
Optimal Control of Spacecraft Orbital Maneuvers by the
Hamilton-Jacobi Theory

Chandeok Park∗, Daniel J. Scheeres†

Seeking the optimal control of spacecraft orbital maneuvers with non-smooth control logic in feedback
sense, we extend our recently developed technique based on the Hamilton-Jacobi theory. Specifically we pro-
pose a new methodology stemming from the direct use of generating functions for solving optimal feedback
control problem. Starting from the Hamilton-Jacobi equation for generating functions representing a two
point boundary value problem, we derive a set of 1st order quasilinear partial differential equations with the
associated initial condition, which forms the well-known Cauchy problem. These equations can also be derived
by applying the invariant imbedding method to the two point boundary value problem. The solution to this
Cauchy problem is utilized for determining the optimal control logic of spacecraft orbital maneuvers with hard
and soft constraint boundary conditions. Illustrative examples demonstrate that this approach is, in contrast
to the direct use of generating functions, promising for solving problems with non-smooth control logic usually
caused by imposing control constraints.

I. Introduction

We present a novel approach to developing optimal trajectories of spacecraft orbital maneuvers, focusing on prob-
lems with non-smooth control logic usually evoked by imposing constraints on control variables. Extending our
recently developed technique based on the Hamilton-Jacobi theory,1,2 we derive a set of new governing equations for
solving the non-smooth optimal control problem in feedback sense. Also this approach does not require us to guess
the initial costate (without any physical interpretations) to solve the associated two point boundary value problem.

Since Lawden3 initially introduced primer vector theory, optimal control problems for orbital maneuvers using
continuous thrust have been a topic of continual interest. While some early works still remain meaningful and note-
worthy,4–7 many significant results have appeared since 1980s.8–13 However, it still remains challenging to evaluate
the actual optimal trajectories for a variety of orbital maneuvers even in open-loop sense; it requires us to solve the
two point boundary value problem (TPBVP) for a Hamiltonian system numerically, which again forces us to guess the
initial costate without any physical interpretations. What is worse, the solution to the TPBVP tends to be extremely
sensitive to this initial guess in many realistic formulations with bounded control force.

Recently we have studied optimal feedback control (OFC) problems in the context of Hamiltonian systems. Treat-
ing the Hamiltonian system derived from the necessary conditions for optimality as a canonical transformation, we
have used its generating functions to solve the OFC problem successfully for a class of analytic problems. However,
despite many favorable properties, our method has shown restrictive applicability to problems with control constraints
mainly due to the difficulty of treating the inherent switching structure and non-smoothness of control logic.14

In an attempt to overcome or mitigate these barriers, we present a new technique stemming from the generating
function method, and study optimal spacecraft orbital maneuvers extensively with different formulations. The whole
discussion is structured as follows. In section II, we formulate the optimal control problem as a Hamiltonian system
and briefly review our generating function method as a pre-requisite. In section III, from the Hamilton-Jacobi equations
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for generating functions we derive a set of new governing equations with the appropriate boundary conditions, which
forms a Cauchy problem for the Hamiltonian system. We discuss how to obtain the OFC law from its solution, which
is followed by some illustrative examples. In section IV, we apply this technique to two different formulations of the
non-smooth spacecraft orbital maneuver problems, which shows its own validity and effectiveness through specific
numerical examples. Finally concluding remarks follow in section V.

II. General Optimal Control Problem Nested in the Hamilton-Jacobi Theory

We consider minimization of the following performance index

J = φ(x(tf ), tf ) +
∫ tf

t

L(x(τ), u(τ), τ)dτ

subject to the following system with terminal boundary conditions

ẋ = F (x, u, t) , ψ(x(tf ), tf ) = 0 (1)

Herex ∈ Rn, u ∈ Rm, t ∈ R, φ(x(tf ), tf ) : Rn×R → R, L(x(τ), u(τ), τ) : Rn×Rm×R → R, F (x(t), u(t), t) :
Rn ×Rm ×R → Rn, andψ(x(tf ), tf ) : Rn ×R → Rp≤n. The controlu = [u1 u2 · · · um]T is bounded by the
following inequality by component:

|ui| ≤ ui0 = constant

The unconstrained problem can be dealt with by lettingui0 →∞, i = 1, 2, · · · ,m.
Given this problem statement, we desire to find the optimal control logic in feedback sense for a given domain in

(x, t) ∈ Rn×R. Then from any initial point, we can evaluate the optimal trajectory satisfying the terminal constraints
by simple forward integration of the system (1), updating the control as new state measurements are made.

