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Covariance Analysis of Cassini Titan Flyby
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The Cassini spacecraft is equipped with a radar system that provides Synthetic Aper-
ture Radar (SAR) and altimetry data types for scientific purposes. The radar operates
in these modes during close flybys of Titan; due to operations constraints, ground-based
radiometric navigation data are unavailable. This paper discusses a covariance study of
Titan flybys using both SAR and altimetry data as additional navigation observables and
show the possibility of improving the trajectory reconstruction during these flybys. Real-
istic measurement accuracies and trajectory model are considered; the result that there is
a possible improvement of planar motion estimation by an order of magnitude.

I. Introduction

Synthetic Aperture Radar (SAR) is an important remote sensing technique for characterizing topography,
especially in areas that are obscured by clouds.1 Poor knowledge of the radar paths above the terrain during
the campaign can compromise the conversion of the radar return information into elevation profiles and
maps. In spacecraft SAR applications independent systems, such as GPS, can be used to determine the
spacecraft orbit to a fidelity such that remaining errors do not introduce artifacts into the derived terrain
models. For SAR applications beyond the Earth, these systems are not readily available, and spacecraft
operating conditions make it difficult, if not impossible, to perform radiometric tracking concurrently with
the SAR passes. However, the SAR data (as well as altimetry) collected during these passes has sufficient
geometric strength to improve the spacecraft trajectory with respect to the target, as well as improve the
rotational modeling of the target. A multi-mission capability to routinely process the SAR and altimetry
data as part of orbit determination process would enhance science returns at these bodies, and could be used
for SAR-like applications at other obscured solar system target regions.

To date, there have been SAR applications for terrain modeling at two targets beyond the Earth: Venus
(most recently through the Magellan mission) and Titan (through Cassini’s ongoing Titan flybys). Chodas et
al.2,3 used landmarks common to multiple SAR passes together with ground-based Doppler measurements
to tie the corresponding orbit arcs together. Each SAR/landmark measurement was then used to estimate
the corresponding topographic landmark and any redundant information content, if it existed, was fitted to
estimate the other variables, i.e., spacecraft state, rotation rate, pole location, etc. In different perspective,
one can think of each SAR landmark playing a role similar to that of a fixed tracking station (or a transponder)
on Venus. An institutional navigation software at that time was augmented to incorporate the SAR data
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type. As the next step in establishing a more general capability, the Magellan SAR data were reprocessed
with the current navigation software set. Improvements in measurement and dynamic modeling have resulted
in improved SAR pre- and post-fit data residuals. Using this data as a test case, the filter setup was then
ported to JPL’s next generation navigation software, Mission-analysis, Operations, and Navigation Toolkit
Environment (MONTE) and the results were repeated.

The following step in the plan was to examine the Cassini/Titan SAR/altimetry data set and understand
the opportunities that it could provide. Although it is not possible to perform a SAR campaign with regularly
spaced swaths as was the case with Magellan, swath overlaps between different flybys are expected during the
prime mission. In addition, the altimetry data are being collected during each pass. We present a covariance
analysis to stress the benefits of short arc Cassini SAR overlaps and altimeter passes. The result shows that
there is roughly an order of magnitude improvement in the spacecraft relative ephemeris knowledge in the
orbit arc plane from processing the currently available radar measurements and the cross-track uncertainty
can be improved when overlapping SAR swaths are obtained in the future.

II. Covariance Analysis

A. Motivation

The Cassini spacecraft (Figure 1), which was inserted into the Saturnian system in 2004, has, so far,
performed several SAR observations at Titan. Figure 2 depicts the currently available SAR swaths,4 and
apparently, no overlapping SAR swaths have yet been obtained. The SAR data becomes significant only
when each landmark is observed in at least two different swaths, where the second observation occurs at
a later time. It must be observed twice because most of the data information contents from the first
measurement is fitted to estimate the landmark location, and a long time duration is necessary since the
velocity covariance is, in a sense, inversely proportional to the time difference. For example, consider a
simple example r = vt. The velocity uncertainty is simply σv = σr/t and the advantage of the long time
interval is obvious. Hence, dynamic parameters, such as rotation rate, can be estimated to a high precision
by processing the SAR/landmark data. However, since overlapping swaths are not currently available we
turn to a covariance analysis in order to characterize the expected level of precision by processing the actual
altimetry and SAR measurements. In this study, only the spacecraft state estimation is considered since
our primary purpose is to implement these data types as additional navigational observables for trajectory
navigation at bodies with obscured atmosphere.

