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Abstract  

A relatively well-known property of continu- 
ously thrusting optimal t ra jec tor ies  is that there  
exists a vector constant of the motion which i s  
completely analogous to the angular momentum in- 
tegra l  of the three-body problem, In this analysis 
the range of applicability of the integral is extend- 
ed in two ways. F i r s t ,  it is shown that there  exists 
a l a rge  c lass  of coordinate sys tems such that a 
conjugate Lagrange multiplier is a constant of the 
motion, and a method for  generating sys t ems  with 
this property is presented. Such a method is ap- 
plicable to the problem of defining nonstandard 
s ta te  variables fo r  which a conjugate multiplier is 
a constant of the motion. Second, a nontrivial ca-  
nonical transformation is used to generate a new 
system of canonical variables such that th ree  of the 
variables a r e  strictly functions of the components 
of the vector integral. Thus, the three  variables 
a r e  constants of the motion fo r  the optimal t r a j ec -  
tory problem. In addition, the canonical t ransfor -  
mation is effected in such a way that all the new ca-  
nonical variables are  constants of the motion fo r the  
coas t -a rc  problem. 

1. Introduction 

A n  attractive property of continuously thrust-  
ing optimal trajectory problems is that there  exists 
a vector constant of the motion(') identical in form 
to the angular momentum integral of the three-body 
problem. In the planar problem the integral re- 
duces t o  a s ca l a r  which i s  actually the Lagrange 
multiplier conjugate to the range angle in a polar 
coordinate formulation. One can generalize this 
fact  to show that there exists a constant Lagrange 
multiplier in nonplanar problems if the coordinate 
system is cylindrical o r  spherical .  

The purpose of this paper is to extend the 
range of applicability of the vector integral in the 
following ways: (1) it will be shown that there  ex- 
i s t s  a l a rge  c l a s s  of nonplanar coordinate sys tems 
such that a conjugate Lagrange multiplier is a con- 
stant of the motion and a method fo r  developing 

tTh i s  r e sea rch  was supported in par t  by NASA un- 
d e r  Contract No. NASr 54(06) and Grant No. NGR 
2 3 - 0 0 5 - 3 2 9 .  

Chief. Computational Theory and' Techniques 
Branch. 

* 

*e 
Assistant Professor,  Department of Aerospace 
Engineering. 

U 

such  sys tems will be presented; and (2) a canoni- 
ca l  transformation will be effected in such a way 
that thenew canonical sys t em possesses  three  compo- 
nents which a r e  s t r ic t ly  functions of the three  com- 
ponents of the vector integral, i. e . ,  t h ree  of the 
new Variables a r e  constants of the motion. 

11. Basic Theory 

In this section the basic elements of canonical 
transformation theory necessary  for  the develop- 
ments  in the following sections a r e  reviewed. It is 
assumed that the optimal trajectory problem under 
consideration is nonsingular and that the resultant 
Hamiltonian formulation of the problem has been 
transformed into a new Hamiltonian system which 
is isomorphic to,the sys tems of c lass ica l  mechan- 
ics('), i . e . ,  H = ,Ch . f . [ t ,x ,X)  does not contain the 

control variables 

DEFINITION 11.1: Let (X(x,A,t).A(x,X,t)} E C 2  be a 
nonsingular transformation. 
tonian H(x.h, t) there  exists a Hamiltonian K(X, A, t), 
then the transformatioil i s  said to be canonical. 

LE, 1 L 

If fo r  "every" Hamil- 

Note that the word "every" is emphasized in .J 
the above definition. The definition does not say  
that each transformation which p rese rves  Haniil- 
tonian form is canohical, but only those which p re -  
s e r v e  Hamiltonian form and a r e  independent of the 
Hamiltonian function, Also, Definition 11.1 is not a 
good "working" definition, i. e . ,  one cannot check 
every Hamiltonian function. However, this defini- 
tion leads t o  the following workable conditions f o r  
checking and generating canonical transformations.  

