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A computational study of hypersonic air flow over a three-dimensional blunt leading
edge is carried out to investigate the energy deposition due to an arc discharge along
the surface. The discharge is the result of an imposed potential difference between two
flush-mounted electrodes. The energy deposition is the result of Joule heating, which is
included in the three-dimensional fluid solver along with the magnetic force. These magne-
tohydrodynamic effects are determined by assuming the current continuity equation for low
magnetic Reynolds number flow, and computed using a parallelized finite-volume method.
In addition, several electrical conductivity models, including an eleven dimensional sur-
rogate model of solutions to Boltzmann’s equation, are explored. It is shown that the
computed electric field and subsequent current density field are directly dependent on the
electrical conductivity model selected.

Nomenclature

ρ = mass density
µ = coefficient of viscosity
u = velocity vector (u, v, w)
u = streamwise velocity component
J = species diffusion
ẇ = species mass production rate
h = species enthalpy
eve = species vibrational energy per unit mass
x, y, z = streamwise, spanwise, and transverse coordinates
A = surface area of grid cell face
n = normal vector
N = total number density
p = pressure
τ = viscous stress
E = total energy per volume
Eve = vibrational-electronic energy per volume
q = heat flux (translational, rotational, and vibrational)
T = temperature (translational and rotational)
Tv = temperature (vibrational)
χ = mole fraction
L = axial surface length
Ch = nondimensional heat flux, 2qw/[ρ∞u3

∞]
Cp = pressure coefficient, [2(pw − p∞)]/[ρ∞u2

∞]
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ηm = magnetic diffusivity, µ−1
0 σ−1

Rem = magnetic Reynolds number, uL/ηm

ν = electron-neutral particle collision frequency
me = electron mass, 9.11× 10−31kg
e = electron charge, 1.6× 10−19C
σ = electrical conductivity, Ω−1m−1

σ̃ = electrical conductivity tensor (including Hall effect and ion-slip)
φ = electric potential, V
B = magnetic field vector
B = magnetic field magnitude, T
E = electric field vector
E = electric field magnitude, V/m
j = current density field vector
β = Hall parameter
α = degree of ionization, Σnions/N

Subscript
∞ = free stream
w = wall
s = species
tr = translational
ve = vibrational

Species
N2 = molecular nitrogen
O2 = molecular oxygen
NO = nitric oxide
N = atomic nitrogen
O = atomic oxygen
N+

2 = molecular nitrogen ion
O+

2 = molecular oxygen ion
NO+ = nitric oxide ion
N+ = atomic nitrogen ion
O+ = atomic oxygen ion
e = free electron

I. Introduction

Since the mid-1990’s, plasma-assisted hypersonic flow control has experienced a resurgence of research
interest.1–3 The revival has been credited to many factors including the expanding requirements for sustained
hypersonic flight and rapid access to space. In addition, the numerous mechanical and material advances
made during the past half century have given the area of flight-weight magnetoaerodynamics the rejuvenation
necessary to warrant further exploration. One of the first to reevaluate the technology using modern CFD
was Palmer,4 who performed first order spatially accurate simulations of the time-dependent Maxwell’s
equations, coupled to the Navier-Stokes equations to evaluate eleven species, chemically reacting air flow
over a Mars return vehicle.

The rising costs for hypersonic experiments and the need for results within a greater range of flow-field
conditions and increasing geometric complexity have continued to motivate the development of computational
tools that are capable of accurately computing these plasma-assisted hypersonic flow control devices. This
need has spurred numerous computational studies in the recent years, exploring all aspects of plasma-assisted
flow enhancements, including flow control,5–10 local heat load mitigation,11–13 communications blackout,14,15

and magnetohydrodynamic (MHD) power extraction.16–18

Despite the large financial costs, limited facilities, and technical challenges, some recent experimental
studies have been performed by Lineberry et al.,19 Takizawa et al.,20 Matsuda et al.,21 and Gülhan et al.22

These efforts have provided additional validation cases for the ongoing computational pursuits. Of these
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experiments, the recent, partially released, experiment by Gülhan et al. will be of particular importance for
future computational code validation as part of an an upcoming blind validation study.

A potential limitation of plasma-assisted devices is the large energy requirement necessary when they
are employed to control large scale hypersonic flows by means of Joule heating through energy deposition.23

One possible way of improving the effectiveness and/or providing finer control is to utilize the ionized
portion of the flow. The ionized flow can be subjected to electric and magnetic fields thereby producing
additional/improved flow control. In order to simulate these effects, computational fluid codes need to be
modified to accurately account for the MHD effects. This is accomplished by solving some form of Maxwell’s
equations. Although it is possible to solve Maxwell’s equations directly coupled to the flow equations,24,25

most computational work in the area uses the current continuity equation in the low magnetic Reynolds
number approximation, in a framework loosely coupled with the flow solver.

In the low magnetic Reynolds number approximation, the electrical conductivity appears in Ohm’s law,
which relates the current density field to the electric potential. Most research in computational hypersonic
MHD bases the electrical conductivity on semi-empirical equations, which are valid for a particular range of
temperatures, pressures, and species composition. While this approach is reasonable, it is not general, and
is problematic when the flow conditions exceed the limited range of the approximation’s validity. To this
end, this paper explores the effects the electrical conductivity approximation has on the other flow properties
by computing a solution for flow over a three-dimensional geometry with an embedded cathode (positive
electrode) and anode (negative electrode). Three-dimensional calculations are performed. Barmin et al.26

have demonstrated the necessity of a three-dimensional solution of the MHD equations in order to prevent
the introduction of unstable disturbances into the solution.

A three-dimensional parallelized MHD solver is developed, and iteratively coupled to a three-dimensional
parallelized fluid solver to reduce the computational wall clock time. The new computational tool is used to
estimate energy deposition into a flow by Joule heating, which is the result of an imposed potential difference
across two electrodes embedded into a blunt leading edge geometry. The potential difference creates an arc
discharge, which establishes current density and electric fields around the electrodes. These fields produce
local energy deposition (Joule heating), in the flow, which can be employed for flow control.

