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Abstract

In the development of neural network-based
systems for the autonomous identification and control
of space platforms, there remain important issues
associated with the avoidance of inordinately slow
convergence. Focusing here on autonomous
identification of space systems, one can investigate
techniques for faster convergence following two basic
strategies. One strategy involves the use of a Principal
Component Analysis (PCA) algorithm to transform the
regressor vector. An alternative strategy, and the one
pursued in this paper, seeks to improve the adaptation
speed of neural adaptive identifiers by means of a basic
revision of the fundamental learning mechanism. A
neural network algorithm that affords parallel
implementation of the information filter form of the
Kalman filter has been found to eliminate the
dependence of convergence behavior upon the correlation
matrix of the net input. Analysis and computational
studies show that this algorithm can produce many
orders of magnitude improvement in convergence speed.
A drawback is that the algorithm also tends to amplify
the effect of sensor noise on the identification errors.
However, detailed analysis of noise sensitivity shows
that the solution is to combine this approach with the
PCA procedure. Numerical studies, confirm that when
this is done, the combined system achieves very rapid
convergence with low noise sensitivity.

L _Introduction

The pursuit of a higher degree of autonomous
behavior that provides constant health monitoring and
fault tolerance for space systems with minimum human
intervention has motivated the development of
autonomous neural network controllers based solely on
on-board instrumentation, that are capable of self-
optimization, on-line adaptation, and autonomous fault
detection and controller reconfiguration [1]. As part of
this development, a processing architecture for neural
algorithms in identification (ID) and control [2] was
devised some years ago and the basic capabilities of this
architecture have been demonstrated experimentally.
For example, in the Adaptive Neural Control Program
for the USAF Phillips Lab, autonomous control
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algorithms for vibration suppression were demonstrated
on the ASTREX testbed [3,4]. These experiments
showed both the autonomous convergence to a high
performance controller as well as automatic controller
reconfiguration/recovery following the disengagement
(simulated failure) of randomly selected subsets of the
actuator hardware units.

The above advances and testing experiences
directly indicate that one of the most important issues
in autonomous neural net-based system identification is
the attainment of predictably rapid convergence. It can
often happen in practice that LMS-style identifiers
exhibit inordinately slow convergence in a manner that
depends in a very complicated way on both the system
and identifier parameters. In the next section, we
illustrate this phenomenon using a very simple and
apparently benign example involving just three lightly
damped structural resonances. This example also serves
to show how slow convergence is connected with ill-
conditioning of the correlation matrix of the identifier
inputs.

In [5] we considered one technique for
achieving more rapid convergence in connection with a
standard form of our series-parallel, ARMA model
neural identifier. In this approach we used a variant of
the Principal Component Analysis (PCA) algorithm
[6,7] to transform the regressor vector inputs to render
their components mutually uncorrelated and of equal
variance. With the conditioning of the correlation
matrix thus improved, we showed orders of magnitude
increase in the convergence speed.

In this paper, we consider an entirely
complementary approach. While the idea of the earlier
PCA approach was to transform the regressor vector we
now consider the transformation of the weight
increment given by the customary backpropagation
update formula. We show that this can be done in a
way that eliminates the deleterious dependence of the
convergence rate on the comrelation matrix of the
regressor.

In section 3, we devise a recursive algorithm
for the automatic generation of the matrix associated
with the above weight increment transformation. This
algorithm comprises entirely parallel computations and
can be readily implemented via a neural network with a
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Hebbian leamning rule for adjusting the weights. The
algorithm can also be viewed as the information filter
form of the Kalman filter which adheres to a purely
parallel computational approach. In the system
identification examples we have investigated, this
algorithm , called here the information filter algorithm,
exhibits qualitatively superior convergence speed as
compared even with the PCA approach. Specifically,
for the “three-mode “ example mentioned above,
convergence to very high accuracy can be obtained in
only twelve time steps (0.06 second at 200 Hz sample
rate). Further studies, however, showed that the
algorithm entails heightened sensitivity to sensory
input noise. When inevitable instrumentation noise
corrupts the measurement inputs, any adaptive system
identifier will exhibit both fluctuating and steady state
bias errors in the identified coefficients. Ideally, the ID
algorithm should be able to attenuate the magnitudes of
both error components. Unfortunately, the fast adaptive
algorithm tends to amplify the error components due to
measurement noise. However,ithe detailed analysis
presented in Section 4 shows that the noise
amplification is inversely proportional to the smallest
eigenvalue of the regressor correlation matrix. Thus,
the same ill-conditioning of the this matrix that causes
slow convergence for standard LMS-style identification
algorithms is also the source of noise sensitivity for the
fast adaptive algorithm. This immediately suggests the
solution: Combine the PCA and the present adaptive
approaches. Specifically, we first apply a PCA network
to transform the regressor, then with the new regressor,
transform the weight increment using the information
filter algorithm. Our simulation results on a number of
examples in Section 4, including the three-mode
example, confirm that the combined system gives the
same rapid convergence as the information filter
algorithm while eliminating its sensitivity to
measurement noise.