PROPERTY 11.1: ( i )  (Poisson brackets) The t r ans -  
formation {X(x,X, t) ,  A(x,h, t)} is canonical if and 
only if there  exists a nonzero sca l a r  constant such 
that {Xi. X.) = 0 ,  {Ai, A , }  = 0, and {Ai,X.} = p6..  

J J J 'J 
f o r  each i, j = 1 , .  , . . n, where {A, B) 
= - E (E - E ) .  (ii) (Generating func- 

k k = l  ahk  axk axk ax 
tions) If there  ex is t s  a s c a l a r  function S such that 

then the transformation {X(x,A, t). A(x,A, t)} is ca-  
nonical. 

With t ime a s  the independent variable, Eq. (1) 
can be expressed enquivalently as 
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K =  z + H  as 

If the new Hamiltonian, K. is identically zero, then 
Eq. (3) becomes the Hamilton-Jacobi equation and 
the new variables X, A are constants of the motion. 

u 
Equations ( 2 )  and ( 3 )  a r e  useful fo r  defining 

the following c l a s s  of canonical transformations,  

DEFINITION 11. 2: A canonical transformation in 
as 
at 

which - = 0 and 65 = 0 is called a homogeneous 

canonical transformation. If, in addition, n inde- 
pendent relations between {x,, . . . , x,) and {X, , 
, . . , Xn} a r e  specified, then the transformation is 
called an extended point-transformation. 

The importance of extended point-transforma- 
tions in the analysis of optimal control problems is 
demonstrated .by the following property.  

PROPERTY 11.2: Let x = d X )  be a nonsingular 
transformation between the coord inqes  of two 
Hamdlionian sys tems defined by H =.gh.f.(t,  x,h) and 
K =iglAiFi(t, X, A) .  
Lagrange multiplier transformation between the two 
sys tems is defined by the n-equations 

1 1 1 1  
Then, 'the t ime independent 

Property 11. 2 has a number of important con- 
sequences.  F i r s t  of all,  it tel ls  u s  how to de te r -  
mine very simply the Lagrange multiplier t r ans fo r -  
mation between any two coordinate formulations of 
the s a m e  optimal trajectory problem. Secondly, it 
tel ls  us that these transformations a r e  l inear  with 
respec t  to the Lagrange mul t ip l i e r s . .  This fact is 
important since the components of the vec tor  inte- 
g ra l  for the optimal trajectory problem are l inear  
in the m'ultipliers. In Reference 3 ,  Whittaker p re -  
sen ts  a method for  performing a canonical t r ans - .  
formation which t ransforms a sca l a r  integral l inear  
in the multipliers into a new multiplier variable.  
Thus, this method has an immediate application in 
trajectory analysis.  

v 

111. Coordinate Systems With 
One Constant Multiplier 

In tbe previous section it was noted that the re- 
lationship between the Lagrange multipliers f o r  two 
s e t s  of s t a t e  variables is l inear .  This fact  moti-  
vates the following question: "Does there  e x i s t a  s e t  
of state variables such that three of the conjugate 
multipliers a r e  equal to three  independent l inear  
functions of the known constants of the motion?" 
This question is answered in the following theorem. 

THEOREM 111.1: Let A , i  +A,: + A,i; be the 
known vector integral of the optimal trajectory 
problem expressed in Cartesian coordinates. There  
does not exist a canonical transformation such that 
two (or  three) of the new canonical variables are 
independent l inear  combinations of the A i l s .  

. I  

This theorem i s  easily proved by applying the 
Poisson bracket conditions t o  a l l  possible l inear  
Combinations of the Ai's. Also, the theorem te l l s  
u s  that if a canonical sys tem of variables with 
th ree  components dependent only upon the A i ' s  ex- 
ists, then a t  l eas t  two of the three  components 
mus t  be nonlinear functions of the Ai ' s .  
means  that such a sys tem will be a hybrid system 
in the sense  that no n of the 2n new variables are 
natural s t a t e  var iab les .  The development of such 
a hybrid system will be discussed in Section IV. 