II. Method

A. Governing Equations

Flow-field results are obtained using Computational Fluid Dynamics (CFD) to solve the Navier-Stokes
equations. The CFD computations are executed using the Michigan Aerothermodynamic Navier-Stokes
(LeMANS) code which was developed at the University of Michigan.27–29

LeMANS is a general 2D/axisymmetric/3D, parallel, unstructured finite-volume CFD code. The numeri-
cal fluxes between cells are discretized using a modified Steger-Warming Flux Vector Splitting (FVS) scheme,
except near shock waves. In these regions the original Steger-Warming FVS scheme is used. LeMANS is
able to employ a two-temperature or three-temperature model to account for thermal-nonequilibrium and
a standard finite rate chemistry model for non-equilibrium chemistry. The two-temperature model assumes
a single temperature (T ), which accounts for the translational and rotational energy modes of all species,
while the vibrational energy mode is accounted for by a separate temperature (Tv). In the three-temperature
model, the rotational energy mode is broken out separately from the translational energy mode.30

The usual MHD conservation equations are solved with nonequilibrium air chemistry:

∂ρs

∂t
+∇ · (ρsu + Js) = ẇs (1)

∂ρu
∂t

+∇ · (ρuu + pI− τ) = j×B (2)

∂E

∂t
+∇ · ((E + p)u− τ · u + q + Σ(Js hs)) = j ·E (3)

∂Eve

∂t
+∇ · ((Eve)u + qve + Σ(Js ev,s)) = ẇve + γ(j · j)/σ (4)
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where (uu) in the conservation of momentum equation (2), is the 3× 3 tensor containing all the products of
the components of the velocity vector as seen in equation (5).

uu =

 u2 uv uw

vu v2 vw

wu wy w2

 (5)

LeMANS assumes the fluid is continuous and Newtonian. It also assumes Stokes’ hypothesis when
determining the viscous stresses:

τij = µ

(
∂uj

∂xi
+
∂ui

∂xj

)
− 2

3
µ∇ · uδij

Previous work considered a phenomenological model of dissipative heating to account for a thermal
actuator.23 This was represented as an additional source term on the right side of the total energy equation
(3), but is replaced here with Joule heating (j ·E). The conservation of momentum equation is modified to
include the magnetic force (j×B) on the right hand side of equation (2). The vibrational energy equation
(4) is also modified with the inclusion of a Joule heating term (γ j · j/σ), where (γ) is a constant that
partitions electromagnetic energy deposition between different nonequilibrium modes (γ ∈ [0, 1]). These
additions constitute the effects the electric, current density, and magnetic fields have on the flow.

The vibrational energy source term (ẇve) is an approximation to the vibrational-electronic work done
by the production/destruction of species due to chemistry, energy transfer between non-equilibrium modes,
and work done by electrons by the electric field induced by the electron pressure gradient. Full details on
the fluid solver including the chemistry and transport approximations, are available in Ref. 31.

For the remainder of the paper the two temperature energy model (nonequilibrium) is used and referred
to as such (γ = 1). The simulations are performed using second-order accurate spatial discretization and
carry double precision arithmetic throughout. This work assumes a standard finite-rate chemistry model for
eleven species reacting air (N2, O2, NO, N, O, N+

2 , O+
2 , NO+, N+, O+, and e), where (e) represents the

electrons. At present, force diffusion (drift) of the charge particles is neglected, except in Ohm’s law.

B. Low Magnetic Reynolds Number Approximation

The three additional variables appearing in the conservation equations (j,B,E) are determined by first
noting that the magnetic Reynolds number, Eq. (6), is small for the cases of interest.

Rem =
uL

ηm
(6)

Consequently, it can be shown that the induced magnetic field can be neglected.32 This means only
external magnetic fields are present in the flow (and must be specified). With the magnetic field assumed
constant because of the low magnetic Reynolds number, a tensor form of the generalized Ohm’s law, equation
(7), is employed to obtain the current density j.

j = σ̃ · (E + u×B) (7)

The electrical conductivity tensor (σ̃) appearing in Ohm’s law is a compact way of accounting for the
Hall effect and ion slip as outlined in Refs. 33,34 and is described in detail in the following section. Following
previous work,35 Eq. (7) is written in terms of the electric potential (φ) where E = −∇φ. Using current
continuity (∇ · j = 0), the final equation has the form of a Poisson equation, as seen in Eq. (8).

∇ · σ̃ · [−∇φ+ u×B] = 0 (8)

The electric potential is determined by using an explicit finite-volume method and appropriate boundary
conditions as outlined in a later section. The electric field (E = −∇φ) is computed directly from the electric
potential solution following an approach for unstructured grids developed by Jawahar and Kamath.36 Full
details of the derivation and assumptions are available in Ref. 35.
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1. Hall Effect and Ion Slip

As seen in equation (7), the computer code incorporates the tensor nature of the electrical conductivity
(σ̃), which follows the outline in Refs. 33, 34, and is a compact way of accounting for ion-slip and the
Hall effect. In this form, the Hall effect is accounted for in the electrical conductivity tensor, in Cartesian
coordinates, as:

σ̃ =
σ

B2(1 + β2)

 B2 + β2B2
x β(βBxBy − BBz) β(βBxBz + BBy)

β(βByBx + BBz) B2 + β2B2
y β(βByBz − BBz)

β(βBzBx − BBy) β(βBzBy + BBx) B2 + β2B2
z


where the Hall parameter (β) is a function of the electron-neutral particle collision frequency (ν). The
collision frequency is determined from the electrical conductivity as seen in equation (9).

ν =
q2 ne

me σ
(9)

β =
qB
meν

=
σB
qne

(10)

Using this definition, the Hall parameter (β) is computed as a function of the electrical conductivity (σ),
as seen in equation (10). The remaining simulations do not impose a magnetic field (B = 0), so the electrical
conductivity reverts to a scalar form.

