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Abstract

CGiradient-type methods which employ pen-
alty functions typically have difficulties in solving
optimal control problems with variable final time.
Methods for improving the rate of convergence
are presented. The first approach involves sim -
ply guavanteeing that the initial iterate {inal time
is less than the optimal final time. Heuristic
reasons for this approach are presented along
with a éimplc example which illustrates why such
an approach is effcctive. The second approach
invoilves the uee of a two-dimensional search rou-
tine, with a final time parameter and the control
vector correction length as the parameters., The
number of function evzluations is reasonable be-
cause ol the availability of J(0,0), J (0,0), and
J..(0, 05, where J{a, T) is the iwo—pa(fameter
function to be minimized, and since a recursive
quadratic surface fitting procedure is employed.
The approzch is illustrated on two aerospace
trajectory optimization problems,

1. INTRCDUCTION

When a gradient-type technique is em-
ployed to sclve an optimal contrel problem, one
must continually confront the problems associated
with terminal equality constraints and variable
final tima. Usually for flexibility and ease of
programming, a penalty function approach is pre-
ferred-to a projected gradient approach, espe-
cially if an accelerated gradient technigque such as
the conjugate gradient methoed is employed. Ilow-
ever, numerous inve Stign‘t(n‘ﬁ‘have found that
accelerated gradient methods which employ pen-
alty functions have serious difficultics with tightly
constrained problems, especially those involving
variable final time. In Reif, 1 it was noted that
problems involving three or more terminal
cquality coustraints were extremely difficult to
solve with the conjugate gradient methad, In Ref.
2, which involved a comparison of various opti-
mization techniques, it was shown that the stand-
ard conjugate gradient mizothed was the only meth-
od of those compared which could not solve &
minimum time orbital transfer problem with three
terminal equalily constraints,

A number of approaches have been em -
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ployed to improve the rate of convergence of
methods which involve variable final titne and/or
penalty functions, Hestenes proposed the mul-
tiplic r method to overcome the ill-conditioning
assoclated with large penalty function coefficients,
and a time-oplimal problem was solved success-
fully with this method in Ref. 4, References 5
and 6 treat variable final-time problems by em -
ployi.n% the transformation introduced by LongT.
Moyer® employs this idea along with a modified
gradienk procedure to successfully solve a time-
optimal atmospheric flight problem.

In this papcr two approaches for improv-
ing the convergence of {ree final time problems
which utilize gradicnt-type methods with penalty
functions are presented. In Scction 2 a relatively
simple approach involving the initial final time
estimate and Long's transfoermatlion is prescnted.
Heuristic reasons for this approach are pre-
sented along with a simple example which illas-
trates why such an approach is effective. In
Section 3 the approach of Section 2 is augmented
by an efficient two-dimensional search procedure.
The resultant procedure typically reguires only
& few morc function evaluations per iterate than
the stancdard one-~dimensional scarch, while im-
proving the operational rate of convergences con-
siderably. Scction 4 presents simulations of the
rmethod on an orbital transfer problem and an
atimospheric flight problem, bhoth involving free
final time and penalty functions.,

2. TERMINAL TIME CONSIDERATICNS

Consider the optimal conirol problem

I v b
Minimize: J = c{;(tf, xf) + f L (t,x,un) dt {1
t
Subject to: X =Tt -ot =
ol JQC df = (,X,u), J‘-.( O) _XO (?)
ne U {3)

where x is an n-vector, u is an m-vectar, and U
is the set of admissible controls., If terminal
constraints are present, it is assmued that they
have been incorporated into the function ¢(tf,xf)
by the micthed of penalty functions.