This 

Even though no two l inear  combinations of the 
A i ' s  can be transformed into new canonical var i -  
ables, the method of Whittaker gives us  the means  
f o r  generating a l a rge  c lass  of s e t s  of s ta te  var i -  
ab les  such that a conjugate multiplier in each se t  i s  
a constant of the motion. 
ting the new canonical sys tems is described below. 

The method f o r  genera- 

Consider a Hamiltonian sys tem which posses s -  
es an integral l inear  and homogeneous in the La-  
grange multipliers,  say  

g,(x)x,  + .  , ' tgn(x)Xn =cons tan t .  ( 5) 

Without loss of generality, l e t  Eq. (5) he  An in the 
new {X, A} -system which is to be defined by an ex- 
tended point-transformation x = #X) . Then, by 
Eq. (4) :  

In o rde r  that Eqs.  (5) and (6) he  consistent, t he re  
mus t  exist n independent functions +,(X), . . ., 4JX) 
such that 

a4.  
gj(x) = 2 . ( j  = I ,  . .., n) (7 )  

axn 

The existence of these functions i s  guaranteed by 
f i r s t  noting that 

and then applying the c lass ic  integrability theorem 
f o r  a sys tem of total  differential  equations!') , .  

To determine the functions +,, , . ,, +n, we f i r s t  
observe that 

dxi = gi(x)dX ( i ' l .  . . . ,  n) ( 9) n 

which h o l i e s  

(10) 

Note that the onlyrestriction on the functions 4.(x) is 

that - = g. ( i  = 1, . . ., n). Thus, t he re  exist  

many point-transformations which satisfy this c r i -  
terion, and such a transformation can he  defined by 
the following procedure: 

(i) 

a+i  1 

axn I 

Determine n - 1 integrals of the system(10). 
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and denote these integrals by X,,. . , , Xn., 
Thus,  

X . s + . ( x  ,,..., x ) = c o n s t a n t .  ( i = l ,  . . . ,  n-1)  (11)  
1 1  n 

(i i)  Use  Eqs.  (11) t o  express  n - 1  e lements  of 
the s e t  {x, , . , . , xn} as functions of the 
Xi’s and the remaining element of the set ,  
s a y  xk. Then, 

i = l ,  . . . ,  n 
x. L L  = +.(X,,. . .,Xn-,,Xk). {i:k ( 1 2 )  

(iii) Substitute Eqs.  ( 1 2 )  into gk(x) s o  that the 
function gk(Xk; X,. . . . , Xn-,)  is defined. 
Then, by Eqs. ( 1 0 )  

n 

where  X I ,  , , . , Xn.l a r e  constants for the 
system defined by Eqs .  (10).  Then, 
solving for xk in Eq. (13 )  the function xk = 
+k(X,, . , , , Xn) is  determined,  This func- 
tion and Eqs .  (12) define the desired 
point-transformation 

After this method has been applied 
Hamiltonian system {X,A} with Hamiltonian 

a new 

K(X. A, t) = H[x(X).X(X, A ) ,  t ]  (1 4) 

a K  
axn n n is defined. In this  system - = -A = 0 so  X does 

not appear  in K(X, A, t).  Thus, Xn will not appear  
in any of the Ham ilfonl s equations and one need not 
even integrate the Xn-equation if the t ime-history 
of Xn is  not a necessary  par t  of the problem. 

The method described above can be used to 
generate  the cylindrical  and spherical  sys tems 
s ince they possess  a conjugate constant of the m o -  
tion Lagrange multiplier.  However, the main r e a -  
son for presenting the method is  that it may  prove 
useful in the generation of nonstandard coordinate 
sys tems ( e .  g . ,  new orbital  parameter  systems)  
which possess  a conjugate constant of the motion 
Lagrange multiplier.  