2. Basic System Identification Algorithm and
Convergence Speed Issues

In order to more clearly motivate the subject of
this paper, we first discuss the nature of convergence
speed issues encountered with backpropagation-based
neural networks or similar LMS-style adaptive signal
processing schemes. Moreover the issues with which
we shall be mainly concerned do not depend upon
whether or not the control system or identifier is linear
or nonlinear. Therefore, for simplicity and to focus
ideas, we consider the problem of identifying a linear
plant. The structure of the neural identifier depends
upon the model form with which the plant is
represented. To address the most popular model form,

suppose the output, y(k), of a linear SISO system with
input x(k), can be represented by the ARMA model;

y(k+1) = WpT X(k) (1.2)
X&) = [yk), y(k-1), ... y(k-N+1),
x(K), x(k-1),... x(k-N+DIT  (1.b)

where (.)T denotes the transpose, N is the order , X is
the 2N dimensional “regressor vector”, assumed to be
measured and Wp is the vector of ARMA coefficients.
Now, given X, the simplest neural net for
representing the above system, has an output in the
form [2}:
z(k+1) = W(k)" X(k) @
where W(k) is the 2N dimensional weight vector. This
is then subtracted from y(k+1) to obtain the output
error:
e(k+1) = y(k+1)-z(k+1) (€))
Following [2], the weight vector is updated according
to:
W(k+1) = W(k) + pk)ek+1)X (k) (4.2)
where:
1 (k) = o/ IXK)I? 4.b)
Here, p(k) is a time varying adaptive speed and ¢ is a
constant. The definition of |t allows us to choose the
constant & once and for all and, under quite general
conditions, guarantee convergence. These matters are
considered in some detail in [2]. In particular, if there
exist weight values such that z can duplicate y exactly
and if the square of the norm of the error , considered as
a function of the weights, is a homogeneous function of
degree M, then oa<M implies that e(k) converges to
zero. In the above linear problem, the square of the
error is obviously a quadratic function of the weights
(M = 2). Hence, if y can be represented exactly by a
system of form (2) for some value(s) of W, then <2
implies convergence of le(k)l. Because it results in one-
step convergence in the one-dimensional case, we most
often use the value o = 1.
Next, in order to say more about the rate of
convergence, we need to recast (4.a) into a more suitable
form. Define:

w(k) = Wp - W(K) ®)

e(k+1) = w(k) X (k) (6)
Using this expression in (4.a) and replacing W in favor
of w, we get:
wik+1) = [ 1- pAOXK)X (k)" Iw(k) )
where I denotes the 2N dimensional identity. Equation
(7) describes the evolution of the deviation, w, of the
weight vector from the values that permit z to exactly
match y. The behavior of the mean of w or the norm of
w gives some notion of the rapidity of convergence of
(4). There are very few exact results, particularly when
o is of order unity (& not small). However, for small
o, results such as those reported in [8] show that the

Then:
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expected value of w(k) asymptotically approaches wa(k),
where:

wak+1) =[I- aR]wa(k) t))
where:

R = EX&)X &)/ IX&)IF) )]
We see that R ( often called the “confluence matrix”) is
the second moment matrix of the normalized net input,
X/ IXH#. The sum of the eigenvalues of R , trace(R), is
unity. Thus the rates of geometric convergence have
the form (1 - aA), where A is any one of the (non-
negative) eigenvalues of R. We cannot make this factor
small by increasing o indefinitely because, in general,
<2 is necessary to ensure that W(k) is bounded. Thus,
if R is ill-conditioned, i.e., has a set of small
eigenvalues, then {1 - oAl will be nearly unity, and
convergence can be very slow. Equations (8-9) pertain
to the case o <<I1, but it is still arguable that (8-9)
gives the leading term in a equence of asymptotic
approximations and adequately portrays the dominant
factors in convergence speed even when o is of order
unity.

Slowness of convergence is a problem that
depends on a very complicated way on the system
dynamic parameters, sample rate, the number of delays
in the ARMA model, etc.  The sensitivity of
convergence speed to system parameters and the fact that
slow convergence can even occur for relatively low
order, apparently innocuous systems are well illustrated
by the following “three mode example”. This is a
single-input, single-output system with just three
lightly damped resonances - apparently a trivial example
upon which to apply autonomous system identification.
The discrete-time model is given by:

y(k+1)=[1, 01x1(k+1)+[1, 0]x2(k+1)+[1, 0]x3(k+1) (10)

where: _
cl -sl 0
xIGsD=psf cIJXI(k)+[2.O]X ® a (1)
c2 -s2 0
QD =paf ]x2(k) + [2.0]" k) b.
:03 -s3 0
x3(k+1)=p, 3 3 :|X3(k) + {O.S]x & <

Here, ck and sk (k = 1,2,3) denote cos(6, ) and sin(8, ),
respectively. 6, and p, are parameters of a balanced
modal representation. The values of these parameters
are given by:
0, =2xn /50, 6, = 21 /30, 0, =2n /10 (12.a,b,c)
p; =0.995, p,=0.995, p;=0.990 (13.a,bc)

Finally, in (11) x (k) is a discrete time white noise
process that is normally distributed with unit variance.

Given the above system, we construct a
simulation T steps long in which the regressor vector,
X, is assembled and the system identification algorithm,
(2) - (4 is implemented. Although rigorous
requirements for convergence are satisfied, a typical case
with N=6, o =1 and T=1000 results in very little
decline in the output error. Figure 1 shows the system
output and the output error, e(k), versus time steps for
these values of parameters and for an initially zero
weight vector. Apparently, e(k) persists throughout the
entire 1000 steps without any evidence of further
improvement. For the same case, Figure 2 shows the
time variation of the elements of the weight vector.
Again, there is no appreciable tendency toward
convergence. The standard algorithm, (2)-(4) does
converge but it would require a simulation over a much
larger time period to reveal this numerically.