Instead of resorting to dynamic programming and solving the Hamilton-Jacobi-Bellman equation (HJBE), we
formulate the given problem as a Hamiltonian system. First define the pre-HamiltonianH̄ as

H̄(x, λ, u, t) = L(x, u, t) + λT F (x, u, t). (2)

Then, Pontryagin’s principle provides the necessary conditions for optimality and defines a Hamiltonian system for
states and costates only1,15 :

H(x, λ, t) = H̄(x, λ, u∗(x, λ, t), t) (3)

ẋ = Hλ(x, λ, t) (4)

λ̇ = −∂H

∂x
(x, λ, t) (5)

u∗(x, λ, t) = arg min
ū

H̄(x, λ, ū, t) (6)

As is noted in the problem definition, the initial states are chosen explicitly on a given domain. For the terminal
condition, suppose we have an explicit condition forψ:

ψ(x(tf ), tf ) = x(tf )− xf = 0 (7)

wherexf ∈ Rn is a constant vector. Then the terminal states are completely specified, which forms the hard con-
straint problem. Otherwise ifψ(x(tf ), tf ) = 0 is given by an implicit equation or does not exist, then the following
transversality condition determines then terminal boundary conditions [15, section 2] :

λ(tf ) =
∂[φ(x(tf ), tf ) + νT ψ(x(tf ), tf )]

∂x(tf )
(8)
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In the sense that the terminal states are not directly specified but indirectly affected byφ andψ, we call this type of
boundary condition the soft constraint problem. In either case we have2n split boundary conditions equally divided
between the initial and terminal time. Therefore, the optimal control problem is reduced to a two point boundary value
problem (TPBVP).

There exists diverse numerical techniques for solving this TPBVP, which usually yield the open loop optimal
trajectory. However, this does not fit into our purpose of obtaining a feedback control scheme on a given domain.
Instead, we view the Hamiltonian phase flow(x(t), λ(t)) as a transformation between terminal coordinates(x, λ, t)
and initial coordinates(x0, λ0, t0), which is by definition a canonical transformation. Then there exist generating
functions for these transformations that can have one of the four classical forms:16–18

F1(x, x0, t, t0), F2(x, λ0, t, t0) F3(λ, x0, t, t0), F4(λ, λ0, t, t0)

Note that these generating functions are functions ofn initial coordinates andn terminal coordinates. By definition
they satisfy the given boundary value problem and provide relations between initial and terminal states and costates
by the following relations17 :

λ =
∂F1(x, x0, t, t0)

∂x
(9)

λ0 = −∂F1(x, x0, t, t0)
∂x0

(10)

0 = H(x, λ, t) +
∂F1(x, x0, t, t0)

∂t
(11)

λ =
∂F2(x, λ0, t, t0)

∂x
(12)

x0 =
∂F2(x, λ0, t, t0)

∂λ0
(13)

0 = H(x, λ, t) +
∂F2(x, λ0, t, t0)

∂t
(14)

x = −∂F3(λ, x0, t, t0)
∂λ

(15)

λ0 = −∂F3(λ, x0, t, t0)
∂x0

(16)

0 = H(x, λ, t) +
∂F3(λ, x0, t, t0)

∂t
(17)

x =
∂F4(λ, λ0, t, t0)

∂λ
(18)

x0 = −∂F4(λ, λ0, t, t0)
∂λ0

(19)

0 = H(x, λ, t) +
∂F4(λ, λ0, t, t0)

∂t
. (20)

As can be seen, the generating functions satisfy a partial differential equation found by substituting forλ in (11) and
(14), and forx in (17) and (20), which are usually referred to as the Hamilton-Jacobi equation (HJE).

A crucial property of the generating functions related to a given transformation is that they are linked to each other
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via Legendre transformations, which can be represented by the following identities:

F2(x, λ0, t, t0) = F1(x, x0, t, t0) + λT
0 x0 (21)

F3(λ, x0, t, t0) = F1(x, x0, t, t0)− λT x (22)

F4(λ, λ0, t, t0) = F2(x, λ0, t, t0)− λT x (23)

Among these generating functions,F1 is a special quantity for the optimal control problem as it provides the
optimal cost function by the following theorem:

Theorem II.1 (Optimal Cost and Control Law from F1) Let xf be the (fixed) terminal state attf and x be the
(moving) initial state att. Also letF1(xf , x, tf , t) be a generating function for the given phase flow. Then,F1 satisfies
the necessary conditions of the TPBVP by definition. Also, the function

V (x, t) = −F1(xf , x, tf , t) + φ(xf , tf ) on ψ(xf , tf ) = 0

is the optimal cost function and satisfies the HJBE and the sufficient conditions. Furthermore, the optimal control law
can be expressed as

u = arg min
ū

H̄

(
x,

∂V (x, t)
∂x

, ū, t

)

Proof Refer to Park and Scheeres1,19 .
In our previous works1,2,20 , we have used generating functions and their Legendre transformations to develop a

systematic methodology to solve a class of optimal control problems where the performance index and the system
are analytic, and thus expandable as Taylor series. However, though we obtain a consistent result for problems with
control constraints and singular optimal control problems,14 the applicability of our solution techniques is restrained
by the unknown switching structure a priori, non-smoothness of cost function and control scheme, etc. In an effort
to overcome these difficulties, we derive a new set of equations from the HJE and employ their solution to obtain the
optimal control strategy, which we detail in the next section.