I V .  Application of Poisson RI.z:kc’is i n  i h ,  U t . -  
term inntion of the Tota! Csnori-el  Transforniatio:i 

... 
- __ 

In the previous se~ction we found that t h e r e ~ e x -  
ist  m a n y  canonical transformations which cause one 
of the new mult ipl iers  to be a constant of the m o -  
tion. If the original system is denoted by {x,., . . , xn ,  
A , ,  . . . , A n }  and the new system by {XI ,  . . . , Xn, 
A, ~ . . , ,An}, then the  total  Hamiltonian is, for  ex- 
ample,  

H(t,X,,X,. . . ., Xn, A , ,  . . , , A n ) ,  (15) 

where  the t h r e e  constants of the motion a r e  of the 
form 

A ,  = A ,  

n 

i =I 
A, = EGi , (Xl ,  . . . .  X n ) A i .  

Now we wish to  perform a canonical transformation 
in which A, is invariant and two of the remaining 

most) 
new variables depend only upon A, ,  A,, and A ,  (at W 

The following theorem gives u s  a great deal of 

Let Q(X, A,t), P(X, A. t) be a c a -  

information concerning such a transformation. 

THEOREM IV.l: 
nonical transformation such that P, = A I .  Then, 

( i )  Q,, . . . , Qn, P,, . . . , Pn cannot depend upon 
X , ,  and 

(i i)  Q ,  depends upon X ,  linearly, i . c . ,  0 ,  = 
cX, + f(X,, . . . , Xn, A,, . . . , A n ) ,  where c 
is a nonzero constant 

Proof:  ( i )  By Property 11.1. ( i) ,  i . e . ,  the Poisson 
bracket  condition, it is necessary that {P I ,  Qj} = 
TP,, P;} = 0 for  each i = 2, . . , , n.  But, 

aQ . 
1 J ax, 

. J  

{P,.Q.} = {A1,Q.}  = -J = 0 

Thus, Q,, . . . ,  Qn, P,, . . ., Pn cannot depend upon 
X, . ( i i )  Again by the Poisson bracket theorem it  
is necessary that 

{ P I , Q , ~  = c , 

where c is a nonzero s c a l a r  constant. Thus, 

{ P l , Q I } = { A ~ , Q l } = - - c ,  aQ, . 
ax I 

which implies 

Q ,  = cX, + f ( X z , .  . . ,  Xn, A,, , . . ,An) .  

With regard  to  a canonical transformation such 
that PI  = A, and two of the remaining variables de- 
pend only upon A, ,  A,, and A, (at most) ,  this theo- 
rem and Theorem 111.1 imply the following: 

(1) If Pk, Pp, o r  Pk Q, (k  f g ;  k, # E  {2, 3 ,  , . ,, n}) 
a r e  the two desired canonical variables,  then the 
nonlinear combinations of A,(Al),  A,(X, A), 
A,iX, A) which form t.hem cannot depend upon X I .  
Thus, if A,  and/or  A,  depend upon X, .  then the 
nonlinear combination must  be  formed in such a 
way that X ,  is eliminated. 

(2 )  If Q,. Pp o r  Q , ,  Q p  ( P  = 2, 3, . . ., o r  n). where 
Q1 = cX, + f(X,, . . . , Xn, A,, . . . , A n ) ,  a r e  the two 
desired canonical variables,  then the nonlinear 
combination of the A i ’ s  which forms P p  o r  Qp 
( $  # 1) cannot depend upon X , ,  and Q, mus t  be  
formed from the A i ‘ s  in such a way that X ,  a p -  
pears  l inearly.  

Proper t ies  (1) and (2 )  mentioned above res t r ic t  
considerably the possible choices for three  of the 
new canonical variables ( i .  e . ,  P I  and two other 
var iables) .  In the next section we shall  s e e  that the ’-./ 
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obvious choices f o r  nonlinear combinations of the 
A i ' s  which satisfy (1) and (2 )  lead to the desired 
canonical transformation. 