C. MHD Boundary Conditions

Mixed boundary conditions are generally employed at a solid surface. For electrodes that are good
conductors, the electric potential is specified, either as a fixed value or determined by auxiliary equations
representing an external circuit. For an insulated boundary, the normal component of current is set to zero:
j · n = σ̃ · (E + u×B) · n = 0. This can be a complicated boundary condition in the general case of tensor
conductivity, but in the case of scalar conductivity and assuming no-slip wall conditions (u = 0), it reduces
to a vanishing normal electric field boundary condition (E · n = 0).

The outward direction of a symmetry plane must also have a zero electric field (E ·n = 0). By definition
the ghost cell center lies on the outward normal vector, so the symmetry plane boundary condition is:
∇φ · n = ∂φ/∂n = 0. The proper boundary conditions in the far-field are less clear for aerodynamic MHD
problems. For high accuracy, it may be necessary to solve the current continuity equation on a larger domain
than the fluid conservation laws since the magnetic field can interact with the far-field. However, for external
flows, the electrical conductivity should decay to a negligible value far from the body, so it is reasonable to
set the normal component of the electric field to zero. The normal component of the electric field is assumed
to be very small at the inlet (E · n = 0). Finally, the outlet is assumed to be sufficiently downstream of the
primary MHD interaction such that it is reasonable to set the normal component of the electric field to zero.
Table 1 lists all domain boundaries and their respective conditions.

Table 1. Boundary conditions for MHD solver

Location Type Condition
Inlet Neumann E · n = 0

Far-field Neumann E · n = 0
Symmetry Neumann E · n = 0

Outlet Neumann E · n = 0
Wall (electrode) Dirichlet φ = specified
Wall (insulating) Neumann j · n = 0

Dirichlet conditions are imposed in the ghost cells adjoining the wall (electrode) boundary such that the
wall face electric potential equals the specified value. Neumann boundary conditions require the electric
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potential (φ) in the ghost cell to be determined iteratively in conjunction with the interiors cells of the MHD
solver domain to satisfy a zero gradient electric field (E · n = ∂φ/∂n = 0).

D. MHD Parallelization and Validation

The solution to the electric potential (φ) for a given flow iteration is determined within the MHD
routine using a finite-volume method that iterates to a steady solution using an explicit Successive Over-
Relaxation (SOR) iterative technique. The SOR technique is an iterative explicit solver that utilizes the
direction of change to the solution to extrapolate an improved solution based on a relaxation constant. The
method converges more slowly than an implicit scheme,37 but is easier to implement and parallelize. The
implemention of the MHD routine was previously validated for an analytic case with Dirichlet boundary
conditions and for flow between two flat plates, and second-order accuracy was demonstrated.35

Parallelization of the MHD routine is accomplished using the framework already existing in the flow solver,
LeMANS. LeMANS uses METIS38 to partition the domain amongst the processors, and utilizes MPI calls
to pass ghost cell properties between processors. By using the existing framework, the computational effort
to create new partitions, new ghost cells, and their corresponding boundary cell links between partitions, is
retained. The drawback is that the MHD routine must use the same partitions, and subsequently, the same
mesh as the flow solver. This can be problematic for specific geometries, especially when the grid resolution
needed to solve a general form of Ohm’s law is higher than that needed by the flow solver (e.g., regions of
the domain where the electromagnetic field, but not the flow, has large gradients). This approach is still
suitable because the computational cost per cell is equal in the MHD routine, and since METIS partitions
the mesh to minimize the number of boundary cells and equalize the number of cells per partition, parallel
efficiency of the MHD routine is consistent with LeMANS.

1. Flow Between Parallel Electrodes

Validation of the parallelized MHD module is accomplished by utilizing a previous validation exercise of
flow between two parallel electrodes.35 This validation case was originally presented in the computational
work by Gaitonde and Poggie.33 The two electrodes have a specified potential, so the top electrode plate
(z = 1), is equal to one and the bottom plate (z = 0), is set to zero (φtop = 1, φbottom = 0). Neumann
boundary conditions are employed along the remaining sides of the domain so the normal component of
the gradient is zero (∂φ/∂n = 0). Figure 1 illustrates the domain with a rectilinear nonuniform mesh used
in the serial validation exercise detailed in Ref. 35. Cell clustering is applied near both electrodes using a
bi-exponential decay of cell size along the z axis, and uniform spacing along the electrode plate surface (x,
and y axes).

X

Y

Z

Electrode ( φ= 0 )

Electrode ( φ= 1 )

Neuman BC ( ∂φ / ∂n= 0 )

z = 0

z = 1

Figure 1. Nonuniform mesh (20× 20× 40) for current flow between parallel electrode plates.
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For constant electrical conductivity (σ = 1), the theoretical solution reduces to a constant electric field.
The resulting electric potential is: φ = z for the given boundary conditions. Figure 2 plots the computed
solution obtained using four processors and the theoretical solution for constant electrical conductivity,
with part of the solution domain cut away to reveal the interior cells. The computed solution matches the
theoretical value and helps to verify that the MHD module is successfully parallelized.

X Y

Z

φ
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Computed

Analytical

Processor 2
Processor 3

Processor 1

Figure 2. Electric potential contours between parallel electrode plates (σ = 1 and u = 0). The left side of
the domain is composed of computed values using four processors (three shown), while the right side is the
theoretical result. (20× 20× 40 mesh)

2. Parallel Efficiency

The parallel efficiency of LeMANS, with and without the MHD routine, is computed by simulating
three-dimensional flow over a blunt leading edge, as seen in Fig. 3. The geometry has a length of 0.1 m
and a vertical displacement of 0.05 m. The body geometry follows a power-law-shaped profile (z = x0.5)
and has an aerodynamic performance similar to a blunt body,39 which is beneficial for this investigation
because a strong bow shock forms at the leading edge, which creates a minor concentration of ions in an
otherwise neutral flow. The simulations are run using eleven species chemically reacting air, representative
of conditions found at 40 km. Table 2 lists the freestream conditions used.