III. Optimal Control Strategy Derived from the Hamiltonian Cauchy Problem

Derivation of Governing Equations

We start from the HJEs for generating functions. First consider the HJE forF1 in (9) and (11). Regardingx0 andt0 as
constants (which is consistent with the definition ofF1) and taking partial differentiation of (11) with respect tox, we
have

∂

∂x

(
∂F1

∂t
+ H

)
= 0

Here note that the HamiltonianH(x, λ, t) = H(x, λ(x, x0, t, t0), t) from (9). Using the chain rule for the Hamiltonian
and the exactness property ofF1 yields

∂2F1

∂t∂x
+

∂H

∂x
+

∂H

∂λ

∂λ

∂x
= 0

Substitutingλ = ∂F1/∂x into the first term, we obtain a system of PDEs for the costateλ:

∂λ

∂t
+

∂λ

∂x

∂H

∂λ
= −∂H

∂x
, (24)

which is our new governing equation for the Hamiltonian system. Also starting from the HJE forF2 in (12) and (14),
takingλ0 andt0 as constants, and following the similar procedure, yields the same result.
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Now we derive a similar equation for the statex from the HJEs forF3 andF4. From the HJE forF3 in (15) and
(17), if we regardx0 andt0 as constants and take partial derivatives of (17) with respect toλ, we have

∂

∂λ

(
∂F3

∂t
+ H

)
= 0

Observing that theH(x, λ, t) = H(x(λ, x0, t, t0), λ, t) from (15) and using the chain rule for the Hamiltonian and the
exactness property ofF3 yields

∂2F3

∂t∂λ
+

∂H

∂λ
+

∂H

∂x

∂x

∂λ
= 0

Substitutingx = −∂F3/∂λ into the first term, we obtain a system of PDEs for the statex:

∂x

∂t
− ∂x

∂λ

∂H

∂x
=

∂H

∂λ
, (25)

which is another set of governing equations for the Hamiltonian system. Finally starting from the HJE forF4 in (18)
and (20) and following a similar procedure yields the same result.

Note that (24) and (25) aren simultaneous first order quasilinear PDEs. In order to solve these equations, we need
to derive at leastn initial or terminal conditions to form an initial or terminal value problem. We see that the states
x and costatesλ in (24) and (25) are simply the same quantities as those in the Hamiltonian formulation in (3)-(5).
Hence the boundary conditions for (24) and (25) should be compatible with those of the Hamiltonian system, that
is, (7) and (8). We note that it is the type of boundary conditions (7) and (8) that determines which equations to use
between (24) and (25), and how to use them to derive the optimal control scheme.

First we consider the hard constraint boundary condition (7). As this should be satisfied by the statex in (25) at
the terminal time, we obtain

x(t = tf , λ) = xf (26)

Similarly for the soft constraint boundary condition (8), as this should be satisfied by (24) at the terminal time, we
have

λ(t = tf , x) =
∂[φ(x, tf ) + νT ψ(x), t)]

∂x
(27)

With these terminal conditions (26) and (27), the governing PDEs (25) and (24), respectively, constitute the Cauchy
problemsa.

Finally note that the solutions to these Cauchy problems (24,27) and (25,26) are subordinate to generating functions
by the relations (9), (12), (15) and (18); we can obtain the solutions to the above Cauchy problems simply by partial
differentiations of generating functions, once we find them. However, as the motivation of this study suggests, it is very
difficult to solve the HJE for a generating function for problems with control bounds, and thus non-smooth optimal
control logic and cost function. In that case, we can resort to our new tools (24) and (25).

Generation of Optimal Control Strategy

So far we have derived a new set of governing equations and their associated terminal conditions to form a Cauchy
problem. It remains how to evaluate the optimal control logic from these new formulations. We discuss the hard and
soft constraint problem separately.