B. Initial State Analysis Formulation

A covariance (sensitivity) analysis is often used as a design tool to understand the performance of a
filter.5,6, 7, 8 It is based on the least-squares principle and the problem can be posed either in a batch or in
a sequential mode. In this study we consider the batch process (initial state analysis) and assume negligible
process noise (unmodeled acceleration) since the data arc we consider is over a relatively short time frame
(∼ 1 hour). Note that, under this assumption, the batch and sequential methods yield the same result. The
rest of this section briefly discusses the basics of a covariance analysis.

First define a cost function J as

J =
1
2

N∑

k=1

1
σ2

k

[z∗k − zk(y0)]
2 (1)

where N is the number of measurements, σk is the measurement noise uncertainty, z∗k is the actual measure-
ment, and zk is the predicted measurement. In the batch process the state to be estimated is usually stated
as

y0 = [ xT
0 pT qT ]T (2)

where x0 is the epoch spacecraft state vector (T represents a transpose), p is the dynamics parameter vector,
and q is the measurement model parameter vector with dimensions n, m, and l, respectively. The goal of
the least-squares approximation is to minimizes the cost function J in order to fit y0 to the data. After
applying the necessary conditions to J and linearizing the nominal values of y0, we obtain the following
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normal equation:

N∑

k=1

1
σ2

k

(
∂zk(y0)

∂y0

)T

[z∗k − zk(y0)] =

[
N∑

k=1

1
σ2

k

(
∂zk(y0)

∂y0

)T (
∂zk(y0)

∂y0

)]
δy0 (3)

where the epoch state information matrix is defined as

Λ(t0; tN , t0) =
N∑

k=1

1
σ2

k

(
∂zk(y0)

∂y0

)T (
∂zk(y0)

∂y0

)
(4)

=
N∑

k=1

1
σ2

k

ΦT (tk, to)HT
k HkΦ(tk, to) (5)

Here Hk is the measurement partial computed at time tk and Φ(tk, t0) is the usual state transition matrix
(STM) mapping the deviations from t0 to tk,9,10 i.e.,

Hk =
∂z
∂y

∣∣∣∣
tk

(6)

Φ(tk, t0) =
∂y(ti)
∂y(t0)

(7)

where the differential equation for the STM is

Φ̇(tk, t0) = AΦ(tk, t0) (8)

A(t) =
∂

∂y

(
dy
dt

)
(9)

and the initial condition, Φ(t0, t0), is simply an identity matrix. Note that Λ0 = Λ(t0; tN , t0) means the
information matrix computed at time t0 after processing all the measurements in the time interval [t0, tN ].

If we consider y0 as a Gaussian random vector with a mean, ȳ0, and a covariance matrix, P0, the
probability density function (pdf) can be defined as

p(y0) =
1

(2π)(n+m+l)/2
√

detP0

exp
[
−1

2
(y0 − ȳ0)

T P−1
0 (y0 − ȳ0)

]
(10)

where the covariance matrix of y0 is simply

P0 = Λ−1
0 (11)

The probability of the state vector y0 in some volume B0 is then stated as

Pr(y0 ∈ B0) =
∫

B0

p(y′0)dy
′
0 (12)

Note that, in case of one-dimensional problem, the probability of the random variable in 3-σ ellipsoid yields
99.7 percent.

The direct computation of a matrix inversion in Eqn. (11), however, often introduces numerical errors.
In order to retain the numerical precision, we have implemented the Square Root Information Filter (SRIF)
algorithm:9,11

Λ(t0; tk, t0) = RT (t0; tk, t0)R(t0; tk, t0) (13)

Here R(t0; tk, t0) is the initial state SRIF matrix which we propagate, instead of the information matrix, to
update data in each time increment. The SRIF matrix is related to the adjoint of the STM and ideally maps
to the current time as

R(tk; tk, t0) = R(t0; tk, t0)Φ(t0, tk) (14)
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Let TH be an orthogonal Householder transformation matrix such that the updated SRIF matrix is defined
as

R(t0; tk+1, t0) = TH

[
R(t0; tk, t0)

σ−1
k+1Hk+1Φ(tk+1, t0)

]
=

[
RH(t0; tk+1, t0)

0

]
(15)

where RH is an upper triangular matrix. In the actual computation, we adopt QR-factorization as the
Householder transformation.9,11 After applying the Householder transformation, the updated information
matrix becomes

Λ(t0; tk+1, t0) = RT
H(t0; tk+1, t0)RH(t0; tk+1, t0) (16)

and the updated covariance matrix is

P(t0; tk+1, t0) = Λ−1(t0; tk+1, t0) = R−1
H (t0; tk+1, t0)R−T

H (t0; tk+1, t0) (17)

which represents the evolution of the a priori uncertainties in y0. Each component in the covariance matrix
(Pij = σij) represents either the covariance of the state or the correlation between two estimated variables.
Hence, we can obtain the uncertainty estimates (i.e., standard deviations) of y0 by computing σi =

√
σii,

for i = 1 · · ·n + m + l.
Lastly, in case a current state covariance matrix needs to be computed, the initial state covariance matrix,

P0, can be mapped to time tk as

P(tk; tk, t0) = Φ(tk, t0)P(t0; tk, t0)ΦT (tk, t0) (18)

and the pdf remains Gaussian since it is invariant under linear operations.