V.  Canonical S y s t e m w i t h  Three- 
Constant of the Motion Components 

In this section a new canonical systen-, which 
contains three  constant of the motion components, 
will he  determined for  the optimal t ra jectory prob- 
l em.  From Theorem 111.1 we know that such a 
system must  contain at least  two nonlinear combi- 
nations of A , , A , ,  and A, (where A,: + A,j + A,i; is 
the  known vector constant of the motion). 

- 

Later  in this section it will be shown that the 
Ai 's  can be expressed in spherical  coordinates a s  

A,  = A cos 4 - B s i n +  

A 2  = A sin + + B cos + (17) 

A, = h6 , 

where + is the coordinate canonically conjugate to  
the constant multiplier X g  and neither A n o r  B de- 
pends upon +. (With respect  to Section IV, h 6  cor -  
responds to A ,  and + corresponds to X I  . )  By 
Theorem IV. 1 at ].east one of the nonlinear comhi- 
nations of the A i ' s ,  which is to be a new canonical 
variable,  cannot depend upon +. Inspection of 
Eqs.  (17) suggests two basic functional forms:  
f(Af +A:) or  f(A: + A t  + A i ) .  The s implest  of 
these forms  a r e  Af  +A:, qx, A: + A $  + 
A t ,  and d A f  + A ;  + A:. With the canonical t rans-  
formation technique of this paper  (to be discussed 
la ter) ,  413: + A$  does not allow the desired t rans-  
formation whereas  G m z  does.  Thus, 
- A m  will he one of our  new momenta 
var iables .  
nonical transformation d A f  + A $  + A f  could a l t e r -  

(Note that by performing a s implaca-  

Before the desired canonical transformation is 
effected, le t  us consider  the possible ways in which 
we can generate  the t ransformation.  First of ail 
note that since the constants of the motion depend 
upon all of the original variables,  i . e . ,  A,(x,X),  
A,(x,X). A,(x.h). then the possibility of per form-  
ing simple transformations and using independence 
arguments(') is not applicable, i .  e . ,  the system 
{x,X} cannot be  t ransformed into an intermediate 

system {X, A} such that 6s = i$(Ai6Xi - Pi6QJX)) 

can be used to  define the transformation by &de- 
pcndence arguments .  

n 

Another approach which is possible hut will not 
be  pursued here  is thc following. W e  know by Defi- 
nition 11.1 that a canonical transformation is inde- 
pendent of the Hamiltonian function, and by Eq.  (3) 
lhat 

- as +H(x,  ax, as t) = 0 
at  

implies a canonical transformation which resu l t s  in 
the equilibrium solution f o r  the system defined by 
H(x, E,  t ) .  Thus,  the desired transformation can 
be  obtained by solving the partial  differential equa- 
tion (18) for any Hamiltonian such that .\IA:+A$ +A: 
and A, a r e  canstants of the motion for  the c o r r e -  
sponding Hamiltonian sys tem.  Since A: + A: does 
not depend upon 4, then such a Hamiltonian is 

H = A : ( ~ , A )  +n:(X",h) + h i  , (19 )  

where x" does not depend upon 4. Since this H does 
not depend upon t ime it mus t  be a constant of the 
motion (say@:) and since + d o e s  not appear  explic- 
i t ly,  then h6 must  be a constant of the motion ( say  
a 2 ) .  To complete the canonical transformation, one 
must  determine a complete solution S(t, x, ,  . . . , xn. 
e l , .  . . . a n )  of the Hamilton-Jacobi equation 

(20) 
natively be a new generalized coordinate.)  T ~ + A ? ( ? , ~ )  as + A : ( x " .  z) as +a:  = O .  