Suppose we have solved the Cauchy problem (25,26) for the hard constraint problem. Then we have a solution of
the formx = x(t, λ). Again note that the statex is the same variable as that of the Hamiltonian formulation (3)-(5); the

aWhereas our derivation originates from the Hamiltonian system theory, one can also derive the same results from the so-called invariant
imbedding method based on characteristic theory of 1st order PDEs. See Meyer21 for details.
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initial conditions(x0, λ0) at the arbitrary momentt0 ≤ tf should be satisfied by the solution to the Cauchy problem.
Then given the (arbitrary) initial statex0, the following equation should be satisfied:

x(t0, λ0) = x0, (28)

which is ann-tuple of implicit algebraic equation for then-tuple of unknownsλ0 = [λ10 λ20 · · ·λn0]T . If we
find a solutionλ0 to this equation, we can evaluate the optimal trajectory by simple forward integration of (4)-(5).
Furthermore solving (28) implicitly for a given domain of initial state to constructλ0 = λ0(t0, x0), we obtain the
optimal feedback scheme by the optimality condition (6):

u∗(x, λ(t, x), t) = arg min
ū

H̄(x, λ(t, x), ū, t) (29)

Note that we do not solve the Cauchy problem (25,26) repetitively. Once we find a solution field for the domain
of interest, the optimal feedback scheme can be obtainedalgebraically, which provides a substantial advantage over
repetitive solving the TPBVP numerically for each boundary conditions.

For the soft constraint problem, the situation is more favorable, as is seen below. Similarly we first solve the
Cauchy problem (24) and (27), which yields the solution of the formλ = λ(t, x). Then the same arguments conclude
that the following equation should be satisfied:

λ(t0, x0) = λ0, (30)

Here note the difference from the hard constraint problem; given the initial statex0, λ0 is an explicit function oft0
andx0, which can be more easily computed in general. Then in the same way, starting from(x0, λ0), we can evaluate
the optimal trajectory as well as the optimal strategy.

Finally we conclude this section by claiming that our method is truly applicable to free final (or initial) time
problems. In this case, the transversality condition for the free time index [15, section 2]

H(t0)− ∂φ(x(t0), t0)
∂t0

= 0

H(tf ) +
∂φ(x(tf ), tf )

∂tf
= 0

provides the additional algebraic equation for the varying time index.

Numerical Computation

So far we have shown that our new method is composed of two steps; first we solve the Cauchy problem (25,26) or
(24,27), and then solve the associated implicit or explicit algebraic equations (28) or (30) for the hard or soft constraint
problem to derive the optimal control scheme in feedback sense.

Though the well-posed Cauchy problem is guaranteed to have a unique solution [21, pages 9-17] , it is by no
means easy to solve a system of 1st order quasilinear PDEs numerically for most non-trivial problems. Suppose we
consider one of the traditional finite difference methods, for example. Then, we are first faced with the obstacle of
dimensionality. If we assignM grids for one spatial dimension andN grids for the time span of interest, then we need
NMn storage points for a2n-dimensional Hamiltonian system representing the necessary conditions for optimality
(3)-(5).

For the hard constraint problem, this curse of dimensionality becomes even more significant, as we need to solve
the algebraic equations (30)implicitly. In general, we do not knowa priori where in theλ-domain the solutions exist
for the correspondingx-domain of interest. Thus, we need to solve the Cauchy problem (25,26) for a large enough
domain, in the hope that the solution falls into the estimated domain. For the soft constraint problem, the problem of
estimating the solution domain can be alleviated, as the expression (30) becomes an explicit function forx. The initial
costateλ0 can be evaluated byn-dimensional interpolation, which is much simpler than the case of hard constraint
problem.
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Despite these difficulties and limitations, note that once the Cauchy problems are solved, the solutions work as
implicit (or explicit) numericalfeedbackcharts for the hard (soft) constraint problem. We believe that with such charts
the interpolation process can be done rapidly for relatively high dimensional problems. In other words, the solution to
the Cauchy problem, the feedback chart, can be real time implementable for many practical problems.

Illustrative Examples

Time Optimal Control of the Double Integrator System

Consider minimizing

J =
∫ tf

t0

dt

subject to the double-integrator system with control constraints:
[

ẋ1

ẋ2

]
=

[
x2

u

]
, |u| ≤ 1

The initial and terminal boundary conditions are given by
[

x1(t0)
x2(t0)

]
=

[
x10

x20

]
,

[
x1(tf )
x2(tf )

]
=

[
0
0

]

Here for convenience, we fix the terminal timetf = 0 and vary the initial timet0, which does not change the intrinsic
property of the problem. Then, defining the pre-Hamiltonian as

H̄(x, λ, u, t) = 1 + λ1x2 + λ2u

and using the Pontryagin’s principle yields the following necessary conditions for optimality with the transversality
condition for free initial time:

