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Abstract

A relatively well-known property of continu-
ously thrusting optimal trajectories ig that there
exists a vector constant of the motion which is
completely analogous to the angular momentumn in-
tegral of the three-body problem, In this analysis
the range of applicability of the integral is extend-
ed in two ways. First, it is shown that there exists
a large class of coordinate gystems such that a
conjugate Lagrange multiplier is a constant of the
motion, and a method for generating systems with
this property is presented. Such a method is ap-
plicable to the problem of defining nonstandard
state variables for which a conjugate multiplier is
a congtant of the motion. Second, a nontrivial ca-
nonical transformation is used to generate a new
system of canonical variables such that three of the
variables are strictly functions of the components
of the vector integral. Thus, the three variables
are constants of the motion for the optimal trajec-
tory problem. In addition, the canonical transfor-
mation is effected in such a way that all the new ca-
nonical variables are constants of the motion forthe
coast-arc problem, :

I. Introduction

An attractive property of continuously thrust-
ing optimal trajectory problems is that there exists
a vector constant of the motion{!? identical in form
to the angular momentum integral of the three-body
problem. 1In the planar problem the integral re-
duces to a scalar which is actually the Lagrange
multiplier conjugate to the range angle in a polar
coordinate formulation. One can generalize this
fact to show that there exists a constant Lagrange
multiplier in nonplanar problems if the coordinate
system is cylindrical or spherical,

The purpose of this paper ig to extend the
range of applicability of the vector integral in the
following ways: {1) it will be shown that there ex-
ists a large class of nonplanar coordinate systems
such that & conjugate Lagrange multiplier is a con-
stant of the motion and 2 method for developing
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nonsingular transformation,

such systems will be presented; and (2) a canoni-~
cal trangformation will be effected in such a way
that thenew canonical system possesses three compo-
nents which are strictly functions of the three com-
ponents of the vector integral, i.e., three of the
new variables are congtants of the motion.

II. Basic Theory

In thig section the basic elements of canonical
transformation theory necessary for the develop-
ments in the following sections are reviewed. Ii is
assumed that the optimal trajectory problem under
consideration is nongingular and that the resultant
Hamiltonian formulation of the problem has been
transformed into a new Hamiltonian system which
ig isomorphic to the systems of classical mechan-
ics¥ ,i.e., H = .)'_':kifi(t, x,\) does not contain the

1=1

control variables.

DEFINITION 1I.1: Let {X(x. M, t), A{x,\, )} €C% be a
If for "every" Hamil-
tonian H{x, :, t) there exists a Hamiltonian K(X, A, t},
then the transformation is said to be canonical.

Note that the word "every" ig emphasized in
the above definition. The definition does not say
that each transformation which préserves Hamil-
tonian form is canonical, but only those which pre-
serve Hamiltonian form and are independent of the
Hamiltonian function. Also, Definition II.1l is not a
good "working' definition, i.e., one cannot check
every Hamiltonian function. However, this defini-
tion leads to the following workable conditions for
checking and generating canonical transformations.

PROPERTY 11.1: (i} {Poisson brackets) The trans-
formation {X(x, X, 1, A{XN, t)} is canonical if and
only if there exists a nonzero scalar constant y such

that {X,, XJ.} =0, {a,, AJ.} =0, and {A,, xj} = ud
for each i, j = L, ...,n, where {A, B}
n
=5 % :—B - -géﬂ %) (i) (Generating func-
k=1 Why 9%y OX Oy

tions) If there exists a scalar function 5 such that

L L ds
TAE CHEGAL D =DAX SKX A 5, (D)

i=1 i=1

then the transformation {X(x,?\, t), Alx, N, t)} is ca-
nonical. :

With time as the independent variable, Eq. (1)
can be expressed eﬁ;uivalently as

5S = 121) O 6% - A 6X) (2



?§+H (3)

K= 5%

If the new Hamiltonian, K, is identically zero, then
Eqg. {3) becomes the Hamilton-Jacobi equation and
the new variables X, A are constants of the motion.