Since variable -t, problems are of pri-
mary interest here, the following parameteriza-
tion duc to Long’ is employed to alleviate some
of the difficultics involved with variable ¢,
especially extrapolation problems. (References
4,5, and 7 discuss these aspects), Letl s be the
new independent variable defined by

t='Is-l-to, T=tf~tose{0,l] (4}



Usually to = 0 and ¥¢g, (1) becomes

t:Ts,T:tf,se [0,17. {5}
Without loss of gencratity, t = 0 will be assumed
in the following developments. In this case Egs.
{1} and (2) arc transformed into

J= 4 ('l‘,xf)+f TL(Ts, x,u)ds (6)
0

x =Ti(Ts, x, u), x(0) =% (7

(=2 (3)

where T is a parameler to be optimizcd along
with the control vector u,

~ Let T(O) be the initial estimate for T in a
gradient-type iteration scheme. Qur cxperience
has shown that the_relation of T to the optimal
value of T, say T, can greatly affcct the rate of
convergonce of the algorithm, espncially when
penalty functions are present in & (£, 2% ),
particular, we have found that (0} < T gives
more rapid convergence than T/ > T in all
cases simulated to date. Alf.hough a mathemati-
cal proof of this approach is not available, heuris-
tic reasons for its effcctiveness are given below,

Ceonsider a time optimal control problem
with terminal constraints which is treated by the
method of penalty functions. Suppose T <T”
Then, il is impossible for the initial trajcctory to
mect the boundary conditions, and 1) niust be
greater than T to decrease the error on the
terminal constraints. Thus, the oplimal sclution
has the unigue characteristic of being the closest
trajoctory to the initial iterate, with rcspect to
finazl time, which satisfies the tctm inal con -
straints. Conversecly, if (0} s 'I", then there
exist infinitely many nearby solutions which
satisfy the terminal constraints. Since with
penaliy functions terminal constraint satisfaction
is a major part of the performance index, there
exists the tendency to Mock-in" on the terminal
conditions at T > T, That is, the optimal sclu-
tion no longer possesscs the unique property of
being the closest trajectory which satisfies the
boundary conditions, Apparcntly this lack of
uniqueness affects adversely the rate of conver-
gence.

With respect to the relationship of '1‘(0)and
'1‘*, it is instructive fo consider the convergence
characlaristics of the following variant of
Zermelo' s problem which contains both singular
and bounded control subarcs:

Minimize: J = Tz bR (1) - 4] 2 + P y(1)-3] 2(9)

Subject to; x =Tcos €, %(0)=0
v =Tsin g, v(0)=0 (x0)
6 =T u, 0 (0)=0
!u! < 0.5

{This is a penalty function approximation to the
tine optimal transfer tox_. = 4, y_ = 3 problem;
T2 is used in the performance index because with
T-linear in the performance index along with
penalty functions, T - - o is a possibility
which is to be avoided).

This problem was solved nwmerically with
a2 bounded control version of the conjugate gra-
dient method for various initial estimates of
T{0). It was found that a useful way of siudying
the convergence characteristics for the various
initial estimates is to plet the gradient with re-
spcet to TNY versus T - T* for N=0,1,2,...
{where N = iterate number}. Such a plot is
shown in Figure 1 for a given sct of penalty cocf-
ficients. { Threc initial control estimates, i.e.,

{s), were employed so that points in all four
regions of the plane could ke gencrated., Tra-
jectories 1,2, 5, and & employ u( 0} {s}

= 0.5{l-s),
Trajectorics 3 and 4 employ u ul0) (s )= 0.5, and,
Trajectories 7 and 8 employ w7/ (s) = 0. 05 +
0.45s.)

Trajectories with initial points in Regions
I and IV have the tendency to "lock-in" at peints
where T -T" >0 and nenoptitnal trajectories
arc obtained, In Region II, the trajectories do
neot converge dircctly; however, they move to
Region Il and converge rapidly thercafter. In
Region ITI the trajectorics converge rapidly (cven
with a physically unreasonable T < T*, such
as Trajectory Neo. 6). Thus, Figure 1 shows (at
least for this cxample) that the value of (0) is
operationally cirtical to the rate of convergence
of the scheme. Such a choice appears te allow
one to set the ponalty coefficients relatively high
initially, which avoids the problems associated
with raising the penalty terms during the itera-
tive process.