H = 1 + λ1x2 − |λ2|
ẋ1 = x2 x1(t0) = x10 x1(tf ) = 0
ẋ2 = −sign(λ2) x2(t0) = x20 x2(tf ) = 0

λ̇1 = 0
λ̇2 = −λ1

u = −sign(λ2)
H(t0) = 1 + λ1(t0)x2(t0)− |λ2(t0)| = 0

From the transversality condition, we can show that there does not exist singular intervals and that the optimal control
should beu = ±114 . The Cauchy problem (25,26) for this hard constraint problem can be written as

[
∂x1
∂t

∂x2
∂t

]
+

[
∂x1
∂λ1

∂x1
∂λ2

∂x2
∂λ1

∂x2
∂λ2

][
0
−λ1

]
=

[
x2

−sign(λ2)

]
,

[
x1(tf , λ)
x2(tf , λ)

]
=

[
0
0

]

which can be solved numerically. In fact, this problem can be used to show that the solution to the above Cauchy
problem can be derived from the associated generating functions, which has been computed in our previous work14 .
For example, starting fromF2 generating function, we can obtain the initial statex0 as a function of terminal statexf

and initial costateλ0
b:

F2(xf , λ0, t) =
±λ2

20 − 2λ20 ∓ 1
2λ10

∓ x2f + x1fλ10 ∓
x2

2fλ10

2
, (u = ∓1 → ±1)

bFor the effective domain for each case of the solution, see also the same work.14
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x10 =
∂F2

∂λ10
= x1f ∓ 1

2
x2

2f +
∓λ2

20 + 2λ20 ± 1
2λ2

10

x20 =
∂F2

∂λ20
=
±λ20 − 1

λ10

Imposing the given terminal boundary condition at the origin, i.e.,(x1f , x2f ) = (0, 0), and removing the subscript0
to represent the moving initial conditions, we have

(x1, x2) =
(∓λ2

2 + 2λ2 ± 1
2λ2

1

,
±λ2 − 1

λ1

)

Simply by direct substitution, we can easily show that this expression satisfies the above Cauchy problem.
Now suppose that we have found this solution numerically from the Cauchy problem (25,26). Then fixing the

initial states into the desired ones(x1, x2) = (x10, x20), we can find the loci of initial costates from each component
of the solution in theλ1λ2-domain. The whole procedure can be shown graphically with ease. We first draw plots
for x1 = x1(λ1, λ2) andx2 = x2(λ1, λ2) (Figure 1). Then for the desired initial states, we construct the contours
for each plot, as in Figure 1 where the contours are drawn forx1 = 0 ∼ 1 andx2 = 1 ∼ 2, respectively. Imposing
these two contours together in theλ1λ2-plane, we can find the initial costates for the given initial states by choosing
the intersection of these two contours (Figure 2). Then, the optimal control law can be determined from the optimality
conditionu = −sign(λ2).
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Figure 1. Solutions to the Cauchy Problem(xf = 0)

Time-Optimal Control of a Harmonic Oscillator

Consider minimizing

J =
∫ tf

t0

dt

subject to the second order system with control constraints
[

ẋ1

ẋ2

]
=

[
x2

−εx1 + au

]
, |u| ≤ 1 (31)
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Figure 2. Graphical Determination of Initial Costate (xf = 0). Each intersection point defines a unique pair of(λ1, λ2) at (x1, x2).

satisfying the initial and terminal boundary conditions
[

x1(0)
x2(0)

]
=

[
x10

x20

]
,

[
x1(tf )
x2(tf )

]
=

[
0
0

]
.

Herea > 0 andε ≥ 0 are constant parameters. Defining the pre-HamiltonianH̄ as

H̄ = 1 + λ1x2 + λ2(−εx1 + au) (32)

and referring to the Pontryagin’s principle, we obtain the necessary conditions for optimality with the transversality
condition for free initial time:

H = 1 + λ1x2 − ελ2x1 − a|λ2|
ẋ1 = x2

ẋ2 = −εx1 − asign(λ2)
λ̇1 = λ2

λ̇2 = −λ1

u = −sign(λ2) (33)

H(x, λ, t)|t=t0 = 1 + λ1(t0)x2(t0)− ελ2(t0)x1(t0)− |λ2(t0)| = 0, (34)

It can be shown from the transversality condition that there does not exist any singular intervals. In order to further
examine the switching structure, note that the costate dynamics represent the unforced harmonic oscillator; letting
ε = ω2, we obtain

[
λ1(t)
λ2(t)

]
=

[
cosωt sin ωt

− sinωt cosωt

][
λ10

λ20

]
.