A grid independence study is performed on the geometry using the chemically reacting, nonequilibrium
flow solver. A structured grid is generated because the MHD routine cannot yet accommodate fully unstruc-
tured grids, and because a structured mesh is known to produce better results in regions near the surface
of the body and through a shock.40 Exponential spacing is employed along each direction (along the body
and radial from the body) so grid clustering occurs near the stagnation region. Exponential spacing places
additional points exactly between existing points as the grid is doubly refined. The coarse grid employs
30 points along the geometry, 15 points radial from the body, and 10 points along the width of the body
(30 × 15 × 10). The points along the width of the body are also clustered using exponential spacing so
clustering occurs around the half-width. The medium and fine grids double the points along each direction
(medium: 60 × 30 × 20, fine: 120 × 60 × 40). A very fine grid (120 × 90 × 40), is also generated because
of differences in heat flux at the stagnation point for the medium and fine grids. Figure 3 illustrates cell
clustering for the medium sized grid.

The pressure coefficient, Eq. (11), and the nondimensional heat flux, Eq. (12), are computed along the
stagnation line at the body centerline for the different grids.
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Table 2. Flow conditions for Mach 12.6 air flow at an altitude of 40 km.

Parameter Value
Mach 12.6
u∞ 4000.0 m/s

T∞ 250.0 K
Tw 1000.0 K
T0 8300.0 K
p∞ 289.0 Pa
ρ∞ 0.004 kg/m3

χN2 0.79
χO2 0.21
µ∞ 1.6× 10−5 kg/m·s

ReL 3.0× 106

XY

Z

10 cm

5 cm

5 cm

Figure 3. Geometry for a power-law shaped blunt leading edge (z = x0.5).
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Cp =
pw − p∞

1/2ρ∞u2
∞

(11)

Ch =
qw

1/2ρ∞u3
∞

(12)

where (qw) is the heat flux to the wall. The heat flux to the wall is the summation of both the translational-
rotational and vibrational-electronic heat fluxes (qw = qwtr + qwve) for these nonequilibrium flows. Figure
4 plots the nondimensional heat flux and pressure coefficient for all four grids. The pressure coefficient is
grid-independent for all the grids investigated.

X [m]

C
p

C
h

0 0.02 0.04 0.06 0.08 0.1
0

1

2

10-5

10-4

10-3

10-2Coarse
Medium
Fine
Very Fine

Cp

Ch

Figure 4. Coefficient of pressure and nondimensional heat flux along the half-width stagnation line of Mach
12.7 air over a power-law blunt leading edge for various grids. (y = 2.5 cm)

Excessively large cell spacing for the coarse grid in the stagnation region creates an artificially diffuse
shock and an increase in the shock standoff distance, as observed in Fig. 5, which plots temperature contours
for the coarse and fine grids. The difference in nondimensional heat flux between the medium and fine grids
prompts the inclusion of a very fine grid, which increases the number of radial grid points, thereby improving
grid resolution in the shock region. Similarity between the fine and very fine grids for the nondimensional
heat flux is found to be acceptable, so the fine grid is assumed grid-independent for the fluid dynamics.

With a grid-independent mesh determined, parallel efficiency (speed up), is computed for the flow with
and without the MHD routine. An arc discharge between an anode and cathode is simulated when the
MHD routine is activated. The simulations are run for a specified number of iterations of the flow solver to
determine the speed up as defined in equation (13).

speed up =
serial time

parallel time
(13)

where (parallel time) is the wall time for the simulation (total CPU-hours / number of processors). Figure
6 plots the speedup versus the number of processors. The speedup with the MHD routine on is higher than
with it off for part of the range because work-per-processor is higher relative to communication cost for the
MHD case. Overall, the routine does not appear to affect the overall parallel efficiency of LeMANS.
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X [m]

Z
[m

]

0 0.05 0.1

-0.1

-0.05

0

0.05

0.1

T [K]

6500
5500
4500
3500
2500
1500
500

fine grid

coarse grid

-0.01 -0.005 0-0.01

-0.005

0

0.005

0.01

Figure 5. Temperature contours for the coarse (30× 15× 10) and fine (120× 60× 40) grids.

CPUs
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U
p

4 8 12 16 20 24

4

8

12

16

20

24
LeMANS (w/o MHD)
LeMANS (w/ MHD)

Ideal

Figure 6. Speed up versus number of processors for LeMANS with and without the MHD routine.
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III. Electrical Conductivity

Since some of the first semi-analytic calculations demonstrating the potential benefits of plasma-assisted
hypersonic flow control were computed by Resler and Sears41 in the late 1950’s, the literature has mentioned
improving the accuracy of these types of calculations by improving the electrical conductivity approximation
employed.42 This section reviews two previously explored semi-analytic models35 and also investigates a
surrogate model (response surface) of solutions to Boltzmann’s equation.

A. Semi-Analytic Models

The first semi-analytic model explored was developed for weakly ionized flows by Chapman and Cowling,
equation (14).

σ = 3.34× 10−10 α

Q T 0.5
Ω−1m−1 (14)

where α is the degree of ionization and Q is the collision cross section. The degree of ionization is the
summation of the ionized species number densities normalized by the total number density (α = Σnions/N).
The collision cross section is set to the vibrational cross-section for an ideal molecule (Q = 5× 10−13m2).

The second semi-analytic electrical conductivity model was developed by Raizer,43 and is only a function
of temperature. His method relates the conductivity to an exponential function as seen in equation (15).
This model is considered valid for air, nitrogen, and argon at p = 1 atm.

σ = 8300× e−36000/T Ω−1m−1 (15)

B. Boltzmann Solver

The semi-empirical models are compared with solutions to Boltzmann’s equation using a solver devel-
oped by Weng and Kushner.44 This method of solving Boltzmann’s equation is functionally equivalent to
that proposed by Rockwood.45,46 Although the solver requires the translational temperature, pressure, and
species mole fractions as input parameters, the solution to Boltzmann’s equation only depends on the magni-
tude of the normalized electric field (E/N) and each species mole fraction (χs), except for the mole fraction
of electrons since the solver assumes local charge neutrality. The solution is achieved using an extensive list
of collision cross-section data taken from the compilations discussed in Refs. 47 and 48. The Boltzmann
solver outputs the equilibrium transport coefficients which are used to compute the electrical conductivity
for a range of E/N .