III. Trajectory Dynamics and Measurement Models

A. Trajectory Description

As a nominal trajectory we consider the Cassini T8 Titan flyby, which occurred on October 28, 2005,4

and the post-processed SAR swath is shown in Figure 3. The initial spacecraft state (32 minutes prior to
the periapsis passage) is found from JPL’s HORIZONS system12 and Figure 4 shows the nominal hyperbolic
trajectory in Titan-centric frame. The trajectory is propagated via the two-body dynamics

r̈ = − µT

|r|3 r (19)

where r represents the spacecraft position vector and µT =8978.03 km3/s2 is Titan’s GM. For the problem
considered in this study, the two-body relation is a reasonably good approximation since the data arc we
consider starts from 32 minutes prior to the periapsis passage (P–32 minutes) and ends at 32 minutes after
the periapsis passage (P+32 minutes), resulting in a relatively short data arc of 64 minutes. Note that ‘P’
represents the periapsis of the T8 flyby. The orbit elements of the nominal trajectory are given in Table 1.

Table 1. The nominal trajectory orbital elements

Semi-major axis, a −292.6 km
Eccentricity, e 14.42
Inclination, i 178.8 deg
Argument of periapsis, ω 86.0 deg
Argument of ascending node, Ω 162.2 deg

As noted earlier, no Earth-based radiometric measurements are available due to planned science activities
during the close flybys. We assume that the trajectory reconstruction is available from processing the pre- and
post-flyby ground tracking data and used a priori state uncertainties of 100 m for the position components
and 10 mm/s for the velocity components.
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B. Measurement Schedule

The Cassini spacecraft (Figure 1) is equipped with a sophisticated Ku-band/5-beam radar system which
is capable of operating in four different modes: radiometry, scatterometry, altimetry, and synthetic aperture
radar.4,13 We are particularly interested in the altimetry and SAR data types due to their high resolutions
and geometric strengths. In the T8 Titan flyby, the first altimetry pass starts at P–32 minutes and ends
at P–15 minutes (∼ 17 minutes). The spacecraft then performs a small attitude maneuver and changes to
SAR mode for about 30 minutes (i.e., up to P+15 minutes). During the last few minutes of the SAR surface
scan, the spacecraft performs a small maneuver again to point toward nadir for altimetry, and during this
back flip, the end portion of the T8 swath is observed over a longer period. The spacecraft then performs
the second altimetry pass until P+32 minutes. The measurement schedule is illustrated in Figures 4 and 5.

C. Altimetry Model

As shown in Figures 4 and 5, when the spacecraft operates in altimetry mode, the radar transmits signals
directly toward the nadir and measures the two-way time of flight between the spacecraft and the surface,
and thus, in principle, can be considered as the usual range measurement:

zA = |ρ| = ρ (20)

where ρ is the vector from the spacecraft to the surface of Titan. The major error source of the altimetry
measurement comes from the topographic elevation profile. We consider Titan as a spherical body with
radius RT = 2575 km and assume 50 meter accuracy for each altimetry measurement,13 which is transmitted
approximately every second. Also considering the slow (spin-locked) rotation rate of Titan (i.e., 15.95 day
rotation period), we assume a stationary model. The measurement partial of the altimetry then yields7,8

HA =
∂zA

∂x
=

[ (
∂zA

∂r

)T (
∂zA

∂v

)T ]
=

[
ρ̂T 01×3

]
(21)

D. Synthetic Aperture Radar Model

In practice, the SAR measurement is much more complex to process than the altimetry measurement.
When the radar operates in SAR mode, the 4m high-gain antenna transmits a burst of radio waves and
receives the reflected echoes from Titan’s surface. Once the echoes are recorded, the on-board hardware
translates them into corresponding range and Doppler bins. This information is then processed to create an
image, called a look, where each pixel of a look corresponds to the range/Doppler pair. A series of bursts are
processed to obtain multiple looks and are correlated to make swaths as shown in Figures 2 and 3. Hence,
for navigational purpose, a SAR measurement is essentially a landmark on Titan’s surface with associated
range and Doppler values. Mathematically, the SAR/landmark measurement can be modeled as

zS = [ ρ , ρ̂ · ρ̇ ]T (22)

where ρ̂ is the unit position vector from the spacecraft to the landmark location. We note that the Doppler
frequency shifts in the transmitted signals also provide angular information on the trajectory as well due to
the Hamilton-Melbourne effect. The partial derivative of zS results in