Considered with the control logic (33), this shows that unlike the double integrator problem there can be multiple
discontinuous switchings in the control flow depending on the initial conditions.

With this structure the Cauchy problem (25,26) is formulated as
[

∂x1
∂t

∂x2
∂t

]
+

[
∂x1
∂λ1

∂x1
∂λ2

∂x2
∂λ1

∂x2
∂λ2

][
ελ2

−λ1

]
=

[
x2

−εx1 − asign(λ2)

]
,

[
x1(tf , λ)
x2(tf , λ)

]
=

[
0
0

]
.
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Before proceeding further, observe from the non-smooth term sign(λ2) that the solution to this Cauchy problem
is expected to develop shocks around the switching surface. Properly interpreting this phenomenon, we should be
cautious in selecting appropriate numerical methods. As far as the finite difference method is concerned, it turns out by
numerical experiment that the 1st order upwind scheme is capable of analyzing the shocks properlyc; unlike the latter,
the former switches between forward and backward differences in spatial dimensions by reflecting the characteristic
directions of the associated PDE, which are transmitted by the sign ofλ1 andλ2 at each grid.

As particular examples, a harmonic oscillator(ε = 1, a = 1) is compared with a double integrator(ε = 0, a = 1),
which can be also viewed as an extreme case of a harmonic oscillator. Then as suggested to properly interpret the
shocks, we launch the 1st order upwind scheme for temporal and spatial domains0 ≤ t ≤ 1 and−4 ≤ λ1, λ2 ≤ 4
with the relevant grids∆t = 0.02 and∆λ1 = ∆λ2 = 0.04 respectively. As this yields a numerical solution in the
form of (x1, x2) = f(t, λ1, λ2), it provides numerical charts with which to compute the initial costate for the desired
initial state by interpolation with the implicit relation (28). Then the optimal control law is simply obtained from
(29). Recall that this process has been graphically illustrated in the previous example. For comparison purpose, we
portray collections of initial states with the same optimal time for each case, which can be achieved by forcing the
transversality conditions (34) at each time step. Figure 3 clearly displays the distinct patterns of these collections,
together with the different shapes of switching curves between each example.
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Figure 3. Collection of the Initial States with the Same Optimal Time and Switching Curves for(ε = 1, a = 1) and (ε = 0, a = 1)

IV. Optimal Control of a Spacecraft Orbital Maneuvers

As a main application, we now study optimal control of spacecraft orbital maneuvers. Specifically we deal with
fuel-optimal maneuvers of a spacecraft in a central gravity field: minimize

J =
1
2
xT (tf )Qfx(tf ) + T

∫ tf

t0

|u(t)|dt

subject to the system

ẋ = v

v̇ = Ax + Bv + u

cRefer to Appendix for a brief description of this method. For a general discussion on finite difference methods, we cite Thomas22
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Herex = [x1 x2]T , v = [v1 v2]T , u = [u1 u2]T , andtf is assumed to be fixed.A andB are defined respectively as

A =

[
3 0
0 0

]
, B =

[
0 2
−2 0

]

This system is called the Clohessy-Wiltshire equation and represents the linearized planar motion of a particle in a
inverse-square gravity field, with its coordinates expressed in a circular rotating coordinate frame. For more detailed
description of this system, we cite Carter.8

Defining the pre-Hamiltonian as

H̄ = |u|+ pT v + qT (Ax + Bv + bu),

we can obtain the costate equations

ṗ = −AT q

q̇ = −p−BT q

and the optimal control logic by Pontryagin’s principle:

u∗ = arg min
u

H =





0 , |q| < 1
−q/|q| , |q| > 1
singular , |q| ≡ 1 on [t1, t2]

According to Carter,8 the singular arc occurs only whenq = [±1 0]T . For the sake of simplicity, we do not consider
this special case. Then introducing the regular optimal control logic into the pre-HamiltonianH̄ yields the Hamiltonian
as a function of states(r, v) and costates(p, q) only.

Hard Constraint Problem

We first consider rendezvous-type boundary conditions:

x(t0) = x0 , x(tf ) = xf

v(t0) = v0 , v(tf ) = vf

Without loss of generality, we can setQf = 0. Then similarly as in the previous example, we can construct the Cauchy
problem for this hard constraint problem:

∂x̄

∂t
= A1

∂x̄

∂λ1
+ A2

∂x̄

∂λ2
+ A3

∂x̄

∂λ3
+ A4

∂x̄

∂λ4
+ C0x̄ + c1 , x̄(tf , λ̄) = [x(tf , λ̄)T v(tf , λ̄)T ]T

where

x̄ =

[
x

v

]
, λ̄ =

[
p

q

]
, C0 =

[
0 I

A B

]
, C1 =

[
0
u

]

A1 = 3λ3 , A2 = 0 , A3 = λ1 − λ4 , A4 = λ2 + λ3.

