.

The velocity, pressure, density, temperature, enthalpy, and vis-
cosity coefficient are «, /?, p, 7, h, and ju,, respectively, with cor-
responding undisturbed values UQQ, p^, p^, 7^, h^ and IJL^. The
Reynolds number based on x* and freestream quantities is Re =
Poo Woo**/Moo- The viscosity is assumed to vary as a power of
the temperature /x//^oo = (T/TQQ}(0\ at high temperatures the
Sutherland law is recovered for co = |, whereas comparisons with
certain existing results can be made if co = 1.

The problem formulation is given in terms of four small di-
mensionless parameters: the wedge half-angle a, the reciprocal
I/Moo of the freestream Mach number, the reciprocal Re~l of
the Reynolds number, and a nondimensional surface temperature
0 — TW/(M2

X)T00). A limiting case is considered where M^ -^ oo,
a -+ 0, Re -> oo, and 9 -+ 0, such that M^a is fixed (hypersonic
small-disturbance theory) and M^Re"* -+ 0 (weak viscous in-
teraction); the order of magnitude of 9 is chosen later.

The undisturbed wedge flow has shock-wave angle ft ~ aft,
nondimensional pressure P/POO ~ M%0a2pQ, and Mach number
M ~ a"1 M0 found in the hypersonic small-disturbance limit from

1
M2a2

po =

M2

M2a2

h -Po

(1)

(2)

(3)

where y is the ratio of specific heats and PQ/({$Q — 1) is the density
ratio across the shock wave. Near separation these quantities charac-
terize the uniform undisturbed wedge flow external to the boundary
layer; similarly, in the blowing region the undisturbed flow above
the separation streamline is the uniform wedge flow. Whereas an
outgoing wave will be reflected at the shock wave, the strength of
the reflected wave is numerically small in comparison with that of
the incident wave; although these reflections are not weak in an
asymptotic sense for the limiting case considered here, they will
nevertheless be neglected. For ** close enough to x£, the reflected
wave reaches the separated shear layer at a location downstream of
the slot, as depicted in Fig. 1, and causes a small outward bending
of the shear layer at that location. For smaller x*, this bending can
occur above the slot; the turning angle can be calculated from the
strength of the incoming wave.

Separation Region
The boundary-layer equations, plus the equation of state and the

viscosity law, can be written as

3(pu) 'B(pv)
3x* 3y* (4)

3h 3h

P =

dp 3h 3u

(6)

(7)

where Pr is the Prandtl number and R is the gas constant. At the
wedge surface y* = 0 it is required that

u = v = 0, T = Tw = const (8)

For large M^, the boundary layer has thickness equal to the dis-
placement thickness <$*, since the mass flow in the high-temperature
boundary layer is small.12 The interaction parameter x measures the
ratio of a typical streamline slope in the boundary layer to the slope
of a characteristic in the inviscid wedge flow. Here x is defined for
a length x* by

8 = (9)

The displacement thickness is 5* = (const)**5; if co = 1, the con-
stant factor is 0.332(y — 1). The product M^a2 is considered fixed in
the limit, but it is possible to recover the results for a flat plate when
Mood ->> 0, since in that case M2

x>a2pQ -> 1 and MQ/a -* M^.
Thus for a flat plate, x as defined here reduces to the usual expres-
sion M^/Rez. If x is small, the boundary-layer thickness is small
in comparison with the wedge thickness except at points very close
to the leading edge, and the interaction between the boundary layer
and the external inviscid flow is weak, except near the vertex. In the
following, it will be assumed that the interaction is weak; that is,
X -> 0. The size of 0 in terms of x will be chosen later.