Equations {2) and {3) are useful for defining
the following class of canonical transformations,
DEFINITION T1I. 2:
=0 and 55

A canonical transformation in
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which o
canonical trangformation. If, in addition, n inde-
pendent relations between {x;, ..., xn} and {X;,
) Xn} are gpecified, then the transformation is
called an extended point-trangformation,

= 0 is called a homogeneous

The importance of extended point-transforma-
tions in the analysis of optimal contrel problems is
demonstrated by the following property.

PROPERTY II. 2: Let x = ¢(X)} be a nonsingular
transformation between the coordmaﬁes of two
Ham&ltoman systems defined by H= ;K i, (t %, \) and
K 1§1A1F1(t X, A}
Lagrange multiplier transformation between the two
systems is defined by the n-equations

n 8¢

= 20N, {i=1, ..
i=1 j

Then; the time mdependent

.. (4)

Property II. 2 has a number of important con-
sequences. First of all, it tells us how to deter-
mine very simply the Lagrange multiplier transfor-
mation between any two coordinate formulations of
the same optimal trajectory problem. Secondly, it
tells us that these transformations are linear with
respect to the Lagrange multipliers. . This fact is
important gince the components of the vector inte-
gral for the optimal trajectory problem are linear
in the multipliers. In Reference 3, Whittaker pre-
sents a method for performing a canonical trans-
formation which transforms a scalar integral linear
in the multipliers into a new multiplier variable,
Thusg, this method has an immediate application in
trajectory analysis.

III. Coordinate Systems With
One Consgtant Multiplier

In the previous section it was noted that the re-
lationship between the Lagrange multipliers for two
sets of state variables is linear, This fact moti-
vates the following question: '""Does there exista set
of state variables such that three of the conjugate
multipliers are egual to three independent linear
functions of the known constants of the miotion?"
This gquestion is answered in the following theorem..

THEOREM TII.1: Let A, i +A,] + Ak be the
known vector integral of the optimal trajectory
problemn expressed in cartesian coordinates. There
does not exist a canonical transformation such that
two (or three) of the new canonical variables are
independent linear combinations of the Ai's .

This theorem is easily proved by applying the
Poisson bracket conditions to all possible linear
combinations of the A{'s. Also, the theorem tells
us that if a canonical system of variables with
three components dependent only upon the Ajy's ex-
ists, then at least two of the three components
must be nonlinear functions of the A;'s. This
means that such a system will be a hybrid system
in the sense that no n of the 2n new variables are
natural state variables. The development of such
a hybrid system will be discussed in Section IV.

Even though no two linear combinations of the
Aj's can be trangformed into new canonical vari--
ables, the method of Whittaker gives us the means
for generating a large class of sets of state vari-
ables such that a conjugate multiplier in each set is
a constant of the motion. The method for genera-
ting the new canonical systems is described below.

Consider a Hamiltonian system which possess-
esg an integral linear and homogeneous in the La-
grange multipliers, say

gr{xIn, ++ ~+gn(x)7\n = constant. {5)
Without loss of generality, let Eq. (5) be A, in the

new {X A} -system which is to be defined by an ex-

tended point-transformation x = ${X}). Then, by
Eq. (4);
6‘4:
i=1 ..., )
A zjkJax (i n ()

j=
In order that Egs.

musgt exist n independent functiong & (X},
such that

(5) and (6) be consistent, there

(%)

aé.
—1 (j=1,..

gj(x) il .. 1) {7)
Sn

The existence of these functions is guaranteed by
first noting that

26, X, (8,

and then applying the classic integrability theorem T '
for a system of total differential equations!? '

To determine the functaons brs ..
observe that

d:a:.1 = g.l(x)an(i =1,..