For the above simulation of length T = 1000,
the eigenvalues of R are found to be:

A (R)=[2.910e-09 5.813e-06 3.373e-04 1.880e-03
1.812e-03  1.607¢-03 2.539¢-03  3.827¢-03
4.189¢-03 1.308¢-02 2.311e-01 7.375e-01] (14)

In view of relations (8) and (9) and the eight orders of
magnitude spread in the above eigenvalues, it is not
surprising that convergence is glacially slow.
Considering that this sort of phenomenon can occur for
such a simple example it is vital to address the root
cause of the problem in order to assure reliable
operation of neural adaptive systems for applications of
practical importance.

3. A Fast Adaptive Algorithm via an Information
Filter: Advantages and Issues
In [5] we sought to improve convergence speed
by transforming the regressor using PCA. Here we
consider a complementary approach in which only the
increment in the weights is transformed. The basic idea
of the PCA work was to transform the regressor, X,
replacing it by QX wherever it appears in (2)-(4). Thus
W is adjusted according to:
Wk+1) = W(k) + p)QX(K)e(k+1)  (15.9)
e(k+1) = y(k+1) - W(K)" QX(k) (15.b)
where |1(k) is appropriately modified from its expression
in (4.b). In contrast, the alternative considered here is
to transfqrm only W(k+1) - W(k). Hence, in place of
(15):
Wik+1) = W(k) + p)Qk+1)X(Kek+1) (16.2)
e(k+1) = y(k+1) - Wk)" X(k) (16.b)
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where, again, (k) 1s assumed to be given by expression
(4.b) of the original formulation. In (16), e(k+1) is the
same as the original quantity in (3), but the increment
in W is different. As will be seen, Q(k+1) is not a
constant matrix but is a recursively updated estimate of
the inverse of the correlation matrix E[XX"].

At this point, we give a simple, heuristic
derivation of what Q ought to be, based on two main
considerations: (1) the choice of Q(k+1) should permit
the fastest possible convergence for W and (2) the
calculation of Q(k+1) should involve “parallelizable”
computations suitable for neural network realization. To
begin, defining w(k) as in equation (5), we have:

w(k+1) = [1- p)QEk+ XK X" (WIwk) (17

Now a reasonable measure of the effectiveness of the
learning algorithm in reducing the size of w (which
represents the error in the identified parameters) is the
magnitude of the component of w(k+1) along X(k) as
compared with the component of w(k) along X(k).
Taking the inner product of both sides of (17) with
X(k), we get:

X' (w(k+1) = [1 - plk) X* 0Q(k+1)X(W)] X (k)w(k)
(18)
The quantity [1 - pk) XT K)QGk+1)X(k)] gives the
ratio of the projection of w(k+1) along X(k) to what it
was one time step earlier and so we would like to make
this as small as possible, particularly when p is set to a
large  value. In other words, considering
&)X k)Qk+1)X(k) as a function of p(k), we would
like this quantity to be approximately unity for large
values of pi(k). Small values of U, on the other hand,
signify large averaging times and slow changes in W.
In this case, we would expect to see X"(k)Q(k+1)X(k)
approximately equal to XT(k)Qk)X(k) for small (k).
The lowest order rational function of X*(k)Q(k)X(k) that
we can form for X"(k)Q(k+1)X(k) that has the desired
behavior at large and at small values of t (k) is:
X' K)Qk+DX(k) = X" (K)QK)X(K)
/ {1+p(k) XT(K)QU)X(K)]  (19)
Next, (19) implies that for large p, the component of
Q(k+1) along X(k) is reduced to nearly zero. Thus a
rule for getting Q(k+1) that is consistent with (19) is to
subtract off from Q(k) the “component” of Q(k) that is
aligned along X(k). A little reflection shows that this
component is QKX )(QX)X(k))". Thus we form
Q(k+1) according to:

Qlk+1) = Q) - dQIXIX'K)Q'K)  (20)
where d(k) is some nonnegative scalar. Note that
formula (20) entails only a parallel type of
computation. Indeed, the (k,j)th element of Q(k+1)-
Q(k) is proportional to the product of the kth element of
Y=Q)X(k) and the jth element of Y. This is very
much analogous to a Hebbian learning rule. To

determine what d(k) ought to be, we determine the
product X"(k)Q(k+1)X(k) from (20):
X' @QU+DX (k) = X' (KQKX(K)(1
-dOX(KQIX(K)] 2D
and compare the right hand side with (19) to get:

d(k) = k) / (1 + pAOX RQK)X (k) (22)
Finally, we initialize Q so that at the initial time it
corresponds to the original algorithm (wherein there is
no transformation)- i.e. Q(0) = I. Putting all these
relationships together, we have, in summary:

Qk+1) = Q) - dRQKX WX ®Q(K)’,
QO)=I (23.a,b)
4 = pk) / (1 + pRX QWX EK)  (23¢)
Wk+1) = W(k) + pk)Qk+1)Xk)e(k+1) (24.a)
pk) = o/ IXE)I? (24.b)
(23)-(24) constitute the simplest parallel computation-
based algorithm that can yield very rapid convergence of
W. Below, we show that this is also an optimal filter
when one assumes a noise model in which additive
sensor noise is uncorrelated with the regressor vector.
Unfortunately this noise model does not accord with
reality, as will be explained. However, at present, we
provide detailed analysis of the convergence behavior of
the above algorithm.