Using the definitions of electron mobility and conductivity for a DC current, the electrical conductivity
can be written in terms of the electron mobility (µ), the charge of an electron (e = 1.6× 10−19 C), and the
electron number density (ne), as given in Eq. (16).

σ = µ e ne (16)

The electrical conductivity is computed for a given total number density (N) by utilizing Eq. (17), which
states the product of the electron mobility and total number density is a constant.

µ = µ0

(
N0

N

)
(17)

This is combined with equation (16) to yield equation (18) which relates the electrical conductivity to the
electron mobility (a transport coefficient found in the solutions to Boltzmann’s equation), and the degree of
ionization of the flow.

σ = µ0 N0 e
(ne

N

)
Ω−1m−1 (18)

A disadvantage of computing solutions to Boltzmann’s equation is that the electrical conductivity (σ)
depends on the electric field (E). Since the MHD solver depends on electrical conductivity (σ) to determine
the electric field (E), see equation (8), and the Boltzmann solver depends on the electric field (E) to determine
electrical conductivity (σ), the Boltzmann solver must be iteratively coupled to the MHD solver in order to
compute σ, E, and j simultaneously, which increases the computational cost of the simulation.
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1. Boltzmann Response Surface

The main disadvantage of coupling the Boltzmann solver to the rest of the fluid solver is the large computa-
tional cost of using the Boltzmann solver directly. Using this approach, solutions to Boltzmann’s equation
must be computed for every cell, for every iteration. This is computationally prohibitive as it can take several
CPU-minutes for the Boltzmann solver to find a single solution. One alternative approach is to create a
surrogate model (response surface) of solutions to Boltzmann’s equation for a large range of input conditions,
and to use the response surface predictions instead of computing solutions to Boltzmann’s equation directly.

The basic idea of surrogate modeling is to teach/develop a model by supplying a number of sample
points which encompass the domain of interest (i.e. design space or design of experiment), and then evaluate
its accuracy using additional test points. This work uses a surrogate modeling tool suite, SURROGATES
Toolbox, developed by Goel and Viana49 which integrates several open-source tools thereby providing a
general-purpose MATLAB R© library of multidimensional function approximation methods.

The Polynomial Response Surface (PRS) is a commonly employed method which uses a polynomial
function of degree n to fit the data. The simplicity of the model makes it attractive and easy to implement,
but it may require a high order polynomial to capture highly non-linear data sets. This work explores both
third and fourth order PRS models.

As previously mentioned, the Boltzmann solver used for this work only depends on the magnitude of the
electric field (E/N) and each species mole fraction (χs), which form the dimensions of the surrogate model.
The eleven species air chemistry model (N2, O2, NO, N, O, N+

2 , O+
2 , NO+, N+, O+, and e) being employed in

this work dictates that the number of dimensions for the surrogate responce model of electrical conductivity
is eleven (E/N , χN2 , χO2 , χNO, χN, χO, χN+

2
, χO+

2
, χNO+ , χN+ , χO+). The mole fraction of the electrons

is unnecessary because the Boltzmann solver assumes charge neutrality. The design space dimension limits
are: E/N ∈ [0.01, 100Td], χneutrals ∈ [0, 100%], and χions ∈ [0, 1%] (townsend, Td = 10−21 V · m2). The
restriction on the ionic species is necessary because the present MHD formulation is only valid for weakly
ionized flows (degree of ionization, α ≤ 1%).50

Sample locations are identified within the design space using a Latin Hypercube method which maximizes
the minimum distance between dimensions of the sample points in order to reduce the correlation of the
sample points generated.49 This work uses 4096 learning points (2 points per sub-domain for 11 dimensions)
and 2977 testing points (1.45 points per sub-domain) to teach and evaluate the surrogate models (the
number of sub-domains is 211). Model accuracy is computed by comparing the computed test points (ĥ)
with predictions from the model (h) using the Mean Absolute Error (MAE), equation (19), and the Mean
Absolute Percent Error (MAPE), equation (20).

Mean Absolute Error (MAE) =
1
n

n∑
i=1

∣∣∣ĥ− h∣∣∣
i

(19)

Mean Absolute Percent Error (MAPE) =
1
n

n∑
i=1

∣∣∣∣∣ ĥ− h
(ĥ+ h)/2

∣∣∣∣∣
i

(20)

where the percent error is the normalized percent error to remove the bias when evaluating an over-
prediction.51 A summary of the two surrogate response surface models performance metrics are tabulated
in Table 3.

Table 3. Summary of surrogate model performance metrics.

Surrogate MAPE MAE coefficients conservativeness
PRS - 3rd order 25.2 % 923 364 99.29%
PRS - 4th order 14.6 % 645 1365 99.40 %

The fourth order PRS model performs better across the design space, but is three times more computa-
tionally expensive because it requires fourth order coefficients. The MAE is the actual difference in electrical
conductivity, which may be too large for regions of the design space where the electrical conductivity is small
(σ < 1000 Ω−1m−1). The model’s conservativeness, the percent of the testing points predicting a positive
response (σ > 0), is tabulated in Table 3, and is an important indicator of a suitable response surface model,
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because the model’s predictions must be positive (σ > 0) to be physically plausible. A response model
that is not conservative may require a cutoff parameter, which makes it less general, and consequently, less
desirable.

C. Electrical Conductivity Results

To facilitate comparisons between the electrical conductivity models, the electrical conductivity is com-
puted for flow over the power-law shaped blunt leading edge seen in Fig. 3 and freestream conditions listed
in Table 2. The geometry is modified to include an embedded anode and cathode as seen in Fig. 7, and
employs the coarse grid (30× 15× 10).

XY

Z

10 cm

5 cm

5 cm

4.4 cm

4.8 cm

Anode

Cathode

0.6 cm

3.2 cm

Figure 7. Dimensions of the embedded anode and cathode electrodes for the power-law shaped blunt leading
edge geometry (z = x0.5).