¢, we first

.. n) {9

which implieg

d d dx
& - 2% oo B osgx {10)
& B2 g, n

Note that the only restriction on the functions ¢i(x) is

that —— {i =1,...,n). Thus, there exist

axn T g
many point- transformations which satisfy this cri-
terion, and such a transformation can be defined by
the following procedure:

(i) Determine n - 1 integrals of the system (10},
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and denote these integrals by X,,....X
Thus,

XiE q;i(xl,. .

n--

.,xn)=c0nstant. (i=1,....,n-1 (11)
(ii) Use Egs. (11} to express n -1 elements of
the set 1%;, ..., x,r as functions of the

Xi's and the remaining element of the set,
SAY Xy. Then,
i=1,...,n

X = oKy X Xy {“ék

{iii) Substitute Egs. {12} into gk(x) s0 that the
function gplxy; X5, ..., X, ) is defined.
Then, by Eqs. (10)

(12)

=g (x K. X ), (13)

X =5 dxk .

n g% Xy WX )
where Xy, ..., X, _, are constants for the
gystem defined by Eqgs. (10). Then,
golving for X in Eq. {13} the function xj =
(X, . ..., X,} is determined. This func-
tion and Egs. {12) define the desired
point-transformation.

After this method has been applied a new
Hamiltonian system {XA} with Hamiltonian

K(X, A, 1) = H[x(X)MX, A), t] (14
. . . K o
is defined. In this system _—— =-A =0 so X does
X n n

not appear in K{X, A, t}. Thus, X, will not appear
in any of the Hamiltor’s equations and one need not
even integrate the X -equation if the time-history

of X, is not a necessary part of the problem.

The method described above can be used to
generate the cylindrical and spherical systems
since they possess a conjugate constant of the mo-
tion Lagrange multiplier. However, the main rea-
gon for presenting the method is that it may prove
useful in the generation of nonstandard coordinate
systems (e.g., new orbital parameter systems)
which possess a conjugate constant of the motion
Lagrange multiplier.

1V. Application of Poisson Brackets in the De-
term ination of the Total Canonical Transformation

~_In the previous section we found that there ex-
ist many canonical transformations which cause one
of the new multipliers to be a constant of the mo-

tion. 1f the original system is denoted by {xl,. NS
) R .,Rn} and the new system by {Xl, ces X
Ny yonn, An}, then the total Hamiltonian is, for ex-
ample,

Hit Xz, Xau oo X Ay, oo An), (15)

where the three constants of the motion are of the
form

1n
Az - s Giz(X]; ..

i

XA (16)

n
A3 = .ZGi.s(Xl’ P

1=1

JX AL
n' i

Now we wish to perform a canonical transformation
in which A; is invariant and two of the remaining
new variables depend only upon A, A,, and A, (at
mast}.

The following theorem gives us a great deal of
information concerning such a transformation.

THEOREM 1V.1: Let O{X, A,t), P(X, A, t) be a ca-
nonical transformation such that P, = A,. Then,

(i) Qz,...,Qn.Pz,-'
X, and

. Pn cannot depend upon
(ii) @, depends upon X, linearly, i.e.,
CX] + f(XZ’ P ,Xn, Al, .
is a nonzero constant.

Ql =
... Ap), where ¢

Proof: (i) By Property I1.1. {i), i.e., the Poisson
bracket condition, it is necessary that {P,, Qj} =

{p,, pj} =0 foreachj=2,...,n But,
an
{Pl’Qj} = {a, Qj} A, 0
an (j=2,....1
{p{, PJ} = {A], PJ} _*5—>—<'~; =0
Thus, Qz, ..., Qn’ P, ..., P, cannot depend upon

¥,. (i} Again by the Poisson bracket theorem it
is necessary that

AP oyt e,

where ¢ is a nonzero scalar constant. Thus,

{P. o} ={a,,0,} =

—_ =,

X,
which implies

Q) 7 eX Hi{Kpy - Ky Ay A

With regard to a carnonical transformation such
that P, = Ay and two of the remaining variables de-
pend only upon A,, A;, and A, (at most), this theo-

rem and Theorem TII.1 imply the following:

(VI Py, Py, or Pp, @y (k# 8 k,t€{2,3, ..., n})
are the two desired canonical variables, then the
nonlinear combinations of A (A}, A{X, A).