The undisturbed boundary-layer profiles are given by

= UQ(Y) + ' (10)

where Y = y*/(x*8) is the boundary-layer coordinate. Since the
boundary-layer thickness may be set equal to the displacement thick-
ness, the edge of the boundary layer is located at Y = 8*/(x*8).
In the inviscid flow outside the boundary layer, uju^ ~ 1 and
T/Too = 0(1). Thus J7o -> 1 and T0 -> 0 as Y -> 8*/(xj8);
whereas,fromEq. (8), f/o -+ OandTi -> OasF -+ 0;if/V = l,for
example, then r0 = (y-l)Uo(l-UQ)/2. AsT -> 0, it follows from
Eqs. (5) and (6) that T£U^ ~ A. = const and T^TJ ~ Ar = const,
so thatTO - [(o>'+ l)X.TY]l/(a*» and U0 - (A,/A,r)7b as Y -+ 0.
On the other hand, at the wall T = Tw < M^T^, and the profiles
must be modified when Y = O(6>a)+1) to have the form

(11)

(70(0) = f0(0) -1=0
(12)

-l) (13)

where Y = Y/0M+l and

so that

This formulation appears to have been given first by Neiland8; these
modifications near the surface have also been noted by Seddougui
et al.,11 Brown et al.,9 and Kerimbekov et al.10

In the neighborhood of separation the reference length in the flow
direction is small, and the proper streamwise coordinate is

(14)

where A = A(/, 9) <3C 1 and is to be determined. In most of the
boundary layer, for the case to be considered here, the perturbations
in u and p are chosen to be of the same order of magnitude, say
O(e), where e = e(x,0). A consequence of this choice will be
a relation between the orders of magnitude of 0 and x- The flow
variables are then expanded for x = (9(1) and Y = O(\) in the
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Moo A

form

(15)

, ¥ ) + ••• (16)

•) + ••• (17)

The perturbation quantities satisfy linear differential equations

Po(U\x + VIY) + Uopix + PO^I ~ 0 (l^)

U0Ulx + U'M + Plx/pQ = 0, Piy = 0 (19)

Z/oT* + 70
;Vi - (x - DZ/o/WA, = 0 (20)

and the equation of state gives

A)
(2D

Thus the viscous forces are of higher order than the convection
and pressure terms, and the equations for the first approximation
describe small disturbances to an inviscid rotational flow.

The solutions to Eqs. ( 1 8-2 1 ) are

i~-u<>
- l\dY -

o J

= -P^ / ( ̂  - 1 JdF + (y - l)r0Pi + Tfa
Jo \uo /

(23)

(24)

where P! = PI(JC) and AI = AI(JC>; UQ/Tf is equal to the local
Mach number. The integral exists, since UQ and 70 are O(Yl/((0+l})
asF -> 0; .thus as' 7 -» 0,

(25)

When F = (9(6>£t)+1), the proper coordinate is F rather than F,
and the profiles i/0(F) and TQ(Y) must be replaced by 0U0(Y) and
07o(F). The convection terms are now the largest terms in Eqs. (19)
and (20), so that the solutions for F = (9(1) have the same form as
in Eq. (25) but in terms of the barred profiles. Then as F -> 0

— ~ ——eO
MOO A

T — T•*• •*• w (26)

As in the conventional triple-deck theory, viscous forces can no
longer be neglected near the surface, and different asymptotic rep-
resentations are required in a thin sublayer where F and F are small.
An inner variable 'y is defined by

(27)

where f = f (/, 0) < 1, and it will be found that f also satisfies the
stronger condition f < 0W+1; thus, the sublayer is thin enough that
the solutions there should match with the solutions given by Eq. (26).
The limit process for the sublayer is chosen such that all terms in
the boundary-layer momentum equation are of the same order, the

largest terms in the solutions for M are matched, and the solutions
for p are matched. Since the pressure perturbation is O(e) in the
sublayer as well as in the main boundary layer, these conditions lead
to expansions in the form

(29)

(30)

where the scales A and f are found in terms of s as

(31)

(32)

The perturbation quantities satisfy the incompressible boundary-
layer equations

=0

Ply = 0

(33)

(34)

with boundary conditions MI = v\ = Oat^y• = 0 and initial condition
MI ~ y as x ->• —oo. As y -» oo,

MI A, -A'y (35)

where the function —A(x) implies an effective shift of the origin for
y, and so represents a scaled change in displacement thickness of
the sublayer. The form of the expansions defined by Eqs. (28-32) is
independent of the relative sizes of the small parameters x and &•