3. A TWO-DIMENSIONAL SEARCH ALGORITHM

The use of Long's transformation and re-
quiring ) « 7% are simple procadures which
improve the convergence of variable final time
gradient algorithms. However, convergence is
sometimes still slow becauvse of the sensitivity
of the gradicnt 8Y/07T, which is a direct function
of the penalty cocfficients. Thus, further im-
provements might be possible by optimizing the
parameter T directly as opposed to using the
possibly sensitive or misleading gradient 37/2T.
At first glance this does not appear to be a
promiging idea becanse the algorithm then con-
tains two free parameters, t.e., T and the
length of the control {(u) scarch direction. ITow-
ever, it will be shown in this scction that after
the {irst iterate there exists encugh informa-
tion about the function of {wo paramcters to make
a two-dimensional search feasible, Further-
more, in the simulations of Scction 4 the two-
dimensional search requires only a few more
function evalwations per ilerale than a corre-
sponding one-dimensional search while improv-



ing considerably the convergence rate,

For the problem defined by Eqs. {6} -~ (8},
define
f{s,%x,u,TY= T L (T s,%,u} {11}
F(s,x,u, T) = T{ (T s,x,u) (rz)

H (s, %, oA} 5 2 (s,x, u, T) + % " F(s,x,u, T) (13)

The basic steps for a gradicent-type algorithm with
a two-dimensional scarch are as follows:

BASIC ALGORITIIM: Specify u(o) (s}, sef 0,1},
() .

) (s), 'I.‘(N)

N
1, Given u{

, integrate Fq. (7) for-
ward from s = 0to s =1, Define
N
AR T o105, ji, (14)
and integrate
ii = -RH/0x, (i=1..., n) (15)
T
backwards with ).(N){l) to form ?\(1\)(.‘:}. Calculate
and store the gradient BH/E}uf(N)
2. Two-Dimensional Search: With

SN L )

{s}
A N

(5) - oM, (M)

L L)L ()

{s) (1%}

{16)

perform a two-dimensional scarch to deter-
mine the values of o (N » 0 and TN Ghich
mininiize

J(N-i-l} (M) (I\t Ll))

{=

car™y C g et

(N#1) | (N} (N4 u(Nvi-l)

1
[T L(T
0

jds {17}

3, (,hec%- convers'ence criterion, e.g.,
15 (N+1) ‘i €. If yes, stop;
N =N +1and return to Step 1. ~

if no, set

In the z2lgorithm above the search dircction
p(I\)(s) determines which kind of method is em -
ployed, e.g., gradient, conjugate gradient, ctc,
The unigue festure of the algorithm is Step 2,
and this step requires a separafe subroutine,
Before listing the two-dimensional seaxch alpo-
rithin, the approach to its development will be
discussed,

Consider the problem of determining a
minimum of a function of two parameters, say
J(a , &AT), when only function and derivative data
are available, e.g., = J((v , &F ) J J'[a?.C\I‘ },
2Y /0w (e ,&Tl), cte, 1n such a case CLt‘ner 2
direct search’or curve fitting procedure is neces-
sary to approximate the minimem. If a curve-

-

fitting procedure is employed, then one must
assume at least a quadratic function in the para-
meters:

afz+c o ATic ATZ

N ]
e 8T, 1 0z

JF=c ol

(18)

0010

To determine the coefficients c_,, six data points
concerning J{e, AT) are necessdry. However, in
the trajectory optimization problemn threc . data

points are readily available after the first iterate

Cop = 30, 0) ey
1
¥ ,
Cor ® ga =3_(0,0) fHu(N){;)p(N)(ﬁ)ds (70}
0,0)° o
1
€107 a7 '( (0 0) = bt ”(0,0) (21)

The proofs of Eqs.
Appendix A,

(20) and {21} 2re presented in

With the information supplind by Xqs. (19) -
{21), only three funciicn evalnations are necessary
to obtain the three remaining cocfficients in Iq.
(18), i.e., e,., ¢,., and ¢ Experience with
one ~dimensional séarch rovtinies served as a guide
for the choice of parameter values to use for the
three evaluations.

First function evaluation: Compute
1 _ (N) AT (M)
J =Jf @) 1 ]
with
1-1
w2 Y g

i.e., use the converged values of the two para-
meters {rom the previous iterate. (The valuc of
the correction lengih e is in many cases of the
same order of mapnitude of the previous iterate).