A3 (X, A) which form them cannot depend upon X;.
Thus, if A, and/or A, depend upon X,, then the
nonlinear combination must be formed in such a

way that X, is eliminated.

(2} If @,. PE or @), Qg (¢ =2,3,..., orn), where
@y 7 X + f{X,, .. "Xn’ Ay, ..., Ap), are the two
desired canonical variables, then the nonlinear
combination of the A;'s which forms Py or Qy
{2 # 1) cannoi depend upon X,, and ©, must be
formed from the Aji's in such a way that X, ap~

pears linearly.

Properties {1) and (2) mentioned above restrict
considerably the possible choices for three of the
new canonical variables (i.e., P, and two other
variables). In the next section we shall see that the



obvious choices for nonlinear combinations of the
Ai's which satisfy (1) and (2) lead to the desired
canonical transformation.

V. Canonical Systerns with Three
Constant of the Motion Components

In this section a new canonical system, which
contains three constant of the motion compoenents,
will be determined for the optimal trajectory prob-
lem. From Theorem ITI.1 we know that such a
gystem must contain at least two nonlinear combi-
nations of A,, A;, and A; (where AL+ AZJ + Ak is
the known vector constant of the motion).

Later in this section it will be shown that the
Ai's can be expressed in spherical coordinates as

A; =Acosd - Bsing
A, =Asih¢+Bcose {17)
Az =Ny,

where ¢ is the coordinate canonically conjugate to
the constant multiplier Ay and neither A nor B de-
pends upon . {With respect to Section TV, h¢ cor-
responds to A, and ¢ corresponds to X,.) By
Theoremn IV. 1 at least one of the nonlinear combi-
nations of the A{'s, which is to be a new canonical
variable, cannot depend upon 4. Inspection of
Eqgs. (17) suggests two basic functional forms:

f(AZ + AZY or f{A%Z + AZ + A2). The simplest of
these forms are A1+AZ, 'JE+A2 , At + AL+
A%, and ~NAZ + A7 + AZ. With the canonical trans-
formation technigque of this paper {to be discussed
later), YAZ + AZ does not allow the desired trans-
formation whereas VA z + A3 +K§_ does. Thus,
NAG + Azz + Ag will be one of our new momenta
variables. (Note that by performing a simple ca-
nonical transformation VAT + A% + A} could alter-
natively be a new generalized coordinate.}

Finally, consider the possibilities for the
third new constant of the motion canonical variable.
Since there does not exigt another functionally in-
dependent, with respect to f{A} + A7 + A%}, non-
linear combination of the Ai's which does not con-
tain ¢, then the only possibility for the third
variable is a linear function ¢ and it must be ca-
nonically conjugate toxy = A5 {by Theorem IV.1}.
At first glance it does not appear that z nonlinear
combination of the Aj's can form a linear function
of ¢$. However, tan™1(A,/~A,) is such a function,
and is indeed the desgired third canonical variable.
Since the Hamilton-Jacobi theory is used to deter-
mine the transformation, the new generalized co-
ordinates result from simble differentiations.
Thus, it appears that tan-Y{A,/-A,) would simply
"fall out" and, would not be useful in generating the
transformation. This is not the case since the re-
guirementi that the generalized coordinate conjugate
toXg = A is also a constant of the motion is the
means by which one chooses the proper functional
form f{Ad + Ag + Ag). (That is, it was found that
flA? + AZ) does not produce a constant of the motion
conjugate to Ay, whereas f{A2 +AZ + Al) does.)