The interaction of the boundary layer with the external flow deter-
mines a relation between p\ and A i, as well as a definition for s and,
therefore, expressions for A and f. In the flow outside the bound-
ary layer, the pressure and the velocity components satisfy a linear
wave equation, for x* — x* = O(x*A) and y* = O(x*aA/Mo).
If only outgoing waves are present locally, the result at the edge of
the boundary layer is the usual linear-theory relation between the
pressure perturbation and the streamline slope. Since these quanti-
ties are continuous at the edge of the boundary layer, the solutions
in the main boundary layer evaluated at F =-'8*/(x*8) must satisfy
this condition. It follows that

sPl + • • • = x(£/A)Vi + • • •• (36)

at F = 8*/(x*8)9 and so A = O(x)- Matching the second terms in
M from Eqs. (26) and (35) gives e = O(92(a+l) and A! = (const)A.
Combining with Eq. (32) then shows that 0 = O(xl/(4co+2)) for the
case considered. It is convenient to introduce constant factors in
such a way that the pressure-displacement relation found from Eqs.
(36) and (22) contains a single parameter Q. Since also p\ — PI,
the results are

Pi = -A' - —p\ (37)

e = *

where the parameter Q is defined by

-fJo

(38)

- d " ( 3 9 )
The integral / in Eq. (39) has been rewritten in terms of a
Dorodnitsyn-Howarth variable q defined by dF = T0dr)', as rj -> 0,
both r0 and U0 are O(rj~1/M). The streamwise length scale A =
O(x) has been made specific by the choice A = Q/x, for conve-
nience in recovering the case of large Q, as noted subsequently; it
follows also that f = Qle. Equation (37) serves as an additional
boundary condition for Eqs. (33) and (34) as y —>• oo, and can be
regarded as an interaction condition.
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Fig. 2 Flow structure near separation.

Thus, the special case in which the displacement effects of the
viscous sublayer and the main part of the boundary layer are of the
same order of magnitude corresponds to a limit such that x -* 0
and 9 -> 0 with 0^/x * held fixed. In this limit, the scalings in
Eqs. (14), (27), and (32) are, as already noted,

A = fi/x,

and so the coordinates become

Y = QIey

(40)

(41)

The flow regions are sketched in Fig. 2. The length scales for the
local external flow are the same as for the boundary layer: for
jt* — jc* = O(x* A), disturbances in the outer flow extend only to a
distance y* = O(8*) and not to a still larger distance as in the usual
triple-deck theory. Since ? = O(x .i) and x = O(04a)+2), it is seen
that £ < 6>w+1, as anticipated following Eq. (27). Thus, the interac-
tion occurs in a streamwise length O(xx*), and the sublayer thick-
ness is O(x 5 5*); if co — 1, the nondimensional wall temperature
is 0 = O(x 5), and the region where corrections to l/o and TO are
required has thickness (9 (/ 3 <$*).

Parameters equivalent to Q have also been given in Refs. 7-11;
in Refs. 7 and 1 1 the exponent w was taken equal to one. The inter-
action relation (37) has been given by Neiland,8 by Brown et al.,7 by
Brown et al.,9 and by Kerimbekov et al.10 In the second of these, the
coefficient of p{ has the same dependence on x , 0 and on the profile
shapes, and is of order one because y — 1 <£! 1 rather than 0 <3C 1.
Brown et al.9 used a Dorodnitsyn-Howarth variable, obtained a di-
vergent integral, and gave a more complicated right-hand side.

For a constant-pressure boundary layer with Pr — 1, the integral
in Eq. (39) can be evaluated by setting TO = (y - l)i/0(l - I/o)/2
and taking numerical values from the Blasius solution

- 1) • 0.664 - 1.721 (42)

If y = 1.4, the value is 0.0905. Thus for this profile, the main
boundary layer behaves as a supersonic flow, since from Eq. (22),
with interaction omitted, the displacement thickness decreases as
the pressure increases. On the other hand, since —A is a sublayer
displacement thickness, the first term —A' is positive in Eq. (37).
Values of plateau pressure p\f given in Ref. 9 are p\f = p\ (oo) =
1.809, 1.681, and 1.564 when the value of Q in Eq. (37) is oo, 1,
and 0.5, respectively.