HS =
∂zS

∂y
=




ρ̂T 01×3

ρ̇T

(
∂ρ̂

∂r

)T

ρ̂T


 (23)

where

∂ρ̂

∂r
=

1
ρ

(
I3×3 − ρ̂ ρ̂T

)
(24)

The measurement accuracies are assumed to be 50 meter for the SAR range and 10 mm/s for the SAR
Doppler.

Unlike the Magellan spacecraft, the Cassini radar has the 5-beam antenna configuration, and during
the SAR campaign, each beam points in a slightly different direction and scans offset swaths of Titan as
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illustrated in Figure 6. In other words, overlapped landmark observations are available even though the
successive time interval is relatively short (i.e., ∼ 20 seconds). However, we later show that this offset
configuration is important and improves the landmark estimation. Moreover, in order to emulate the T8
SAR swath (Figure 3), 12 pseudo-SAR/landmark measurements are created and are shown in Figures 4 and
5. Note that solid lines from the trajectory to the landmarks in Figure 5 represent the SAR measurements,
and the offset beam configuration and the long observation of the last landmark are shown as well.

E. Landmark Uncertainty Model

Considering the SAR/landmark measurements, each landmark location vector must be estimated and
the state to be estimated yields p = 0 and q = ri

L, where each landmark vector is defined as

ri
L =

[
xi

L yi
L zi

L

]T

(25)

for i ∈ {1, · · ·κ}. Here, κ is the number of landmarks, and for each landmark, we assumed initial uncer-
tainties of 50 km in local planar and 1 km in radial directions. For each landmark, the uncertainties can be
transformed into the Cartesian coordinate system by applying

PL = S




(1 km)2 0 0
0 (50 km/RT )2 0
0 0 (50 km/RT )2


ST (26)

where S is the linear transformation matrix from the spherical coordinate system to the Cartesian frame.
Hence the epoch landmark uncertainties yield

√
(PL)jj for j ∈ {1, 2, 3}.

To estimate the landmark location vectors, the only additional information required is the partials of the
observation vector with respect to ri

L. Since we assume a stationary Titan the measurement partials simply
yield

∂zA

∂ri
L

= −ρ̂T (27)

and

∂zS

∂ri
L

=




−ρ̂T

− ρ̇T

ρ

(
I3×3 − ρ̂ρ̂T

)

 (28)

IV. Simulation Results

As a baseline case, we assume 1000 measurements are obtained from each altimetry pass and 12 SAR/
landmark observations are obtained from the T8 SAR swath. Also, considering the beam offset and spacecraft
back flip, we assume that each landmark is observed twice with 20 second elapse time and the last landmark
is observed three times over a 2 minute period. Figures 7 and 8 show the 1-σ state uncertainties as functions
of time. From both plots we see that the SAR/landmark observation contribute no significant impact on
the state estimation whereas the altimetry data alone provide about an order of magnitude improvement
in the planar arc and in the along-track velocity direction (i.e., σuo). Note that [xo, yo, zo] and [uo, vo, wo]
are in Cartesian coordinate frame, but because of the small inclination from the equator, zo and wo can be
considered as cross-track components. This indicates that the landmark errors must be reduced in order to
draw any meaningful information contents for the state estimates. Table 2 shows the state a posteriori results
considering individual data arc. The SAR only result confirms the importance of reducing the landmark
errors. Also, Table 3 shows the level of accuracies of the landmark location vectors from the baseline
simulation.

Next, the effectiveness of the beam offset is shown in Table 4, which is modeled by varying the measure-
ment elapse time. The result shows that, although the state estimates are not affected, the 20-second delay
between the successive SAR observation yields more than an order of magnitude improvement in landmark
estimates. Hence the 5-beam configuration is an important advantage and can benefit both the state and
landmark estimates than a single beam antenna.
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Table 2. Spacecraft state a posteriori uncertainties

Cases σx0 σy0 σz0 σR0 σu0 σv0 σw0 σV0

(m) (m) (m) (m) (mm/s) (mm/s) (mm/s) (mm/s)
a priori 100 100 100 173.21 10 10 10 17.32