Before the desired canonical transformation is
effected, let us consider the possible ways in which
we can generate the transformation. First of all
note that since the constants of the motion depend
upon all of the original variables, i.e., A {x \},
A,(x,N\), Aj{x,\), then the possibility of perform -
ing simple transferrnatlons and using independence
arguments is not applicable, i.e., the system
{x,)\}- cannot be transgformed mto an 1ntemed1ate

system {X, A} such that 53 = ig:l{AiBX-l - Pi5Oi{X))

can be used to define the transformation by inde-
pendence arguments,

Another approach which is pessible but will not
be pursued here is the following. We know by Defi-
nition IT.1 that a canonical transformation is inde-
pendent of the Hamiltonian function, and by Eq. {3}
that

93

as
50 FHO 2. 1= 0 {18)
implies a canonical transformation which results in
the equjlibrium solution for the system defined by
H{x, 95 , t). Thus, the desired transformation can
be obtained by solving the partial differentizl equa-
tion {18) for any Hamiltonian such that NAT+ A% + AZ
and A, are constants of the motion for the corre-
sponding Ham iltonianh system. Since A} + Al does
not depend upon ¢, then such a Hamiltonian is

H = AN A +ALEN) +0 (19)

where X does not depend upon 4. Since this H does
not depend upon time it must be a constant of the
motion (saye?) and since ¢ does not appear explic-
itly, then X, must be a constant of the motion (say
@,). To complete the canonical transformation, one
must determine a complete solution S{t, x;, .. .
&1. ..., 0on) of the Hamilton-Jacobi eguation

-t + Al ("’—-.:,)+A{ ) +ef =0, {20)

s
X
The new momenta variables are a,, .
new generalized coordinates are B; =

S' Q’n and the

(1 R ¢\

The approach mentioned above isg undeswable

because the Hamiltonian of Eq. {19) is not physi-
cally motivated and the Hamilton-Jacobi equation of
Eg. (20) is not easy to scolve. Therefore, since we
must solve a nontrivial partial differential equation,
we should try te obtain as much physical.knowled%e
about the problem as possible. Since NAT+AZ + As
and A, are also constants ¢of the motion for the opti-
mal trajectory problem with zero-thrust (i.e., the
coast-arc problem), then a logical choice for the
Hamiltonian is the zero-thrust Hamiltonian. In
this case the new canonical system {a, g} will have
two desirable properties: (1) two of the new mo-
menta variables and one of the new generalized co-
ordinates will be constants of the motion for the
total optimal trajectory problem; and (2} all of the
variables ¢y, ..., ap, By, . ... By are constants of
the motion for the coast-are problem, Thus, for
low-thrust missions the set {a, ]3} should be a
slowly varying set of variables.
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The equations of motion for a continuously
- thrusting rocket in an inverse square gravitational

force field are
2 2

‘.l_v + W ;4
2 " ricoste e

+ I—n[cos 8 cos T cos X# + sin T $in 0]

z
Vo= «‘%z-secze tan @
(21

+ ra[smr cos 8 - cos T sin @ cos X*)

¥ .
r m cos T cos 0 sin X

W=
r=u
-ezg’.z

. w

¢ = r’cos’®
m= -g

where the variables r, 8, ¢, 7, and X are defined
in Figure | and X* = X ~ ¢. The thrust magnitude,
F, and mass flow rate parameter, ¢, are assumed
constant. Upon application of the maximum prin-
ciple (assuming that a scalar quantity gty xf} is to
be minimized), the control variables are deter-
mined as functions of state variables and Lagrange
multipliers, and the following generalized Hamil-
tonian describes the problem:

2 2
w k
H=?\l<;—r3' +?3'SECZG-;Z>
T2

- Ny %7 sec’o tan@

+hgut +}\5-¥7 +7\51—sz geclf -\, o (22)

F
+ E\’kf + r2\2 + r®xfcos’e .