Consider the analysis of (23). We can use the

“tearing” formula [9] on (23.a,b) to obtain:
Qk+1) = (Q '(k) + pR)X(k) X" (k) ',
QO =1 (25.a,b)
Examining the above equation, it is easily deduced that:
k-1

QW =(I+ Y, MmXmX@)' @6
m=0
Next, using (24.a) to evaluate w(k+1), we get:
w(k+1) = w(k) - LK)QK+DXK)X Kw(k) (27)
Then, using expression (26) for Q(k+1) in the right
hand side of (27), we deduce that:
Q 'k+Dw(k+1) = Q 'K)w(k) (28)
This shows that Q(k) ' w(k) is a constant matrix.
Setting k=0 and noting that Q(0)=I, we find that:
w(k) = Qkyw(0) 29

Hence, in summary, we can write:

k-1
Qk) = (I+ z RMXmX @) ' (30)

m=0

k-1 '
wk)= (I+ 2 B (m)X(m)X(m)) ' w(©0) (31)
m=0
where, again, }L(m) is given by (24.b).

From (30)-(31), it is clear that Q and W
converge for all positive &, not just for a’s bounded by
some number of order unity. In further contrast with
the previous weight adjustment schemes, (23)-(24) are
particularly effective for very large values of ¢, say o =
lei2. Consider such large values of ¢ and examine the

1922



Copyright © 1998, American Institute of Aeronautics and Astronautics, Inc.

convergence of liw(k)ll. Looking at the situation at k=1,
and letting:

x(k) = X(k) / iX ol 32)
we see from (31) that

Iw(1)T x(O)! / tw(0)" x(O)! =1/ {1+
Thus, if w, , (k) is wk)'x(0) and w, (k) is the
component of w(k) in the subspace orthogonal to x(0),
then:
Iw(DI? = (17 [1 +0])? (wy, (1)) + Il w (O
= |l w (0)i* for large o
as compared with the initial value:
lw(DIF? = (w,, (1))*+ Il w, (Ol

Proceeding to examine k=2, 3, etc. we see that every
time the span of {x(0), x(1), ..., x(k)} effectively
increases in dimension, the norm of w(k) and hence the
magnitude of e(k+1) (since le(k+1) < lw(@Oll IXEMN )
undergoes an approximately step - change reduction.
This continues until the maximum dimension of
span{x(0), ....x(k)} is reached. If X(k) is persistently
exciting so that for some k>Te, span{x(0), ....x(k)} is
of dimension 2N, then from (31):

w(@ll /Iw@)ll € 1741 + & gk

=1/ k (33)

where g is a positive scalar of order unity. Thus the
magnitude of e(k) eventually declines as 1Ak

To summarize: (31) shows that the magnitude
of the output error at first undergoes nearly step -
change reductions, and, in the case of persistent
excitation, eventually is reduced to something of order
1”0 and thereafter declines in inverse proportion to the
square root of time. Thus, the convergence of (23)-(24)
tends to be faster than exponential at first but much
slower (in proportion to 1/¥k ) over the long term.

The above remarks can be verified by
simulations implementing (23)-(24) on the above three-
mode example with: N = 6 and o = 1e12 and assuming
zero additive sensor noise. Figure 3 shows a plot of the
system output and the identifier error versus time for
this case. It is seen that the error, e(k), becomes very
small after only about 12 ~ 2N steps. On the other
hand, plots of the elements of W given in Figure 4
show that the weights settle down only after about 40
steps. Notice that each component of W seems to
execute roughly step changes with intervening periods
of nearly constant values. Finally, a semilog plot of
le(k)l over a longer time interval shown in Figure 5
reveals the convergence behavior described above - the
error magnitude decreases from order unity at t=0 to
under 1e-4 in about 12 time steps but thereafter declines
slowly, behaving as 1Nt over the long term.

It would seem that the convergence behavior of
the algorithm (23)-(24) is quite spectacular -
convergence in a dozen steps on an example problem

that completely defeated the original adaptation
algorithm. = However there are two fundamental
problems. First, although very fast at first, the new
algorithm “falls asleep” after an initial period, i.e.
assumes very slow response to  subsequent
perturbations. The second major difficulty is that the
algorithm is very senmsitive to sensor noise. In the
following we discuss both these problems and their
potential remedies in some detail.