We now launch the 1st order upwind finite difference scheme to properly interpret the non-smoothness of control
logicd. As a specific example, we locate the terminal boundary condition at the origin, and consider time span[0, 0.1].
Temporal grid and spatial grids have been chosen as∆t = 0.01 and∆λi = 0.02, i = 1 ∼ 4 respectively. As this yields
a numerical solution in the form of̄x = f(t, λ̄), it provides numerical charts with which to compute the initial costate

dAgain refer to Appendix for a brief description of this method, or to Thomas22 for a general discussion on finite difference methods.
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for the desired initial state by the implicit relation (28). Then the optimal strategy is obtained from the Pontryagin’s
principle (29). All these numerical experiments have been performed with Matlabr. It should be emphasized that
we do not need to guess the initial costate in contrast to the direct numerical solution to the two point boundary value
problem (TPBVP) for the Hamiltonian system (4)-(5). Also we do not need to solve the Cauchy problem again as long
as our desired initial states implicitly remain in the numerical solution chart.

To test the validity of our method, we have chosen some arbitrary initial states around the origin, obtain the initial
costates for them by (29), and solve the initial value problem for the Hamiltonian system (4)-(5). Figure 4 shows
the state trajectories in the position and velocity phase plane for those initial conditions. Here the slight offset of the
terminal states from the origin is mainly caused by relatively coarse grids chosen above. As∆t and∆λi become
smaller, the terminal states come closer to the origin. Figure 5 shows the optimal control schemes for the given initial
conditions. It is apparent that our method captures non-smooth control profiles, as well as smooth ones.
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Figure 4. State Trajectory in the Position and Velocity Phase Plane(x̄f = 0)
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Figure 5. Time History of Control Variable (x̄f = 0)

Throughout this method, the main concern lies in the data storage capacity, as this formulation deals with1 tempo-
ral and4 spatial variables. For example, working with100 temporal grids and100 spatial grids in each dimension, we
need4 × 1010 memory allocations for the Cauchy problem solution in the form ofx̄ = f(t, λ̄), which is formidable
even with modern standard computing facilities. With this ‘curse’ of dimensionality, it is difficult to compute for a
large domain with relatively small grids providing tolerable accuracy. This is reflected by rather apparent offsets of
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terminal states from the origin in Figure 4. Even in order to evaluate those trajectories for those initial conditions in
Figure 4-5, we have first divided theλ-domains of our interest into a few sub-domains to reduce grid sizes to an accept-
able degree as well as not to exceed memory allocation capacity, and applied the finite difference scheme separately
to each of those sub-domains.

Another concern, which is only confined to the hard constraint formulation, lies that the relation (28) yielding the
initial costate isimplicit. Recall that we desire to obtain its inverse relation to derive the optimal strategy from the
Pontragin’s principle (29) infeedbacksense; it is not easily pliable to construct an inverse mapping for5-dimensional
arrays. This is mainly responsible for demonstrating the open-loop trajectory only by solving the initial value problem
of the relevant Hamiltonian system. In fact, this difficulty of obtaining the inverse relation forλ̄ is more relevant to
moderately acceptable achievement of terminal constraint in Figure 4. Once we obtain the relationλ̄ = f(t, x̄), we
can easily update our control strategy as new measurements are made, which should provide higher accuracy with
relatively coarse grids. This is explicitly demonstrated in a soft constraint formulation below.

Soft Constraint Problem

In order to study the soft constraint formulation, we first see that all the above derivation holds except that we now
have a transversality condition for the terminal boundary condition:

λ̄(tf ) = Qf x̄(tf )

We can now apply the general Cauchy problem formula (24,27) to this soft constraint problem:

∂λ̄

∂t
= A1

∂λ̄

∂x1
+ A2

∂λ̄

∂x2
+ A3

∂λ̄

∂x3
+ A4

∂λ̄

∂x4
+ C0λ̄ , λ̄(tf , x̄) = Qf x̄

where

C0 =

[
0 As

−I Bs

]
, As =

[
−3 0
0 0

]
, Bs =

[
0 1
−1 0

]

A1 = −v1 , A2 = −v2 , A3 = −3x1 − 2v2 − u1(q) , A4 = 2v1 − u2(q).

Similarly as in the hard constraint problem, we execute the 1st order upwind finite difference scheme. As a specific
example, we setQf = 5I and choose the time span[0, 1]. Temporal grids and spatial grids have been chosen as
∆t = 0.1 and∆xi = 0.2, i = 1 ∼ 4 respectively. As this yields a numerical solution in the form ofλ̄ = f(t, x̄),
it provides numerical charts from which the initial costate can be obtained for the desired initial state by the explicit
relation (30). Again all these numerical experiments have been performed with Matlabr.