In this formulation the three components of the vec
tor integral become

A;= Acos ¢~ Bsing

A, = A sgin ¢+ Bcosd {23
A3=)\5 ’
where
A =A;vHrgtan 8 - hpw sec?e
B =Xxs - hywtano, (24
Z
ﬂ‘ :
F
'I.'—r--—-y
% X
T i
|
0 0 | -
«d 1 P y
¢ \\ | ,/
-~ -
_— m o — = el
X

Figure 1. Geometry and Control Angle Defipi‘_ﬁi‘én

In References 2 and 5, the application of sim-
ple canonical transformations to the solution of
Hamilton- Jacobi equations is discussed, Based on
those results the following simple canonical trans-
formation is defined for the problem considered
here:

Q=h,Qr7h2,Q "W, Qu=r, Qs = 0,Q=¢,Qr=m
(25)
Pl =‘u,Pz=’V,P3 =R3,P4 =R4=P5=x5aP6=k6aP7 =?\'7 3

where the Q;'s and Py's represent new generalized
coordinates and mormenta, respectively, The
coast-arc Harnilton-Jacobi equation (i.e., the
Hamilton-Jacobi equation for the Hamiltonian of
Eq. (22) with ¥' = 0) is then:

85 182 + Q2 sec?Q k “T
85 5z +Qysec’Qs k.
3t " Q‘[ Q |

(26)

2
- —Q-é?-’- sec? Q; tan Q;
4

358 Se @y sec?
-8¢8; __.a_zz. *”"t’—Q‘a‘;z!e_c““%”ﬂ'Sv =0,

‘where 8; = —8—S-—

n
tion will now be effected, and two of the new mo-
menta variables, ay and o, , will be strictly func-
tions of Al ,Az N and Aa .

A complete solution of this equa-

Since neither t, Q; , nor Qg appear explicitly in
Eq. (26), then 85/6t,'S; , and Sy must be constants
of the motion, say a;, a@;/c, and a; . From knowl-
edge of the two-body problem (which describes the
state on the coast-arc) two more constant relation-
ships are known;

af = v? + wizsec?O
= 8% + Qfsec’Q; (angular momentum) 27)
ooz
- = 2 + a. - _z.li
Ay, 1w ;i‘ r
2
=g2 + %4 _ _%E
52 c—ﬁ- a, (energy)
Upon substitution of 85/8t = ay, S; = az/o, Sg = a3,

S, {a,Q), and 3; («,Q) into Eq, (26) another separa-
tion of variables can be performed so that a sixth
constant &, may be defined such that both of the
following equations hoeld:

2
@eay = (@ - a)Qf +Q (‘% - k)

~Qu84N2ZkQ, - 2 Qf - af (28)
gy = Q,Q%sec’QstanQ; - @3 Q, sec?Q;
- Ssaf - @éeczﬁs ] (29)

A more detailed discussion of the solution technique
outlined above may be found in Reference 6, Also,
it should be noted that + signs have been omitted in
the determination of S; and 5; from Egs. (27). The
consequences of this will be discussed later.

For a corhplete solution of Eq. (26), seven comn
stants are redquired and so far we have obtained



only six. However, we have not made use of the
NA %, v AL+ AZ constant. With the constants that
we already know we can use the golution technique

of References 5 and 6 to form an incomplete solu-
tion of Eq. (26) of the form

S*(tanavv-rQﬁ'J ap---lab)» (30)

To form the complete sclution we note that Eq. {26)

" does not contain an 8, = 83/8Q, -term (this is a re- -

sult of the base Hamiltonian not containing k,).
“Thus, the addition of any function of @y to S* will
not affect the Hamilton-Jacobi equation, i.e., S*
+ f{Q@;, @} is also a solution of Eq. (26). Instead of
picking an arbitrary function of ;, we shall
choose the one which results from defining af = Al
+ AT+ AL

Upon evaluation of AZ, A2, and A} in terms of
Si, @i's and @j's a quadratic in S, is formed, and
then