The problem of slow subsequent response is
understood by noticing the similarities between (24.a)
and the original adaptation formula, (4.a). At least past
time Te, when Q becomes full rank, the role of the
adaptive speed, u(k), in (4.a) is played by the quantity
pE&)Qk+1) in (24.a). Overall, the effective adaptive
speed in (24.2) is p(IQ(k+1)ll. But noting the
similarity of (30) and (31), we see that analogous to
(33), for k>Te:

IRkMI< 1/41 + a gk (34)

Thus the behavior of (24.a) is analogous to that of (4.a)
with an adaptive speed that continually decreases with
time. This means that the speed of response of the
identifier to system parameter changes becomes slower
and slower: the algorithm “falls asleep”. To see an
illustration of this, one can run the three mode example
simulation for a few hundred steps, allowing the
identifier to completely converge, then introduce a step
change in one of the parameters at ,say, k = 200 and
watch the algorithm attempt to re-converge. The second
reconvergence occurs much more slowly that the first.
Any subsequent repetitions of parameter perturbations
result in slower and slower response. Thus, in contrast
to the original algorithm, the behavior of (23)-(24) has
a unique time reference and the identifier response is not
equally rapid at all times.

From what has been described above, if Q(k) is
reset to identity at k = k* then W(k) enters into its
faster-than-exponential convergence behavior
immediately following k*. Hence the above problem
can be rectified by some kind of “attentional algorithm”
which resets Q to identity in (23) whenever the
identifier response is deemed too slow. For example,
the algorithm could monitor the background noise
levels and detect when the output error rises above a
certain critical threshold relative to the estimated noise
level and then reset Q to 1. A similar algorithm and
convergence problem was treated in our previous work
on adaptive tonal noise cancellation for the ASTREX
testbed [3,4], so we have confidence that successful
“attentional” algorithms can be devised in the present
case. For the present, we now consider the second and
far more serious problem with (23)-(24): the sensitivity
of the algorithm to sensor noise.
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To assess the effects of semsor noise, we
modify (1.a) to read:
y(k+1) = WpT X(k) + v(k) 35)
where v(k) is a zero mean random time series with
statistics independent of the disturbance noise exciting
the system being identified. v(k) is normally distributed
white noise with:
Elv®]1=0, E[N®&D=c> (36.ab)
To illustrate the sensitivity of (23)-(24) to v(k), we
compute the three mode system and identifier response
and assuming N=6, a=1el2 and T = 1000 and various
values of ¢. In each run, convergence of W occurs for k
< 50. Therefare, in each case, we compute steady state
statistics of various quantities using the portions of the
simulations involving k>=100. There are various
steady state statistics of interest. For example, consider
the output error minus the term directly due to sensor
noise:
er(k) = e(k) - v(k) 37N
The standard deviation of this is a measure of how
much sensor noise leaks through to produce a steady
state fluctuation in the estimated system output. Also,
consider the difference between the converged value of
W and its “exact” value, Wp ( which one can determine
directly from results for ¢ = 0). In each case, we take
the converged value of W to be W(1000) or W(T). The
norm of W(T)-Wp relative to the norm of Wp gives a
measure of the permanent bias ermor incurred by the
identifier because of sensor noise. Calculating these
quantities for various values of ¢, we get the following
results:

Table 3.1: Steady state fluctuation and bias errors for
algorithm (23)-(24)

c JE[(er)’]  IW(T)-Wpll/ IWpl
1.0e-4 2.899%-3 1.609¢-2
5.0e-4 1.374e-2 1.239-1
1.0e-3 2.446¢-2 5.419-1
5.0e-3 5.162¢-2 0.9854
1.0e-2 1.397¢-1 0.9868
5.0e-2 3.203e-1 0.9971
1.0e-1 4261e-1 1.0032

The above table shows that, besides the direct noise
term , e(k) exhibits noise induced fluctuations that are
approximately an order of magnitude larger than the
sensor noise. Not only is there this amplified
fluctuating component of error , the estimated model
parameters show very large, permanent bias errors. As
the right column of the Table shows, the norm of the
bias error becomes comparable to the exact values for 6

= 1.0e-3 and above. Clearly, algorithm (23)-(24) has
difficulties in the face of even modest sensor noise.

The above results are disappointing particularly
in view of the fact that under certain conditions, (23)-
(24) constitute an optimal Kalman filter for estimating
Wp. In fact, (39) below presents the information filter
form of the Kalman filter. We have the following
result.

eorem
Suppose that Wp is a random vector with
elements normally distributed such that E[Wp] = Wp,
and E[(Wp-Wpo)(Wp- Wpo)' ] = Q, and consider:
y(+1) = Wp' X(k) + v(k) (38)

where X(k) is a known 2N dimensional vector time
series and v(k) is a white Gaussian process with zero
mean and variance ¢” that is statistically independent of
X(k). Then the least mean square estimation of Wp,
call it W(k), is determined according to:

Qk+1) = (Q (k) + (I/ * XBOX"K) ' ,

Q) =Qo (39.a,b)

W(k+1) = W) + (I/ 6* )JQk+ DX K)(y(k+1)
- W' X(k)) (40.2)
W(0) = Wp, (40.b)

Proof: This is obtained from the more general result
shown in [10] by specializing to the case x(k) = Wp,
w(k)=0, C(k) = X(k), A(k)=I and V(k) = 6>. Q

(39)-(40) closely resemble (23)-(24) except
that (k) is replaced by 1/ 6 >>1. The above result
may help to explain the rapid convergence capability of
(23)-(24) in the absence of noise, but the theorem is
actually inapplicable. It is inapplicable because the
regressor vector depends on the measurements, making
the resulting filter a nonlinear function of the
measurements. The Kalman filter is derived assuming
that the sensitivity matrix (regressor vector) is a
deterministic function, and results in the filter being a
linear function of the measurements.