Second function evaluation: Compute
2 _ (N) (M)
J =7 a,t ATZ ]
with
(M) {N) {(N-1) . (N)
@, =0, TZ =T * AE‘?
where
. L e NN aearear. 3 )
(0, 0)
That is, select the second point along the T dircc-

tion in the direction of a cost decrease.

Third funetion evaluation; WithJ (0, 0},
J (0,0}, and J%, ;:;:Tfoirm a guadratic £fit for o
while holding AT(N) = 0, whigh implies a value
e MY top o mlmmu’ L of J{\Sw ,0). With J{0, 03,
J7 (0,0}, and I° (0, AT ), perform a guadratic
fit for 7. N white holling o = 0. A value AT
for a minimum of I{0, A’i‘{l\j Compute

j is obtiined,



3 (1Y) .
J —.T[cr3 . A'13

{n}
1.

if the fit is not successful or a more
accurate f{it is required, then more than threc
function evaluations are necessary. In such a
circumstance, the points as shown in Fig, 2 will
serve, respectively, as the 4th, 5th and 6th
additional function evaluations (assuming sgn
BT [aAT < 0).

It should be noted that, for each additional
function evaluation, the value of 8J/8AT at the
point where the function is evaluated is readily
obtained {without additional integration) and can
be employed as supplemental information in the
scarch scheme., The proposed two dimensional
search scheme is presented below, and a coin-
plete flow chart of this procedure is given in
¥ig, 3,

SURFACE FITTING SEARCH METHOD (ST SM)

Specify Cho0 € as defined in Eq,

c
e’ ol
(19)-(21}. 0
1) Evaluate the first three functions in the manner
noted above, aned denote by Ji, oJl/BC:T

83/06T (N} A7, {N}] i=1,2,3.

?) Fit Eq. (18); if good, éo to 3); i not, for
=1,2,3 replaco ¢ by J and fit (18); if good,
go to 3), if not; ﬁn L 4th pomi (@, ), 0} and go

to 3).

ok 4 4
3} Evaluate J°, and replace J,  _{0,0) by J ;
fit (18); if good, po to 4); ifnot, for i =1,2, 3,
rep]a.u T (0,0)by Ji_and fit (18); if good,
to 4); if not, select = the fifth point {o,g_vrzf /f}
and go to 4).

1) E«:alutems J5 and fit Eq. {18} with six data
points; if good go to 5); if not, go 1o 6)

5} Evalute”™ .TJ, j > 6, compute and select the 6
points with the least costs of the ji1 data points;
fit (18); if nat good or if E(.]J JJ"I)/JJ“II < e go to
6), otherwise repcat 5) for higher j.

6} Sclect the point with the least cost and stop.

At least threc function cvaluations are
necessary for a comiplete search., The number of
points for the {it depends upon the accuracy that
is required for a specific problem, and typicolly
this search requires six to eight function evalua -
tions. RMathematically, Eq. (18) is a quadratic

surface which approximates J [ &,7] in the
neighborheod of the initial point J [ 0O, N "1)] .
The fitting process should tend to be more con-
sistenl near the optitnum, and this has been the
cxperience in our simulations. In addition to the
search mentioned above, a relatively stable pro-
cedure™ has been developed for implementation
as a backup routine, It can alse be operated in-

%% Note that when the surface fit i good, an
approximation of the minimum of J is obtained
and usced as the next point to be ¢valuated.

dependentiy, but expericnce has indicated that it
has slower convergence and requires more func-
tion evaluations than the method above.

With respect to convergence aspects of the
algorithm, note that since J is minimized with
respect to T cn each iterate, the sequence of

iterates possesses the property that -é-“ I{N)
(=1, 2, ) (whereas with 2 one- dlmcnamnil

N .
search 81 ](-*)0 as N—~w ). This means that one
of the transversality conditions for the optimal
conirol problem is satisfied by cach iterate, i.e.,

PROPERTY: Assuming ¢ 13n°Bgci£ied in the proh-
e ¢ (h fincd by Eqs. (1) - (3), Gt +’fff = 0 (where
=T+ T}is a necessary condltzo"l of opti-
mality. " If the twoAglunenstona.l sezrch is em -

ployed, then ’a’,{;l + Hf = Qon each ilerate,

Proof: The eptimization is performed on the trans-
formed problern defined by Egs. {5) - (8}, and on
each iterate 3J/8T = 0. But, {rom Eq. (A-8) in
Appendizx A 87/0T = ¢ ., +?f£ =0 . Since ¢ Trﬁ)jt .
the property is provedf f

4, SIMULATION RESULTS

In this section exarnples are selected to
demonstrate the performance of the algorithm,
One of the examples, an orbital iransfer problem
which could not be solved by the conjugate gradient
method in Ref, 2, is solved successfully with the
proposed method.