S, = Q:gztanOI,"g]Sz(Q;;; Qs. @)

ol - Q) (31
N(af - ad)ed - 0F) - (@, Qy + 2, %Y
- (e - Q)
where
8; = ;1an Qg - Q,Q8ec’Q,
(32)
g: =S5 = [Q:Q%sec’ Qs tanQ;

-~y @y SeczQs ~0y @]/ 8,2(Q3,Q5,2)
and use has been made of the relationship
g1Qstan Qg + g2 Sa(Q3.Qs,24) = {3 @y Hay ). (33)
Note that Eq. (31) has the following functional form

Sy = fi{e; Q.. @y, Qs + frle, Q). (34)

If one differentiates S* of Eq. (30} with respect to
@z, then {1 {%Q;, @y, @s) will be the result. Thus,
the function of Q4 which we wish to adjoin to S* ig
just the indefinite integral of f,{«, Q3;). Evaluating
this integral and writing out the $*-function, we
obtain the fellowing complete solution to the Ham-

ilton-Jacobi equation {26):
@, tanQ ]
:/ari - Qz

. =1
Srat+a,Qy+a, [Qs—sm
3

—
- #—‘?—‘z-ﬂ’; - Q, Neaj Q3sec
Qs Q4
o o2 - kG - o,8in Qg
+ar,,[cos Q‘m; - gin m ] {35)
ko, k-9
*& az}[Q“ Qs ﬂz as~—_;cosl kz'a’f‘;ﬁ]

X
4Q; +aeya
04'\;’.;;,? -af NaZ

Qg + 030y
Naf - Qf Vo - af
O30, + @ Q)

- Qf Noj - of

+ {a-,sin"

+ agcog!

+ agcos!

where {...} is the f;(a,Q;) contribution, The sev-
en remaining canonical variables may be obtained
by applying Jacobi's Theorem, i.e., Bj = 85/08aj
{i=1,...,7). Since these new variables can be ob-
tained by differentiation alone, we shall only de-
velop B; = 83/8a; to show that it is equal to

tan-1 (A_l /—Az) .

Differentiation of Eq. (35) with respect to a3
gives

8, = 85 = Qq - sin” @y tanQs
aa af -

+ cos™? ﬁé?}ﬁm?—aa Sl
04" 3 Q.‘,_Qa

If one combines the last two terms of Eq. (36) to
form a single sin~! -function and also combines
them to form a single cos*!-function, and then
makes use of the following equalities:

(36}

agag oy w = ~w[h3v-2,wsec?o +hgtano]tane
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caf - w? = v® + witan?e
- Q¥ (a2- af)- (agag +as W) = (vA - wBtan o)
then the following expressions are valid:
: A -B
sin(Bs -9 =TT Be - cos(Ba-¢) * XETRT - {(38)

From these equations and Egs, (23) it follows that

tanfs = (39)

24
_AZ *
Therefore, the system {a,8 = 38/88} represents a
set of canonical variables which are canonic con-
stants for the coast-arc problem and os ,a7, and P,
are strictly functions of A; , A, , and A; so they are
constants of the motion for the total problem.

Vi, Concluding Remarks

The present study has sought to extend the ap-
plicability of the known vector integral for the opti-
mal trajectory problem, It was shown that a clas-
gic theorem due to Whittaker can be used to define
a large class of state variables such that a conju-
gate Lagrange multiplier is a component of the vec-
tor integral, Also, a canonical transformation was
used to define a new canonical system in which
three of the variables are constants of the motion,
Although the resultant system is cumbersome, it
demonsirates the existence of a canonical system
with constant of the motion components for the
coast-arc problem such that three of the compo-
nents are constants for the total problem. Since
the primary goal here was to generate such a trans-
formation, the + signs which result from solving
quadratic equations throughout the analysis were
dropped (thus the resultant solution is only valid
for the positive case). However, now that it is
known that such a transformation exists, the *+ sign
difficulty should be removable in a manner similar
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to the way that the Hamilton-Jacobi solufion of
Reference 2 removed the + difficulty in the solu-
tions of References 5 and 6,
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