Finally, consider the possibil i t ies for  the The new momenta variables a r c  a , ,  . . 
new generalized coordinates a r e  pi = - ( I  - 1, . . . , n).  

and the 
third new constant of the motion canonical variable.  
Since there  does not exist  another functionally in- ax. 
dependent, with respect , to  f(A: + A $  + A:), non- 
l inear  combination of the A i ' s  which does not con- 
tain +, then the only possibility for  the  third 
var iable  is  a l inear  function 4 and it mus t  he c a -  
nonically conjugate to X 6  = A, (by Theorem IV.  1). 
At f i r s t  glance it does not appear  that a nonlinear 
combination of the A i ' s  can form a l inear  function 
of +. However, tan-'(A,/-A,) is such a function, 
and is indeed the desired third canonical variable.  
Since the Hamilton-Jacobi theory is used to  de te r -  
mine  the transformation, the new generalized co- 
ordinates resul t  from simple differentiations. 
Thus,  it appears  that tan-'(A,/-A,) would simply 
"fall out" and, would not he  useful in generating the 
t ransformation.  This is not the case  s ince the re-  
quirement that the generalized coordinate conjugate 
to  X g  = A, is also a constant of the  motion is the 
means  by which one chooses the proper  functional 
form f(A:  t A: + A:). (That is, it was found that 
f(A: + A i )  does not produce a constant of the motion 

, conjugate toX6, whereas  f(A: +A: +A:) does . )  

L 
The approach mentioned above is undesirable 

because the Hamiltonian of Eq. (19) is  not physi- 
cally motivated and the Hamilton-Jacobi equation of 
Eq.  (20 )  is not easy to solve.  Therefore ,  s ince we 
mus t  solve a nontrivial par t ia l  differential equation, 
we should t ry  to  obtain as much physica1,knowled e 

and A, a r e  a l so  constants of the motion for  the opti- 
m a l  t ra jectory problem with zero- thrust  ( i .  e . ,  the 
coas t -a rc  problem), then a logical choice f o r  the 
Hamiltonian is the zero- thrust  Hamiltonian. In 
this ca se  the new canonical system {e, p} will have 
two desirable  propert ies :  
menta  variables and one of the new generalized co- 
ordinates will he constants of the motion for  the 
total optimal t ra jectory problem; and (2) all of the 
=abies el. , , . , e n .  p,, . . . , pn a r e  constants of 
the motion for  the coast-arc  problem. Thus, for  
low-thrust miss ions  the s e t  {e, p} should he a 
slowly varying s e t  of var iables .  

about the problem as possible.  Since -+A2 74 + A, 

(1) two of the new mo-  

4 
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The equations of motion for a continuously 
thrusting rocket in an inverse square gravitational 
force  field a r e  

F 
m 
W2 ii = - 7 s e c 2 e  tan e 
r 

F + r -[sm m 

+ --[cos e cos T cos x* + sin T sin el 

cos e - cos 7 sin e cos x*I (21) 

F 
m +J = r - cos T cos e sinX* 

i = U  

-~ 
where the variables r, 9, 4, T, and X a r e  defined 
in Figure 1 and X* = X - +. The thrust magnitude, 
F, and m a s s  flow rate  parameter,  u, a r e  assumed 
constant. Upon application of the maximum prin- 
ciple (assuming that a s ca l a r  quantity g(tf, xf) is to 
be minimized), the control variables a r e  deter-  
mined a s  functions of s ta te  variables and Lagrange 
multipliers,  and the following generalized Ham il- 
tonian describes the problem: 

W 2  - A ?  sec'e t an8  

+ A 4 u + A 5 ~ + A 6 1 s e c  V w 2  e-A,o (22) 
r 

F 
m + -4; + r2A; + r z A ~ c o s z ~  . 

In this formulation the three components of the vec- 
t o r  integral become 

A ,  = A cos 4 - B s i n 4  

A 2 1 A s i n  + + B c o s +  

A3 = A 6  I 

where 

A E A , V  + x 6  tan e - A ~ W  sec 'e  

B 3 A ,  - A 3 w t a n e .  ( 24) 

z i I 

Figure 1. Geometry and Control Angle Definition 

In References 2 and 5 ,  the application of s im-  
ple canonical transformations to  the solution of 
Hamilton- Jacobi equations is discussed. Based on 
those resul ts  the following simple canonical tram- 
formation is defined for  the problem considered 