In the next section, we devise various ways to
alleviate the noise sensitivity of (23)-(24). We also
give a careful analysis of the causes of this noise
sensitivity, showing clearly the role that is played by
the correlation between v and X. The results of this
analysis also suggest a fundamental way to eliminate
the noise sensitivity of algorithm (23)-(24).

4. _Information Filter Algorithm: Reduction of Noise

Here we consider various ways to alleviate the
noise sensitivity of the information filter algorithm.
First we examine various “quick fixes” that seem
plausible but turn out to be unsuccessful. Next, we
examine the underlying reasons for the algorithm’s
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noise sensitivity by conducting a detailed analysis. The
analysis points the way to a specific approach that
appears to remedy the problem, allowing us to exploit
the rapid convergence properties of the algorithm
without suffering undue noise sensitivity.

One possible source of the noise sensitivity
that comes to mind is the scaling of |i(k) by the square
of the norm of X(k) in equation (24.b). When the norm
of W is small, this scaling makes the adaptive speed
large, thereby emphasizing the importance of regressor
vectors that contain a relatively large component of
noise. We can readily test this hypothesis by trying
simulations wherein (24.b) is replaced by u(k)= . Let
us define steady state fluctuation and bias errors as in
the last section, including er(k). With only the n
formula modified, and identical conditions as were
assumed to compute the results in Table 3.1 we find
that the error statistics are practically identical to the
earlier case and the overall behaviors of the output error
and W as functions of time, while different in detail, are
qualitatively the same. These and similar results for
other cases would seem to indicate that the scaling of
k) with X&) is not the source of the noise

sensitivity of the algorithm.
A second approach to reducing noise
sensitivity is motivated by the observation that

algorithm, (23)-(24) is a gradient descent algorithm
using the instantaneous gradient of the square of the
error. Since instantaneous gradient values are used, one
is continually injecting into the weight updates the
disruptive disturbances associated with sensor noise,
without any form of smoothing or averaging. This
suggests that one way to reduce noise sensitivity is to
devise a “batch processing” or time averaged version of
the original algorithm. Following the same rationale as
was used to derive (23)-(24) we can define such a time
averaged algorithm as follows.

In the time averaging version, both W and Q
are held constant over each time averaging period of
duration Tav and are not updated except at the end points
of each period. Let “n” denote the index of the
averaging period and the corresponding update of Q and
W. Then at the end of each interval of Tav time steps,

we update W and Q according to:
Qn+1) = (Q '(m) + K(n) i X@OX @' @1
W(n+1) = W(n) :_= Eg;al(n+l)
i e(r+1)X(0) 42)
r=k-Tav+]

where the starting value of Q is still identity, e(r+1) is
given by:
e(r+1) = y(r+1) - Wn)" X(r) 43)

k
ad  pm=a/ Y XOXO @
r=k-Tav+l

Here, (41) and (42) replace (25.a) and (24.a),
respectively. e(k) is actually evaluated just as before,
except that W is kept constant every Tav time steps.
Note that |t is now scaled by the sum of the magnitudes
squared of X over the previous Tav time steps. The
above formulae are tantamount to a gradient descent
using the gradient of a mean square error estimate
involving the previous Tav time steps. Obviously,
(41) and (42) involve the processing of prior data over
Tav - sized batches and for Tav sufficiently large, this
algorithm guarantees a great deal of smoothing.

The above is a fairly direct extension of the
algorithm introduced in the last section. In particular,
when Tav = 1, the algorithmm reduces back to the
original algorithm. For Tav > 1, we can still prove
results analogous to those demonstrated above. For
example, if as in Section 2, we define w(n) as Wp -
W(n), then (41)-(44) imply:

Q '@+1)w(n+l) = Q '(@)w(n) @é5)

- a result analogous to (28). Similarly, we may work
out explicit formulae for w(n) and Q(n) similar to (30)-
(31). It follows from all this that the modified
algorithm, what we might call the “batch” version of
the information filter algorithm, has analogous
convergence behavior. Convergence is secured for all
real positive values of o, the error norm converges to
zero at a faster than exponential rate at first and then ata
much slower rate, proportional to 1/Yk. Unlike the
original algorithm, however, the initial, very rapid,
period of convergence is not of order N time steps, but
rather requires approximately NTav steps. This is the
price one pays for additional time averaging.

If we use the above and run simulations using
exactly the same parameter values as in the studies for
Tables 3.1 we find that the new algorithm still retains
the same large levels of fluctuation and bias error.
Indeed, our numerical study indicates that the effect of
larger averaging times is to make the situation
progressively worse. Thus, the new, “batch” version of
the algorithm does not succeed in reducing the
sensitivity to additive noise in the output. The reason
for this paradoxical situation can only be found through
a careful analysis of the effect of noise on the output
error in the original algorithm.

Return now to (23), (24) and (25) with Y(k)
corrupted by sensor noise as in (35). The output error
is now given by:

e(k+1) = wl)X(k) + v(k) (46)
where:
w(k)=Wp - W(k) @n

1925



Copyright © 1998, American Institute of Aeronautics and Astronautics, Inc.