For large 2, the forms of the sublayer expansions in Eqs. (28-
31) are unchanged. In the main boundary layer, the pressure per-
turbation remains O(e), but the velocity, temperature, and density
perturbations in Eqs. (15) and (17) are O(Qe), because it follows
from Eqs. (38) and (39) that A! = O(Q), and the choice A = Q/x
gives Vi (x, 5 ~ l 3 * /x *) = QI P\ (x). As a consequence, the pressure-
displacement relation in Eq. (37) becomes p\ = -A'. Ifco = 1, the
formulation for the first approximation is then identical to that of
conventional triple-deck theory in the limit as MOO —^ oo.

On the other hand, Eq. (37) requires modification if Q -> 0, when
the displacement effect due to the main boundary layer becomes
large compared to that of the sublayer. The factor A introduced in
the scaling (14) for **, and defined in Eq. (40), now should not
include the factor Q, but should be simply A = x» with the factor
/ remaining in the interaction condition so that in the limit Eq. (37)

is replaced by Ip( + p\ = 0. A detailed description of the limit-
ing flow as Q -* 0 has recently been given by Kerimbekov et al.10

for the hypersonic boundary-layer interaction at a shallow compres-
sion corner. They considered both the supercritical case / > 0 and
the subcritical case I < 0, concluding from the sign change in the
exponential solution for p\ that the pressure rise occurs primarily
downstream and upstream of the corner, respectively. In each case
smaller length scales become important and a still more compli-
cated asymptotic structure arises. For the present free-interaction
problem it seems reasonable to anticipate that a sign change in the
interaction relation would affect primarily the flow details in the sep-
aration region and that the pressure rise would again occur primarily
downstream or upstream of the separation point, respectively, when
/ > 0 or I < 0. If this is true as Q -> 0, a corresponding shift in the
location of the pressure rise would also be expected to persist when
Q is not small, with the changes occurring earlier for / < 0 than for
I > 0. The present solutions are restricted to values of Q that are not
small, since the case Q -> 0 has not been considered further here.

Blowing Region
Gas is injected from the surface in the range x£ < x* < jCp

with separation occurring farther upstream, at x* — ;c*, where 0 <
jc* < XQ. Downstream of separation the separated boundary layer
moves away from the surface as a thin free shear layer at nearly
constant pressure. A low-speed backflow,2 accelerated by a higher-
order pressure gradient, provides the small amount of mass required
for entrainment in the thin shear layer for ;t* < jc* < XQ. Most of
the added mass, however, is turned downstream by the favorable
pressure gradient for x£ < x* < ;c*, as indicated in Fig. 3. Since the
mass entrained is small in comparison with the total mass added at
the wedge surface, the streamlines entering the shear layer originate
at points very close to the beginning of blowing.

The slope of the separated shear layer is dy*/d;c* = ^ 2 ^ 2
pif<x/MQ. At x* = XQ, the beginning of blowing, the distance from
the surface to the shear layer is v* = 5o, where

(43)

(44)

Suitable coordinates for the blowing region are, therefore,

xo ~ x*

where 0 < x < x\ and x\ is the value of x at x* = jc*. The shear
layer has a thickness small in comparison with 50 and is defined by
y = A(jc), with A(0) = 1. The solutions are expanded in the form

(45)

«oc MK

p

— -T— J-w

(46)

(47)

(48)

Expansion Waves

0(ax3/2/M0)

Fig. 3 Some flow details for strip blowing.
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where the temperature is nearly constant because the local Mach
number is small. If the temperature of the injected gas were the
same as that of the surface upstream of the slot, then fw would be
equal to M^O. The differential equations for the flow perturbations
are inviscid boundary-layer equations

3x dy

„ 3ui „ 3ui dpi
dy

The surface boundary condition in the blowing region is

vl = v\w(x) at y = 0, 0 < x < xi

A stream function is defined by

Integration of the first of Eqs. (52) gives

f d^ fXw v\w _=L^ = ~L sr"*"

(49)

(50)

(51)

(52)