The flow solver is run to steady-state without the MHD solver. The solver is then run for five additional
flow iterations with the MHD solver iteratively coupled and a voltage potential between the anode and
cathode of 100 V. Raizer’s electrical conductivity model is used to compute the electric potential for the
first iteration of the Boltzmann response surface model because the response surface model depends on the
magnitude of the electric field (E/N). The contours of the electrical conductivity, Fig. 8 illustrate the vast
differences predicted by the models.
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(b) Chapman and Cowling
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Figure 8. Electrical conductivity contours for various electrical conductivity models for Mach 12.7 air flow
over a power-law shaped blunt leading edge with 100 V arc discharge (y = 2.5 cm). (30× 15× 10)

Raizer’s model only predicts significant electrical conductivity immediately downstream of the strong
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bow shock (where the temperature is the highest), whereas the Chapman and Cowling model predicts an
increase of the conductivity near the surface (particularly in the stagnation region) because that part of
the flow has the highest ionization fraction (αmax = 0.006). The 4th order polynomial response surface
predicts an increase in conductivity near the electrode surfaces, which is similar to the results to results
from Chapmann and Cowling. However, the Boltzmann response surface model shows a significant decrease
in conductivity in the region above an insulated wall. This decrease in electrical conductivity is due to the
model’s dependency on the magnitude of the electric field, which is low between the electrodes. Overall, the
Boltzmann response surface model predicts much higher electrical conductivity then the two semi-analytic
models, which is probably due to an insufficient approximation to solutions to Boltzmann’s equation (poor
modeling choice and/or a lack of learning points), and indicates further refinement of the surrogate modeling
is needed before it can justifiably be used in the MHD routine. The remaining simulations will use Raizer’s
temperature-based conductivity model.

IV. Joule Heating

In previous work, energy deposition into the flow was simulated by a phenomenological source term in
the conservation of energy equation.23 That work demonstrated that the level of flow control obtained was
a function of the energy deposited. This section explores the amount of energy deposited into the flow via
Joule heating (j ·E) due to an arc discharge between two electrodes embedded in the geometry. The power-
law shaped blunt leading edge geometry seen in Figures 3 and 7 is employed along with the freestream flow
conditions listed in Table 2.

Simulations are run using the coarse grid (30×15×10), and assume Raizer’s electrical conductivity model.
While these results are not grid independent, they provide reasonable estimates of the electric and current
density field structures, and provide a reference for the expected amount of energy deposition into the flow
due to an arc discharge between two electrodes. The anode is set to the imposed potential (negative), while
the cathode is set slightly above zero volts. Figure 9 plots the current density contours in the x-direction
along with the current lines.
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1500
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250
100

-100
-250
-500

Figure 9. Current density contours in the x-direction and the current lines for flow between an anode electrode
and cathode electrode embedded in a power-law shaped blunt leading edge geometry with an imposed potential
of 100 V.
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Current travels primarily from the cathode to anode, but some also comes from the symmetric boundaries
(y = 0, 5 cm) to the anode along the high electrical conductivity ‘rope’ that exists transverse to the flow just
downstream of the shock (due to the high post-shock temperature). Figure 10 plots Joule heating versus
the potential difference between the anode and cathode. An increase in Joule heating is observed with an
increase in voltage, and appears to increase exponentially. Grid independent results, however, are needed to
strengthen any conclusions.
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Figure 10. Total Joule heating due to an applied voltage between an anode and cathode embedded in a
power-law shaped blunt leading edge geometry for various imposed voltages.

V. Conclusions

A three-dimensional parallelized MHD solver is developed and coupled to a three-dimensional fluid solver,
LeMANS. Parallelization is accomplished using the parallel framework existing in LeMANS. Parallel effi-
ciency of the MHD routine is measured, and found not to affect the overall parallel efficiency of LeMANS.
The parallel MHD solver is also validated for flow between two electrodes and found to produce results
consistent with theory and results obtained using a serial version of the routine.

A grid independence study is performed for flow over a three-dimensional power-law shaped blunt leading
edge. The same geometry is used to explore electrical conductivity models by Raizer, Chapman and Cowling,
and a new surrogate response surface of solutions to Boltzmann’s equation. The response surface model
demonstrates similarities to the other semi-analytic models but needs further refinement before being utilized
in the standard MHD routine.

Joule heating versus voltage potential between two electrodes embedded in the power-law shaped blunt
leading edge is computed on a relatively coarse grid, and is found to increase approximately exponentially
as a function of the voltage. Grid independent results are needed to strengthen any conclusions.

VI. Future Work

Continuation of this work includes a deeper exploration of various surrogate models in an effort to develop
a more general response surface for solutions to Boltzmann’s equation. In addition, the investigation of Joule
heating due to an arc discharge will be continued to achieve grid independence, and will be expanded to
investigate an arc discharge on a blunt elliptic cone.

In future studies, we will investigate how the MHD effects influence the species mass diffusion in the
finite chemistry models. We will also explore the Hall effect and ion-slip. Of these, the Hall effect will
be of particular importance as we study heat flux mitigation techniques using a magnet located within a
hemisphere.

15 of 17

American Institute of Aeronautics and Astronautics



Acknowledgments

The authors are indebted to the Michigan/AFRL/Boeing Collaborative Center in Aeronautical Sciences
which provides funding to the first author. The first author would like to thank Mark Kushner for his
valuable discussions on electrical conductivity and the use of his Boltzmann solver. The first author would
also like to thank Pat Trizila for the numerous discussions on surrogate modeling and Felipe Viana for use
of his surrogate modeling tool suite.

References

1Fomin, V. M., Tretyakov, P. K., and Taran, J.-P., “Flow Control using Various Plasma and Aerodynamic Approaches,”
Aerospace Science and Technology, Vol. 8, No. 5, July 2004, pp. 411–421.