Problem 1) OsbitalTransfer Problem

Minimize J = t (23)

Subject to
dx

T .
. rnOH:nt sin u (24)

-
= ~x % fx, + ———cos u
dt 2371 mo+mt
where x, are the state variables, u is the pitch
angle control, and p, v, m_, ™ are constants. The
boundary conditions are, after Long's transforma-
tion,

(0} = 1, %,(0) = 0, x,{0) =1 T {25)

:-:1(1) =1.625%, x, (1} =0, x3(1) =, 8098 (26}

5
These parameters correspond to a nondimensignal
Earth-Mars transfer with continuous thrust %

The problem was solved numerically by the
conjugate gradient method with two different
search roulines, Method No, 1is defined as the
standard conjugate gradient method with a one
dimentionsl search routine, while method No, 2

employs the proposed two-dimensional search,
Thée rdsultant data ere presented in Table 1.

e o, ommen s a1

]
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Mathod No, 2 converged in nine ilerates with
errors of less than 0,2 percent {while the stan-
dard method, No. 1, did not converge). The ninth
iterate control is very closc to optimal (sce Fig.
4}, and the deviation from ocptimal is typical of
function space gradient-type techniques. Method
No. I performed smoathly in the first six itera-
ticns, however difficultics occurred in the im-
provement of the final time after the sixthiterale.
A numher of sels of penalty functions were tested
in an attempt to move the {inal thine toward t ",
but no significant improvement in t, was obtained,
From the data obfained here and in Ref. 2, it is
evident that the standard conjugate gradient meth-
od has operational difficulty in converging to the
opl bmum,

Problem 2} Minimum Time Turning Flight
With Specified Range.

Minimize J = tf {(27)
Subject to: x'=zu cos @

y'=usin ¢

P 1y S

wes o [ v-{lex ") {28)

ey
v ¥ )\2 u/‘: - m2

I =
um

m'= -nty

The equations represent the turning flight
of a vehicle in a horizontal plane. Here, x and y
arc the longitudinal and lateral ranges, respec-
tively, The remaining state variables ave the
velocity magnitude v, the heading angle &, and
the mass m. The control variables are 1lift con-
trolh = C_ /C. ¥, where C_ isthelift cocfficient
and C_ ¥ 15 the lift coefficiént for maximum lift-
to-drag ratio, and a nondimensionalized thrust
variable, 7. Doth controls are founded as follows

0< N< 3066

0< v 9.059 {29)
The constant paramcter n is defined as
n = C,) /C_ ¥ (2 .181), where C o is the zero-
lift drag cotfficient (for more cIeE”uls sece Ref.ll).
The problem is to find the time-optimal controls
from t =x =y, =d =0, u =.,264, m_= 03914 to
oo 0 Yoo

x = 0,§,=0 0525, ™ = Co1d7s,

With the initial control shown in Fig. 5(a),
(b}, and initial {inal time estimate t {0) =0.,1 ,a
maximum-variable-minimum thrust profile was

0

obtained for the optimal trajectory after twenty
iterations. It also appears that the lift control

is tending to a maximum -varicble-minimum type.
The optimal time obtained is ti(?ﬁ} =,122

(22 30,5 seconds) with the relative terminal
crrorvs reduced to the range of 0.1 percent.  The
bank angle control corrcsponding to the optimal

lift control and the optimal trajectory are shown in

Fig. 6{a},(b}, and relevant data of the computa-

tions are presented in Table 2.