Q, = A,.Q2=A2,Q, = w.&r= r,Q5 = 0,Q=4.Q1= m 

here:  I/ 

( 2 5 )  
PI =-U,P2=-V,P,  = A 3 ,  P4 ' A 4 , P 5 = A 5 , P 6  = A 6 , P 7  ' 1 7 ,  

where the Qi' s and Pi's represent  new generalized 
coordinates and momenta, respectively. The 
coas t -a rc  Hamilton-Jacobi equation (i. e .  , the 
Hamilton- Jacobi equation for the Hamiltonian of 
Eq. ( 2 2 )  with F = 0) is t h e n  

s2 + Q2 sec2Q, . 
* + Q 1 [  Q: Qi J a t  ( 2 6 )  

. !%@- sec2  Q5 tan Q5 

- us7 = 0, 
S6Q sec2Qs 

as where Si I a . A complete solution of this equa- 

tion will now be effected, and two of the new mo- 
menta var iables ,  a) and a, , wi l l  be s t r ic t ly  func- 
tions of A, ,A,, and A, . 

Since neither t, Q7,  nor Q6 appear explicitly in 
Eq.  ( 2 6 ) ,  then aS/6t,'S7, and S6 must be constants 
of the motion, s ay  a1 , n2 /u, and a, . F r o m  knowl- 
edge of the two-body problem (which descr ibes  the 
s ta te  on the coast-arc)  two more  constant relation- 
ships a r e  Imown: J 

m f  = v2 + w2sec2e  

(271 = S: + Q:sec2Qs (angular momentum) 

a' Zk -e5 = u2 + 4 - - 
r r  
a' Zk 
Q4 

= S? + 4 - a . (energy) 

Upon substitution of aslat = a], S, = a21u. s6 = a,, 
SI (a ,Q) ,  and S 2  (a,&) into Eq. (26) another separa- 
tion of variables can be performed so that a sixth 
constant ab may be defined such that both of the 
following equations hold: 

= (9 - 4'z)Q: + 41 - k) 

-QS,JZkQ, - aaQ:- af (28) 

e 6 0 4  = QrQ:sec2Q5tanQ5- a3Q3 sec2Q5 

- S5zla$ - Q,2sec2Q5 . ( 2 9 )  

A more detailed discussion of the solution technique 
outlined above may be found in  Reference 6. Also, 
it should be noted that f signs have been omitted in 
the determination of SI and S 2  f rom Eqs. (27) .  The 
consequences of this wi l l  be discussed later.  

v For a complete solution of Eq. ( 2 6 ) .  seven cow 
stants a re  required and so f a r  we have obtained 
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on1 six.  However, we have not made use of the 

we already know we can use  the solution technique 
of References 5 and 6 to form an  incomplete solu- 
tion of Eq. (26) of the form 

d-7- A ,  + A n  + & constant. With the constants that 

To  fonn  the complete solution we note that Eq. (26) 
does not contain an  S ,  F aS/aQ, - te rm (this i s  a r e -  
sult  of the base  Hamiltonian not containingh,) .  
Thus, the addition of any function of Q, to S’p will 
not affect the Hamilton-Jacobi equation. i . e . ,  S* 
+ f(Q,,a) is a l so  a solution of Eq. (26 ) .  Instead of 
picking an a rb i t r a ry  function of Q,, we shall  
choose the one which resu l t s  from defining of = A: 
+ A :  +A:.  