2Shang, J. S., Surzhikov, S. T., Kimmel, R., Gaitonde, D., Menart, J., and Hayes, J., “Mechanisms of Plasma Actuators
for Hypersonic Flow Control,” Progress in Aerospace Sciences, Vol. 41, No. 8, November 2005, pp. 642–668.

3Bityurin, V., Bocharov, A., and Lineberry, J., “MHD Flow Control in Hypersonic Flight,” 13th International Space
Planes and Hypersonic Systems Technologies Conference, AIAA Paper 2005-3225, 2005.

4Palmer, G., “Magnetic Field Effects on the Computed Flow over a Mars Return Aerobrake,” Journal of Thermophysics
and Heat Transfer , Vol. 7, No. 2, April-June 1993, pp. 294–301.

5Bisek, N. J., Boyd, I. D., and Poggie, J., “Numerical Study of Energy Deposition Requirements for Aerodynamic Control
of Hypersonic Vehicles,” 46nd AIAA Aerospace Sciences Meeting and Exhibit , AIAA Paper 2008-1109, 2008.

6Kremeyer, K., Sebastian, K., and Shu, C.-W., “Computational Study of Shock Mitigation and Drag Reduction by Pulsed
Energy Lines,” AIAA Journal , Vol. 44, No. 8, August 2006, pp. 1720–1731.

7Yan, H. and Gaitonde, D., “Control of Edney IV Interaction by Energy Pulse,” 44th AIAA Aerospace Sciences Meeting
and Exhibit , AIAA Paper 2006-562, 2006.

8Menart, J., Stanfield, S., Shang, J., Kimmel, R., and Hayes, J., “Study of Plasma Electrode Arrangements for Optimum
Lift in a Mach 5 Flow,” 44th AIAA Aerospace Sciences Meeting and Exhibit , 2006, AIAA Paper 2006-1172.

9Girgis, I. G., Shneider, M. N., Macheret, S. O., Brown, G. L., and Miles, R. B., “Creation of Steering Moments in
Supersonic Flow by Off-Axis Plasma Heat Addition,” 40th AIAA Aerospace Sciences Meeting and Exhibit , 2002, AIAA Paper
2002-129.

10Gnemmi, P., Charon, R., Dupéroux, J.-P., and George, A., “Feasibility Study for Steering a Supersonic Projectile by a
Plasma Actuator,” AIAA Journal , Vol. 46, No. 6, June 2008, pp. 1308–1317.

11Bityurin, V. A., Vatazhin, A. B., and Gus’kov, O. V., “Hypersonic Flow Past the Spherical Nose of a Body in the Presence
of a Magnetic Field,” Fluid Dynamics, Vol. 39, No. 4, July 2004, pp. 657–666.

12Miles, R. B., Macheret, S. O., Shneider, M. N., Steeves, C., Murray, R. C., Smith, T., and Zaidi, S. H., “Plasma-
Enhanced Hypersonic Performance Enabled by MHD Power Extraction,” 43th AIAA Aerospace Sciences Meeting and Exhibit ,
AIAA Paper 2005-561, 2005.

13Katsurayama, H., Kawamura, M., Matsuda, A., and T., A., “Kinetic and Continuum Simulations of Electromagnetic
Control of a Simulated Reentry Flow,” Journal of Spacecraft and Rockets, Vol. 45, No. 2, March-April 2008, pp. 248–254.

14Hodara, H., “The Use of Magnetic Fields in the Elimination of the Re-Entry Radio Blackout,” Proceedings of the IRE ,
Vol. 4, No. 12, December 1961, pp. 1825–1830.

15Kim, M., Keidar, M., and Boyd, I. D., “Analysis of an Electromagnetic Mitigation Scheme for Reentry Telemetry Through
Plasma,” Journal of Spacecraft and Rockets, Vol. 45, No. 6, November-December 2008, pp. 1223–1229.

16Macheret, S. O., Shneider, M. N., and Candler, G. V., “Modeling of MHD Power Generation on Board Reentry Vehicles,”
42nd AIAA Aerospace Sciences Meeting, AIAA Paper 2004-1024, 2004.

17Wan, T., Suzuki, R., Candler, G., Macheret, S., and Schneider, M., “Three Dimensional Simulation of Electric Field and
MHD Power Generation During Re-Entry,” 36th AIAA Plasmadynamics and Lasers Conference, AIAA Paper 2005-5045, 2005.

18Fujino, T., Yoshino, T., and Ishikawa, M., “Prediction of Generator Performance and Aerodynamic Heating of Reentry
Vehicle Equipped with On-board Surface Hall Type MHD Generator,” 39th Plasmadynamics and Lasers Conference, AIAA
Paper 2008-4225, 2008.

19Linberry, J. T., Bityurin, V. A., and Vatazhin, A. B., “Cylinder with Current in Hypersonic Flow,” Proc. 3rd Workshop
on Magneto-Plasma Aerodynamics in Aerospace Applications, Institute of High Temperatures of RAS (IVTAN) (2001), pp. 15.

20Takizawa, Y., Sato, S., Abe, T., and Konigorski, D., “Electro-Magnetic Effect on Shock Layer Structure in Reentry-
Related High-Enthalpy Flow,” 35th AIAA Plasmadynamics and Lasers Conference, AIAA Paper 2004-2162, 2004.

21Matsuda, A., Kawamura, M., Takizawa, Y., Otsu, H., Konigorski, D., Sato, S., and Abe, T., “Experimental Investigation
of the Hall Effect for the Interaction between the Weakly-Ionized Plasma Flow and Magnetic Body,” 45th Aerospace Sciences
Meeting, AIAA Paper 2007-1437, 2007.

22Gülhan, A., Esser, B., Koch, U., Siebe, F., Riehmer, J., Giordano, D., and Konigorski, D., “Experimental Verification of
Heat-Flux Mitigation by Electromagnetic Fields in Partially-Ionized-Argon Flows,” Journal of Spacecraft and Rockets, Vol. 46,
No. 2, March-April 2009, pp. 274–283.