Altimetry 1 only 17.99 29.28 99.98 105.72 9.37 9.72 10 16.80
Altimetry 2 only 36.45 36.45 99.98 112.49 8.54 9.74 10 16.37
Altimetry 1 and 2 11.47 18.06 99.98 102.24 2.57 9.66 10 14.14

SAR only 100 99.92 99.98 173.15 9.98 10 10 17.31
Baseline 11.47 18.06 99.96 102.22 2.57 9.66 10 14.14

Table 3. Landmark nominal position, a priori uncertainty, and a posteriori uncertainty values

Landmarks xL (km) yL (km) zL (km) Landmarks xL (km) yL (km) zL (km)
Nominal No. 1 -1631.20 1887.28 -638.73 No. 7 815.39 2402.50 -440.17
a priori 37.54 33.04 48.44 46.73 17.81 49.26

a posteriori 1.01 0.99 8.75 0.0090 0.036 0.75
Nominal No. 2 -1289.29 2153.68 -574.48 No. 8 1216.34 2223.76 -453.92
a priori 42.21 26.81 48.74 43.39 24.87 49.22

a posteriori 0.70 0.59 7.14 0.034 0.038 0.42
Nominal No. 3 -902.67 2354.50 -521.64 No. 9 1578.47 1976.74 -481.22
a priori 45.86 19.9 48.96 38.83 31.52 49.12

a posteriori 0.46 0.34 6.27 0.077 0.081 0.39
Nominal No. 4 -484.64 2482.78 -481.22 No. 10 1889.70 1669.59 -521.64
a priori 48.24 13.18 49.12 33.30 37.31 48.96

a posteriori 0.30 0.22 6.78 0.17 0.23 0.54
Nominal No. 5 -49.30 2534.20 -453.92 No. 11 2139.51 1312.66 -574.48
a priori 49.21 8.92 49.22 27.22 41.95 48.74

a posteriori 0.29 0.60 29.57 0.34 0.63 0.87
Nominal No. 6 388.84 2507.13 -440.17 No. 12 2319.35 918.29 -638.73
a priori 48.70 11.37 49.26 21.25 45.27 48.44

a posteriori 0.038 0.064 2.57 0.077 0.17 0.20

Table 4. Landmark No.7 a posteriori uncertainties considering different beam elapse times

Elapse time a posteriori a posteriori a posteriori
(sec) x (km) y (km) z (km)

a priori 46.73 17.81 49.26
1 0.065 0.34 14.07
10 0.0097 0.047 1.48
20 0.0090 0.036 0.75
30 0.0090 0.034 0.52
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Lastly, in order to simulate the importance of the SAR swaths overlap after a long time interval, we
consider cases with reduced a priori landmark uncertainties:

• Case 1: landmark uncertainties of 75 m in the local planar directions and 2 m in the radial direction.

• Case 2: landmark uncertainties of 1 m in the local planar directions and 0.1 m in the radial direction.

As shown in Table 5, once the landmark uncertainties are known precisely, the out-of-plane motion uncer-
tainty is improved and the significance of the SAR data becomes evident. We also note that processing
the SAR/landmark data provides information, such as the Titan rotation model parameters, that are not
available from the altimetry passes.

Table 5. Spacecraft a posteriori state uncertainties

σx0 σy0 σz0 σR0 σu0 σv0 σw0 σV0

(m) (m) (m) (m) (mm/s) (mm/s) (mm/s) (mm/s)
a priori 100 100 100 173.21 10 10 10 17.32
Case 1 11.25 17.80 56.29 60.10 2.46 9.59 9.70 13.86
Case 2 8.51 14.14 25.77 30.60 1.87 7.28 9.01 11.73

V. Conclusion

In this study, we have explored a possible use of the altimetry and SAR data as additional navigation
observables for the Cassini Titan flybys. The T8 Titan flyby was considered as the nominal trajectory
and the baseline result showed that processing the altimetry data alone can improve the spacecraft planar
motion by an order of magnitude. Also discussed is the advantage of the 5-beam antenna, which is shown to
improve the landmark estimation. Moreover, when landmarks are observed over a long time interval, which
is simulated by assuming reduced landmark uncertainties, the SAR data become effective and can improve
the spacecraft out-of-plane motion.
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Figure 1. The Cassini spacecraft.4
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Figure 2. Available Cassini Titan flyby SAR swaths.4

Figure 3. Cassini T8 (October 28, 2005) Titan flyby SAR swath.4
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Figure 6. Illustration of the beam offset configuration (figure not in scale).
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Figure 7. Baseline 1-σ position uncertainties as functions of time.
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Figure 8. Baseline 1-σ velocity uncertainties as functions of time.
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