A suboptimal solution with the thrust mag-
nitude control of a maximum-minimum type was
noted in the simulations. Such a suboptiinal might
be a more casily implemented control policy even
though its performance is not as good as the opti-
mal solution presented above(i.e., ty = 34 seconds
on the suboptimal as opposed to t ##30.5 scconds
on the optimal), The lift control for the subopti -
mal case is a maximum-minimum -maximum type.

5. CONCLUSIONS

-«“Methods for the improved convergence of
gradient-type algoritluns on problems involving
free final time and penalty functions arc presented.
A methed involving the estimate and characteriza-
tion of the final time parameter along with an
efficient two-dimensional scarch procedure
appears to improve the operational rate of con-
vergence of gradient-type algorithms considerably.
The method is coupled with the conjugate gradient
algorithm te solve efficiently two aerospace
trajectory optimization problems, onc of which
was rot previously solvable with a conjugate
gradient type algorithin.

APPENDIX A

PROOYS OF EQUATIONS {20) AND (21)

Given
1 . _
T (T + [ [ TLATs, x, 0)4n  (Tf-x)] ds (A1)
0
J'r N
H= T4 £)=TH (A-2)
. o T
H, = TL N (A-~3)
G 00 0 ) (A-4)

Subsitute {(A-2}, (A-4) into {A-1), and take the
derivative of (A-1) with respect to

1
8 _ 'y Bl T 23 T, 2u
Ba—f 'l[(u) Der A fu Ba}ds
1 r
= et aTe ) 2 oas
0 a u da

= fl HuT (- as, (A-5)

0
which is Fq. (20).

To develop BEg. (21), first diffcrntiate Eq‘,
(A-1k

1
5 [[ 7L T iTeoy ds.
T

{A-6)

7
8Y/0T=d +b x, +
T "=, % ¢

i °T

o~ .
But, tf:T. ¢X & ¢xf= )Lf, and ¥ EXp which upen .
substitution i Fq . (A-0} implics



T 3 oy
8I/OT = ¢ Ahy dx/dt BTJ;)[TIAh (Tf-x }]ds

(A7)
Since tf =Tandt =T s

s T 8 St Tadx
—ﬁ,{){mm (Tf-% )] dss—ﬁ-ffo L (-5 dtﬁo

=Tt ey NTEE 256) - a, ]

fa¥ g
where f-dx/dt = 0 al every point on the trajectory.
Upon substitution into By, (A-T)

a7 T ~ _ ~

3T =y T+RI f(tf, xf, uf) L L{tf, e ‘,lf)"dh Tﬁ{f {A-8)

and the desired result is obtained since ‘;I'f:H /T

by Eq. (A-2). £
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Method Fen, Fival | CPU Time(No.of Terminal ti
o PerIter. { Per lter.| Iter.| Errors

1 "5 0.76% 7 0005 |3.242
.1500
L DElo

2 8 0.997 9 . 0019 3,318
. GoLs
‘0013 e |

%*
Penalty coeflicients were adjusted on Tth, ].lth, 14th
iterates in an aftempt to Improve convergence;

P1=P2:P3: 1000 on all iterates in Method 2,

Table 1. Orbi}tal Transfer Problem Results
(0) .. L
(tf 2.5, tf 3.32)

Iter. Relative terminal crrors(%) Cost Final
noﬂ.‘ Axi &.yf d\mf time

or 18. 4 87.2 38.9 21.80 .0980

i 7.1 2.2 16,3 5.119 .G976

2 12.9 38.1 18,1 4,307 .0976

3 18,5 24,7 4. 05 1.887 .0995

4 34.6 6.67 15. 6 0.647 .1001

5 24,0 2.67 13.1 0. 355 .1101

9 3.03 0.47 _ 6.13 0,136 .1185
10%* .99 2.86 0.37 0,146 .1212
12 g.20 .09 3.20 G.125 .12)4
15 0,14 0.22 2.28 0.124 1220
18 0,11 0,51 1.77 0.123 .1220
19 + 0.43 0.53 1. 67 0.123 219
20 0.12 0.22 0.17 0.123 1219

(P ,P ,P )= %103,103, 10%); ¥* (104, 104, 104)

x +10%,10%,10%)
Table 2. Computational Results {for Problem

No, 2
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