Using these expressions in (24), we get the following
equation describing the evolution of w(k):
w(k+1) = w(k) - pR)Qk+DX &) X yw(k)
+ v(k)) 48)
At this point, we recall initial discussion at the
beginning of this section that pointed out that a
constant | did not significantly affect the steady state
noise sensitivity or bias error. Therefore, for simplicity
in our noise sensitivity analysis we assume:
Hk=a (49)
Note that the additional term, v(k), in e(k+1) does not
affect (23) or (25). Therefore, one may use (25.a) to
demonstrate :
Q '+ Dw(k+1) = Q 'kw(k) - uRXK)v(k) (50)
From this and the initial condition, Q(0) = I, we can
deduce that:

k-1
w(k) =(1+a 2 X(m) X (m) ) ' [ w(0) -

m=0
k-1

o Y, Xmvm)] (1)
m=0

This generalizes (31) for the sensor noise case.
Next, using the definition of X(k) in (1),we see that
X(k) can be expressed as:

XM= X&) +BV(E) (52
where X is independent of v. B(k) is a matrix
sequence that is independent of w(k) and V(k) is a vector
consisting of the past values of v:

V() = [v(k-1), v(k-2),..., v(0)]" (53)

With expression (52) and the relation (51), we
may expand w(k) in ascending powers of the elements
of V. In particular, the linear terms explicitly display
the nature of the sensitivity of the weight error, w(k), to
the sensor noise.

Substituting (52) into (51) and expanding in
powers of V, we obtain:

— k-l —
wi)= QMII-a Y (X(m) VT (m)BT (m)+

m=0
Bm)V(m) X7 ) Q k) + HO.T.]
k-1
*Hw(0)- oy X(m)vm)] 54
_ el _
QW=(I+a Y, Xm X" @)’ (5

m=90
where Q can be recognized as the value of Q(k) in the

absence of sensor noise. Let us now consider the
limiting form of the above expression for large k.
Assuming the ergodicity of all processes, each sum in
(54) and (55) approaches an ensemble average times k.
When we consider as higher order terms those whose
variance goes as 1/k, we obtain for large k:

k-1
wk) = -RIQUI- (1) Y, (X@mViam)Bm)
m=0
+B@mVm) X" ) R (k)]
k-1
(1K) Y, Xm)yvam)] + HO.T. (56)

m=0

k-1
RO= (0 Y, X@ XTm 6D
m=0
In (56), we see that since V involves past values of v,
V(m) and v(m) are almost always correlated and E{w(k)]
does not vanish as k increases without bound.
Consequently, there is a nonzero steady state bias error.
Note also that for large k, R(k) approaches the
correlation matrix of the regressor without sensor noise.
It is evident from (57) that very large contributions to
w(k) will arise from those eigen components of R
associated with very small eigenvalues. Thus in cases,
such as our three mode example, in which there is a
large spread in the eigenvalues of R it should not be
surprising to see considerable amplification of the
impact of sensor noise.

The above analysis shows that noise
sensitivity is exacerbated by a large spread in the
eigenvalues of the regressor correlation matrix. Thus
we are finally led back to the possibility of reducing
noise sensitivity by transforming the regressor so as to
equalize the eigenvalues of E[XX"]. To demonstrate
this, we generate X(k) over a thousand time step
interval and use the PCA algorithm developed in detail
in [5] to determine matrix U which defines a
transformation of the regressor that approximately
renders its correlation matrix equal to unity.
Specifically, having run the PCA algorithm, we
determine U and then define the transformed regressor,
Zk), by: -

Z(k) = UX(k) (58)
Z(k) replaces X(k) in (16), (23) and (24). By virtue of
the properties of the PCA algorithm, E[ZZT] is
approximately identity. With these additions to the
algorithm, we run simulations with T=1000, N=6,
o=1el2 and for various values of ¢ and generate the
same quantities characterizing steady state fluctuation
and bias error as were shown in Table 3.1. The results
are shown in Table 4.1.

Table 4.1: Steady state fluctuation and bias errors for
algorithm (23)-(24), with the regressor replaced by Z =
UX.

c VEI(er)’]

IIW(T)-Wpll / IWpll
1.0e-4 2.621e-3 2.040e-5
5.0e-4 1.210e-2 2.173e-4
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1.0e-3 2.097¢-2 6.793e-4
5.0e-3 4.464e-2 1.312¢-3
1.0e-2 8.119e-2 1.712e-3
5.0e-2 2.764e-1 9.187e-3
1.0e-1 4.598¢-1 1.130e-2

Contrasting these results with the numbers shown in
Table 3.1, we see that while the variance of the
fluctuation error has been reduced by a modest 10%, the
bias errors are reduced by approximately three orders of
magnitude. This tends to qualitatively confirm the
analysis of the noise induced errors given above. The

results for w/E[(er)z] remind us that since the

regressor always contains a component arising from
sensor noise, there is an imeducible minimum
magnitude to the fluctuating output error due to noise.
The numbers given appear to reflect this irreducible
minimum. It should be noted that while the bias error
in W has been essentially eliminated, the modified
algorithm retains the extremely rapid initial convergence
of the original algorithm developed in Section 3. This
is illustrated in Figure 6 which shows the time
variation of the system output and the identifier output
error in the presence of sensor noise with 6=0.1 (the
largest noise value studied). It is seen that the error
converges down to the additive noise term in about 20
time steps. Figure 7 shows the corresponding behavior
of the elements of the weight vector. As in the noise
free case, these converge to essentially constant values
in less than 40 time steps. For comparison, the stars in
Figure 7 show the converged values for W in the zero
noise case; i.e. the exact values of the elements of W.
From this it may be concluded that despite the high
level of sensor noise, the identifier weights have
converged with negligible bias error.