(53)

where a streamline is denoted by the location xw(\/s) whereupon it
leaves the wall in the blowing region, and so d\/f/dxw = —v\w, with
xw (0) = 0. Equation (50) then implies the Bernoulli equation

p\(x)'+ \u\( - = pi(xw) (54)

Outgoing waves that originate in the free-interaction region
will be reflected from the shock wave, but the reflections will be
numerically quite weak. For simplicity these reflected waves will
be ignored; their effects could be added later if it were desired. (The
location and strength of the waves reflected from the shock can
be calculated, and incoming waves at the free shear layer can then
be taken into account. If (jc* — XQ)/XQ is small enough, as suggested
in Fig. 1, the correction will be entirely downstream of the slot.)
Since the pressure above the shear layer is then linear in the slope,

AC*) = 1 + I Pi
Jo

dx (55)

and /?i(0) = 1, since the pressure at the beginning of blowing is
equal to the plateau pressure achieved downstream of separation.
Combining Eqs. (53) and (54), also

L(x) = \ viw(xw)dxu (56)

For the special case v\w = const, the solution1 can be found as a
series in the inverse form

(57)

where AQ = 2 2 / ( j t v i w ) and An satisfies a recursion relation for
n > 0, namely,

(2/Jf)i (58)

with At taken to be zero for k < 0. Evaluation of Eq. (55) gives

ou A

= '+£7^4n=0
(59)

Following Smith and Stewartson,1 it is assumed that there is no
separation at the end of blowing, where x = x\. Then farther down-
stream, for x > xi, the flow must be parallel to the surface, for there

would otherwise appear to be a contradiction: either the low-speed
flow adjacent to the surface decelerates and the pressure begins to
rise again, or this flow accelerates and the separation streamline from
x* = x* has negative slope. It is, therefore, assumed that pi = 0 at
x = xi. Integration of Eq. (57) then gives

(60)

Since the An depend on viw, Eq. (60) specifies the location of sep-
aration x* — jc* in terms of the scaled blowing velocity viw. If v\w
is small, separation occurs at a point very close to the beginning of
blowing1

JCi JCrj
(61)

If, instead, v\w is large, a first approximation for the location of
separation is

<62)
where it is understood that the length jc* — JCQ of the blowing region
is O(V^XQ) and is small enough that jc* > 0. Thus, for large v\w the
distance from separation to the slot is proportional to the product of
blowing velocity and slot width; i.e., JCQ — jc* is proportional to the
rate at which mass is added. The corresponding pressure distribution
in the blowing region JCQ < Jc* < jc* is found from

Thus, the pressure is constant from separation until the beginning
of blowing and to a first approximation for large v\w is quadratic in
x* — XQ in the blowing region; the length O(x*x) of the separation
region is small in comparison with the other lengths.

The interaction parameter x has been defined by Eq. (9) in terms
of the distance x* from the wedge vertex to the separation point,
where jc* depends on the location and strength of the blowing and is
obtained as part of the solution. Thus, the definitions of the quantities
8Q, MI, iii, and p\ in Eqs. (43), (45), (46), and (47) also depend
on the value of x*, which is unknown in advance. For example,
the initial value of pi is pi(0) = 1, whereas the actual pressure
perturbation at the beginning of the strip is proportional to x * Pi (0),
which increases as x* decreases. For some purposes it is preferable,
instead, to think in terms of quantities that depend on a specified
length, say, the distance x* from the wedge vertex to the end of
the strip within which mass is added. This can be accomplished by
replacing x with an interaction parameter xi based on jcjf instead
of jc*. Then each of the quantities SQ, u\, v\, and p\ is multiplied by
a power of x/Xi = (•**/**) 5 > as indicated in some of the figures
described subsequently.