23Bisek, N. J., Boyd, I. D., and Poggie, J., “Numerical Study of Plasma-Assisted Aerodynamic Control for Hypersonic
Vehicles,” Journal of Spacecraft and Rockets, Vol. 46, No. 3, May-June 2009, 568-576.

24MacCormack, R., “Numerical Simulation of Aerodynamic Flow Including Induced Magnetic and Electric Fields,” 39th
Plasmadynamics and Lasers Conference, AIAA Paper 2008-4010, 2008.

25D’Ambrosio, D. and Giordano, D., “Two-Dimensional Numerical Methods in Electromagnetic Hypersonics Including
Fully Coupled Maxwell Equations,” 39th Plasmadynamics and Lasers Conference, AIAA Paper 2008-4013, 2008.

16 of 17

American Institute of Aeronautics and Astronautics



26Barmin, A. A., Kulikovskiy, A. G., and Pogorelov, N. V., “Shock-Capturing Approach and Nonevolutionary Solutions in
Magnetohydrodynamics,” Journal of Computational Physics, Vol. 126, No. 1, June 1996, pp. 77–90.

27Scalabrin, L. C. and Boyd, I. D., “Development of an Unstructured Navier-Stokes Solver For Hypersonic Nonequilibrium
Aerothermodynamics,” 38th AIAA Thermophysics Conference, AIAA Paper 2005-5203, 2005.

28Scalabrin, L. C. and Boyd, I. D., “Numerical Simulation of Weakly Ionized Hypersonic Flow for Reentry Configurations,”
9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper 2006-3773, 2006.

29Scalabrin, L. C. and Boyd, I. D., “Numerical Simulation of the FIRE-II Convective and Radiative Heating Rates,” 39th
AIAA Thermophysics Conference, AIAA Paper 2007-4044, 2007.

30Holman, T. D. and Boyd, I. D., “Numerical Investigation of the Effects of Continuum Breakdown on Hypersonic Vehicle
Surface Properties,” 40th AIAA Thermophysics Conference, AIAA Paper 2008-3928, 2008.

31Scalabrin, L. C., “Numerical Simulation of Weakly Ionized Hypersonic Flow Over Reentry Capsules,” Ph.D. Thesis, Univ.
of Michigan, 2007.

32Shercliff, J., A Textbook of Magnetohydrodynamics, Pergamon Press, 1965.
33Gaitonde, D. V. and Poggie, J., “Elements of a Numerical Procedure for 3-D MGD Flow Control Analysis,” 40th AIAA

Aerospace Sciences Metting and Exhibit , AIAA Paper 2002-198, 2002.
34Gaitonde, D. V., “A High-Order Implicit Procedure for the 3-D Electric Field in Complex Magnetogasdynamic Simula-

tions,” Computers and Fluids, Vol. 33, No. 3, March 2004, pp. 345–374.
35Bisek, N. J., Boyd, I. D., and Poggie, J., “Numerical Study of Electromagnetic Aerodynamic Control of Hypersonic

Vehicles,” 47th AIAA Aerospace Sciences Meeting and Exhibit , AIAA Paper 2009-1000, 2009.
36Jawahar, P. and Kamath, H., “A High-Resolution Procedure for Euler and Navier-Stokes Computations on Unstructured

Grids,” Journal of Computational Physics, Vol. 164, October 2000, pp. 164–203.
37Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer, 2nd ed.,

Hemisphere Publishing Corporation, 1997.
38Karypis, G. and Kumar, V., “METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes,

and Computing Fill-Reducing Orderings of Sparse Matrices,” University of Minnesota, MN , 1998.
39Mason, W. H. and Lee, J., “Aerodynamically Blunt and Sharp Bodies,” 1992.
40Candler, G., “Unstructured Grid Approaches for Accurate Aeroheating Simulations,” 18th AIAA Computational Fluid

Dynamics Conference, AIAA Paper 2007-3959, 2007.
41Resler, E. L. and Sears, W. R., “The Prospects for Magneto-Aerodynamics,” Journal of Aeronatuical Sciences, Vol. 25,

April 1958, pp. 235–245, 258.
42Resler, E. L. and Sears, W. R., “The Prospects for Magneto-Aerodynamics Correction and Addition,” Journal of

Aero/Space Sciences, Vol. 26, No. 5, May 1959, pp. 319.
43Raizer, Y. P., Gas Discharge Physics, Springer-Verlag, 1991.
44Weng, Y. and Kushner, M. J., “Method for Including Electron-Electron Collisions in Monte Carlo Simulations of Electron

Swarms in Partially Ionized Gases,” Physical Review A, Vol. 42, No. 10, November 1990, pp. 6192–6200.
45Rockwood, S. D., “Elastic and Inelastic Cross Sections for Electron-Hg Scattering from Hg Transport Data,” Physical

Review A, Vol. 8, No. 5, November 1973, pp. 2348–2358.
46Rockwood, S. D., “Effect of Electron-Electron and Electron-Ion Collisions in Hg, CO2/N2/He, and CO/N2 discharges,”

Journal of Applied Physics, Vol. 45, No. 12, December 1974, pp. 5229–5234.
47Dorai, R. and Kushner, M. J., “A Model for Plasma Modification of Polypropylene using Atmospheric Pressure Dis-

charges,” Journal of Physics D: Applied Physics, Vol. 36, No. 6, March 2003, pp. 666–685.
48Stafford, D. S. and Kushner, M. J., “O2(1∆) Production in He/O2 mixtures in Flowing Low Pressure Plasmas,” Journal

of Applied Physics, Vol. 96, No. 5, September 2004, pp. 2451–2465.
49Viana, F. A. C., SURROGATES Toolbox Users Guide, 2009, http://fchegury.googlepages.com.
50Cambel, A. B., Plasma Physics and Magnetofluid-Mechanics, McGraw-Hill, 1963, p. 171.
51Makridakis, S., “Accuracy Measures: Theoretical and Practical Concerns,” International Journal of Forecasting, Vol. 9,

No. 4, December 1993, pp. 527–529.

17 of 17

American Institute of Aeronautics and Astronautics