Finally, we illustrate the effectiveness of the
information filter algorithm on a more realistic example
- the UltraLITE model considered in [5}.

The original data on UltraL.ITE provided to this
study was in the form of the standard [A,B,C,D]
matrices for a continuous-time model. Specifically, the
200x200 A matrix was in 2x2 block diagonal modal
form, the C matrix pertains to the position sensors and
the B matrix corresponds to the co-located piezo
actuators. This continuous-time model was then
transformed into a discrete time model assuming a
200Hz sample rate and then truncated to a ten mode
model as discussed in [5]. To set up a suitable
identification problem, we assume that the system
represented by the hundred-mode model is stimulated
with discrete-time white noise injected through actuator
number 1. It is also assumed that we monitor response
through the (co-located) position sensor number 1.

Comparisons of response of the 100-mode model and a
truncated model obtained by including the first 10
modes showed that ten mode model afforded acceptable
accuracy.

The PCA algorithm was exercised on the
above ten mode Ultral.LITE model and the transformation
U extracted. Then the fast adaptive algorithm was
employed. As a result, the identification output error
converges to zero in approximately 28 time steps (0.14
second). This is illustrated by Figure 8. Convergence
of the weights takes somewhat longer - approximately
60 steps or 0.3 second, as indicated in Figure 9. Thus,
as found in the three mode example, this algorithm is
truly fast. This is reassuring, particularly in view of
the considerably greater complexity of the UltraLITE
example.

In summary, we conclude that an effective way
to reduce the noise sensitivity of the extended Kalman
algorithm is to first apply the PCA algorithm to
transform the regressor vector, then proceed with the
information filter algorithm.

5. Concluding Remarks

In this paper, we have investigated a technique
for attaining faster and more predictable convergence of
neural network algorithms for autonomous system
identification. The approach developed here seeks to
improve the adaptation speed of neural adaptive
identifiers by means of a basic revision of the
fundamental learning mechanism involving a
transformation of the increment in the synaptic weights.
A neural network algorithm has been found which
eliminates the dependence of convergence behavior upon
the correlation matrix of the net input. Analysis and
computational studies show that this algorithm can

~ produce many orders of magnitude improvement in

convergence speed beyond the performance available
from the earlier LMS type algorithms. Although the
algorithm can also be shown to be the optimal
estimator for a particular sensor noise model
(unfortunately an inapplicable model in the present
case), a drawback is that the algorithm also tends to
amplify the effect of sensor noise on the identification
errors. This is manifested in both amplified noise in
the output errors and large steady state bias errors in the
network weights. However, analysis of the root cause
of the noise sensitivity shows that the solution is to
combine this approach with the procedure discussed in
[5] wherein a Principal Component Analysis algorithm
is first used to transform the regressor to a new
regressor input having uncomrelated, equal variance
components. Numerical results presented in the last
section, show that the combined approach succeeds in
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achieving very rapid convergence with low noise
sensitivity.
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Figure 1: System output, y(k) (dashed line),
and identifier output error, e(k) (solid line) versus time
for the three mode example, basic identification
algorithm with N = 6, and alpha = 1. The initial weight
vector is zero.

Fig.2: Elements of the weight vecior, same conditions as Fig. 1
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Figure 2: Elements of the weight vector of the
identifier versus time, same conditions as Fig.1.
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Fig.3: System output and identifier error vs time, Kalman algorithm
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Figure 3: System output, y(k) (dashed line),
and identifier output error, e(k) (solid line) versus time
for the three mode example, information filter algorithm
with N = 6, and alpha = lel2. The initial weight vector
is zero.

Fig.4: Elements of the weight vector, same conditions as Fig.3
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Figure 4: Elements of the weight vector of the
identifier versus time, same conditions as Fig.3.

; Fig.5: Magnitude of (D eror, same condttions as Fig.3
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Figure S: Semi-log plot of the magnitude of
the identifier output error versus time, same conditions
as Fig.3 except a longer duration simulation. For
comparison, the figure also shows le-3 / sqrt(time) for
time > 50.

Fig.6: System output and identifier error vs time, PCA/Kalman algorithry
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Figure 6: System output, y(k) (dashed line),
and identifier output error, e(k) (solid line) versus time
for the three mode example, using the PCA-generated
regressor transformation followed by the information
filter algorithm with N = 6, and alpha = 1 and in the
presence of sensor noise with sigma = 0.1. The initial
weight vector is zero.

1929



Copyright © 1998, American Institute of Aeronautics and Astronautics, Inc.

Fig7: Elements of the weight vector, same conditions as Fig.6
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Figure 7: Elements of the weight vector of the
identifier versus time, same conditions as Fig.6. For
comparison, the stars show the converged values for W
in the zero noise case; i.e. the exact values of the

elements of W.
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Figure 8: System output, y(k) (dashed line), and
identifier output error, e(k) (solid line) versus time for
the ten mode UltraLITE example, information filter
algorithm with N = 20, and o = lel2. The initial
weight vector is zero.
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Figure9: Elements of the weight vector of the identifier
versus time, same conditions as Fig.8.
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