Pressure distributions found from Eq. (57) for various values of
the scaled blowing velocity v\w are shown in Fig. 4, for XQ /jc* = 0.5,
by plots of (x/Xi) 2 pi vs jc*/jt*; these curves are equivalent to those
given in Ref. 1. On the scale of the wedge length the pressure increase
near separation appears as a jump, and the location of separation
is seen to move upstream as v\w increases. The magnitude of the
pressure jump increases as separation moves forward, since the jump
is proportional to x 2 and x is proportional to (jc*)~2. When v\w =
0.2, separation occurs very close to the beginning of blowing, as
predicted by Eq. (61). For Viw = 1.0, the pressure is close to the
form for large v\w given by Eq. (63). The scaled location of the
separation streamline is plotted against x*/x* in Fig. 5, again for
several values of v\w. The slope is constant between separation and
the beginning of blowing and decreases to zero at the end of the
blowing region. The value of the initial slope is proportional to
the pressure increase at separation and, therefore, increases as v\w
increases.
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Fig. 4 Scaled pressure distribution for various scaled blowing veloci-
ties.
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Fig. 5 Scaled location of separation streamline for various scaled blow-
ing velocities.

The mass flow rate m per unit span is
K

m=l [pv]y=0dx*
Jx*

oo -
MQ M T*MOO*W

where the nondimensional mass flow m\ is defined by

(64)

(65)

The integrated force change and the location of separation are shown
in Fig. 6 in terms of m\. The distance between the separation point
and the beginning of blowing is very small when m\ = 0.2, as is
also evident in Figs. 4 and 5. This distance increases as m\ increases
and becomes nearly linear in m\ when m\ is greater than about 0.6,
in agreement with Eq. (62). The added pressure force acting on the
wedge surface has the form

fx*= /
Jx*

(66)

in terms of the interaction parameter xi based on x*; here Ap is the
difference between the surface pressure and the undisturbed wedge
pressure. The scaled force change FI is

(67)(l fl „ xxlix*l-= \Y+ pldYl^^\xi Jo V X 5 l

4.0-

x; = 0.5

2.0 4.0 6.0

Fig. 6 Integrated scaled force change and nondimensional location of
separation, as functions of scaled mass flow rate.

0.00 0.40 0.80

Fig. 7 Scaled rate of mass addition vs nondimensional location of slot
leading edge, for constant values of scaled force change or scaled blowing
velocity.

where the first term arises from the constant pressure in ;c* < ** <
XQ . From Eqs. (60) and (61), it is seen that FI is zero when v\w = 0;
FI then increases as v\w increases, as in Fig. 6. At the larger values
of viw shown in the figure, the force change is approximately equal
to the pressure increase in the plateau region multipled by the length
of the separation region.

Figure 7 shows the required mass flow vs slot width for several
values of integrated force. In the figure, the leading edge x* = XQ
of the slot moves rearward from the wedge vertex as the coor-
dinate Jt0/jc* increases from zero, and the slot width approaches
zero as XQ/X* approaches one. The force change FI is seen to
depend primarily on the mass flow mi, since the lines of con-
stant force are nearly horizontal: if the slot width changes, but the
mass flow is held constant, the variation in FI is very small. Lines
of constant scaled blowing velocity (x/Xi)5£iu> are also shown;
these are straight lines, since the mass flow is proportional to the
slot width. The boundary at the left of the figure is a curve for
which the blowing velocity or slot width is large enough that the
separation point x* = x* is very close to the wedge vertex, at
;c; = 0.01**.

Next it is supposed that gas is injected from two strips, defined
by XQ < x* < x* and x% < x* < jcj (Fig. 8). For the first strip, the
coordinates and scaled quantities are defined in the same way as in
Eqs. (44-48), but with the superscript (1) added to the notation to
distinguish quantities which refer to the first strip; e.g., jc(1) and p^
are written in place of x and p\, respectively. At the trailing edge of
the first strip, the value jc^ = (x\ -JcJ)/(*o ~**)of the streamwise
coordinate Jc(1) (hence the location of the first separation point) is
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Fig. 8 Some flow details for blowing from two strips.

found from the condition
£
Pi

_ £
-Pif> (68)

where p[^ is to be determined.
If it is assumed that the flow from the first strip separates at xf and

moves away from the surface with a constant slope, as depicted in
Fig. 8, then the pressure is constant between x* and x%; furthermore,
the flow description for the second strip may be written in the same
form as the first through an appropriate choice of scaled variables.
The coordinates for the second strip are