Upon evaluation of A:, A:, and A: in t e r m s  of 
S , ,  Qifs  and a i l s  a quadratic in S, is formed, and 
then 

where 

g,  -a , tanQ,  - Q2Q,sec2Q5 

g, = S5 = [Q2Q:sec’Q5 tanQ5 
(32)  

-~ ,Q , secnQ5  -aragl/Sz(Q~.Q,,%) 

and u s e  has been made of the relationship 

g ,Q3tanQ5 + g n S d Q 3 ~ Q 5 , ~ , ) =  - (a3Q,+a4%).(33)  

Note that Eq. ( 3  1) has the following functional form 

S3 ‘ f i (a ;  Q Z . Q , , Q ~ ) + ~ Z ( ~ , Q , ) .  (34) 

v 

If one differentiates Sic of Eq. (30)  with respect to 
Q3, then f l ( a ;Qz ,Q3 ,  Q 5 )  will be the resu l t .  Thus, 
the function of Q3 which we wish to adjoin t o  S’:< is 
just the indefinite integral of f2(cz, Q,). Evaluating 
this integral and writing out the S*-function, we 
obtain the following complete solution to the Ham- 
ilton-Jacobi equation (26 ) :  

S = a l t  + azQ7 + a, Q6 - s jh’ c 

ala6 + a,Q, 
+ lY3:cos-1 m-9: 

where {. . .) is the fn (e ,Q3)  contribution. The sev- 
en remaining canonical variables may be obtained 
by applying Jacobi’s Theorem,  i.e.,  p i  = aS/aai 
(i = 1,. . . , 7 ) .  Since these new variables can be ob- 
tained by differentiation alone, we sha l l  only de- 
velop b = aS/aa, t o  show that it is equal to 
tan-’ (Ai/-AZ). 

Differentiation of Eq. (35) with respec t  t o  a3 
eives 

If one combines the las t  two t e r m s  of Eq. (36) t o  
fo rm a single sin-’ -function and a l so  combines 
them to fo rm a single cos-’-function, and then 
makes use  of the following equalities: 

a, -6 + a3 w = -w[ X ~ V -  Xnw sec‘e + A 6  t ane]  t an@ 

v(A5 - A, w tane) = Aw tan8  + Bv 

a$ - sz = A* + B’ .: - wZ = vn + wntan2e 
(37) 

(e; - Qz) (a: - e:) - (04 ng + a3 w)’ = (vA - WB tan 0)’ 

then the following expressions are valid: 

S i n ( P 3 - + )  =-, C O S ( p 3 - + )  ‘w. (38) 

F r o m  these  equations and Eqs. (23) it follows that 

A -B 
A +B 

t a n p ,  =.+ (3 9)  

Therefore ,  the sys tem{a,p  = a s l a p }  represents  a 
set of canonical variables which a r e  canonic con- 
stants fo r  the coas t -a rc  problem and q , e 7 ,  and p3 
a r e  s t r ic t ly  functions of A, ,A,,  and A, s o  they a r e  
constants of the motion for  the total  problem. 

VI. Concluding Remarks  

The present study has sought t o  extend the ap- 
plicability of the known vector integral  for  the opti- 
ma l  t ra jec tory  problem. It was shown that a clas- 
sic theorem due to Whittaker can be used t o  define 
a la rge  c lass  of state variables such that a conju- 
gate Lagrange multiplier is a component of the vec- 
t o r  integral. Also, a canonical transformation was 
used to define a new canonical sys t em in which 
three of the variables a r e  constants of the motion. 
Although the resultant sys tem is cumbersome, it 
demonstrates the existence of a canonical sys t em 
with constant of the motion components for  the 
coas t -a rc  problem such that th ree  of the compo- 
nents a r e  constants for  the total  problem. Since 
the pr imary  goal he re  was t o  generate such a trans- 
formation, the & signs which resu l t  f rom solving 
quadratic equations throughout the analysis were  
dropped (thus the resultant solution is only valid 
for  the positive case) .  
known that such a transformation ex is t s ,  the 2 sign 
difficulty should be removable in a manner s imi l a r  

However, now that it is 
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to  the way that the Hamilton-Jacobi solution of 
Reference 2 removed the 
tions of References 5 and 6.  

4. Caratheodory, C. ,  Calculus of Variations and 
difficulty in  the solu- Par t ia l  Differential Equations ofthe First Order:  

P a r t  I (translated by R. B. Dean and J. J. Brand- 
s ta t te r ) ,  Holden-Day, Inc., San Francisco,  

1. 

2. 

3 .  
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