Figure 6 shows the state trajectory in the position and velocity phase plane for some arbitrarily chosen initial con-
ditions to test the validity of our method. Here the solid lines represent trajectories obtained from the Cauchy problem
approach. It should be emphasized that we have evaluated these trajectories in feedback sense; as the trajectory flows,
we have reevaluated the optimal control scheme at everyδt = 0.02 interval using the numerical solution to the Cauchy
problem. The dotted lines represent reference trajectories evaluated by solving the TPBVP using the forward shooting
method numerically. For their initial guesses on initial costates, we have used the Cauchy problem solution at the
initial time. Relatively big discrepancies between each solution on the velocity plane for some initial conditions are
caused by chattering on the boundaries of full/null thrust.

Finally note that our numerical concerns regarding the curse of dimensionality can be mitigated for the soft con-
straint formulation. As the associated Cauchy problem (24,27) directly provides the costate as a function of states,
we can initially estimate the domain of numerical evaluation, in contrast to the case of hard constraint problem. Fur-
thermore once we can implement feedback control scheme during the mission, we can accomplish more accurate
trajectories than those obtained in open-loop sense with relatively coarse grids. This statement can be supported by
comparing the hard/soft constraint formulations above together; it can be observed that we have obtained very close
approximation to the reference solution with even higher grid sides and longer time span in the soft constraint formu-
lation than in the hard constraint formulation.
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Figure 6. State Trajectory in the Position and Velocity Phase Plane(Qf = 5I)

V. Conclusion

We have applied the Hamilton-Jacobi theory to present a new method for solving the optimal control problem in
feedback sense. Formulating the optimal control problem as a Hamiltonian system, we have derived a set of partial
differential equations with their associated boundary conditions to form Cauchy problems. Then it has been shown
how the solutions to the Cauchy problems can be used for solving both hard and soft constraint problems. Finally our
technique has been extensively used to study optimal control problems for spacecraft orbital maneuvers dominated by
non-smooth control logic. For the hard constraint problem, our solution satisfies the given boundary conditions with
tolerable offset, which is mainly caused by relatively coarse grids. For the soft constraint problem, we have executed
the feedback control scheme to evaluate the optimal trajectories, which has been favorably compared with the reference
trajectories, even with relatively coarse grids. With these encouraging results, we believe that our technique, along
with other traditional techniques, can be considered as an alternative method for non-smooth optimal control problems.

In the future, we focus more on computational issues; more effective numerical scheme for solving Cauchy prob-
lems, more efficient storage for vast Cauchy problem data in high dimensional problems, enhancement of the im-
plicit/explicit interpolation process, etc. These issues will accompany researches on more realistic nonlinear spacecraft
orbital maneuver formulations.

Appendix: Finite Difference Method for Solving Cauchy Problems

As a concise reference, we briefly describe the 1st order upwind scheme, a finite difference method used to solve
Cauchy problems numerically. For a comprehensive discussion on a variety of finite difference methods, we cite
Thomas.22

Consider a general Cauchy problem of the form:

∂x(t, λ)
∂t

+
∂x(t, λ)

∂λ
G(x, λ, t) = F (x, λ, t) , x(t = t0, λ) = f(λ)

If we assume thatt ∈ R andx, λ, G, F, f ∈ R2, we can rearrange this equation as

∂x

∂t
= A1

∂x

∂λ1
+ A2

∂x

∂λ2
+ C0x + c1

whereA1, A2 ∈ R, C0 ∈ R2×2, andc1 ∈ R2. Now denoting the temporal grid by∆t and the spatial grids by∆λ1
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and∆λ2 respectively, we can derive the 1st order upwind scheme as follows:

xn+1
jk = xn

jk + Rλ1A1δx
n
Mk + Rλ2A2δx

n
jN + ∆t(C0x

n
jk + c1)

Rλ1 =
∆t

∆λ1
, Rλ2 =

∆t

∆λ2

δxn
Mk = xn

Mk − xn
(M−1)k , M =

{
j if A1 > 0
j + 1 if A1 < 0

δxn
jN = xn

jN − xn
j(N−1) , N =

{
k if A2 > 0
k + 1 if A2 < 0

Observe that this algorithm switches between forward and backward difference schemes in spatial dimensions de-
pending on the signs ofA1 andA2, which reflects the characteristic directions at each grid of evaluation. Here the
superscript and subscript represent the temporal and spatial indices respectively.
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