Jc(2) =

(69)

and expansions for the flow variables take the same form as in
Eqs. (45-48), but with MI(Jc, y), v\(x, y), pi(x, y), and fw replaced
by (p[ly)^uf\x, y), (p$)2 v{2)(Jt, y), p$p{2)(x, y), and f&\ re-
spectively; with these substitutions, the governing equations may be
written as in Eqs. (55) and (56). At the end of the second strip, it is
assumed that the flow does not separate, so that

p™(xf>)=0 (70)

where xf = (** - x*)/(x% - xf).
If vjyj and vf^ are both constant, it follows from integration of

Eq. (57) that the pressure distribution over each strip may be written
in the implicit form

(71)
AI=0

where the superscript (/) denotes either strip one or two; A^ =
25 /(nvil) anc* me coefficients A^ satisfy the recursion relation
(58). Evaluating this equation at the trailing edge of each strip gives

(*3* - **)/(** - xf) = *(2) (0; vg) (73)

For a given slot geometry, Eq. (73) establishes the value of the scaled
blowing velocity vf^. Given the ratio v^/v^ of blowing velocities,
which may be expressed in terms of scaled quantities as

,,(2) /f(2)\
^£_ _Y£uL. 1-

<2>
(74)

then a value of p[1} may be determined if the temperature ratio
f^/f^ and the scaled blowing velocity v^ are also specified.
The location of the first separation point is then found from Eq. (72).
Values of the parameters are to be selected so that 0 < pf} < 1 and
4»>a

Some pressure distributions for two strips are shown in Fig. 9.
The lengths of the strips are taken to be equal, with the distance
between the strips equal to twice the width of one strip. In terms of

( ) PI
0.80-

0.00

X*Q/X$ = 0.5, x\/xl = 0.625, x\ x\ = 0.875

0.00 0.40 0.80

Fig. 9 Pressure distributions for blowing from two strips, for various
rates of mass addition.

the distance #3 from the wedge vertex to the end of the second strip,
the first strip lies between x*[x\ — 0.5 and x*/x% = 0.625, whereas
the second strip extends from x*/x% = 0.875 to x*/x% = 1.0. The
blowing velocities v$ and vffi are taken to be the same for the
two strips as are the wall temperatures f§* and f®\ As the mass
flow is increased, the separation point is seen to move upstream,
as expected, and the pressure rise at separation increases, since the
Reynolds number Re decreases and the interaction parameter x
increases. Thus, the solution is implicit in the sense that the scaled
blowing velocity or mass flow is specified, and the corresponding
dimensional values calculated after the location of separation has
been determined.

Concluding Remarks
The solutions of Ref. 1 for strip blowing from a flat plate at su-

personic speed have been extended relatively easily to wedge flow
at high Mach number, if the hypersonic viscous interaction param-
eter is small. The flow near separation is described as a hypersonic
free interaction for a cooled surface by extension and modification
of results from Refs. 7-9; this gives the value for the pressure at
the beginning of blowing. The dependence of the integrated force
on the parameters is then determined for a particular parameter
range.

If the surface were not cooled, the free-interaction solution for
supersonic flow would suffice, provided that the viscous interac-
tion for the undisturbed wedge flow is weak. For the cooled wall
considered here, it is assumed that the wall temperature is small in
comparison with the maximum temperature in the boundary layer.
From Eq. (39) it then follows that the parameter Qx * must be suffi-
ciently small. The present solution near separation would, however,
have to be replaced by that of Ref. 10 if also Q is small.

It has also been assumed that the flow does not separate at the
end of the blowing region (or behind the second strip in the case of
two strips). A proposal for describing the flow details near the end
of blowing was given in Ref. 2, but the derivation seems based on
an implicit assumption that separation does not occur. The present
authors believe that a correct representation may include a shal-
low separation bubble, but thus far have not been able to complete
a self-consistent flow description. Carter13 has attempted to sim-
ulate the flow near the strip trailing edge by computing solutions
of the Navier-Stokes equations for a model problem with bound-
ary conditions consistent with Ref. 2; in the cases considered, a
slender separation bubble was observed. Although further work ap-
pears to be required for a complete description of the flow near the
end of blowing, numerical solutions presented in Ref. 13 suggest
that the choice pi(*i) = 0 gives good accuracy for the surface
pressure.
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