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Abstract 

In this paper, a design optimization problem with multidisciplinary objectives is considered for a 

general purpose elastomeric mounting system (EMS). The multidisciplinary design objectives include 

quasi-static, dynamic and stability targets. Elastic stability of the EMS is investigated for the first time 

with the development of a general formulation that determines the critical buckling force and buckling 

mode of the system. Optimization is then performed to maximize the critical buckling force. The 

major contributions of this work include a systematic approach for the multidisciplinary design 

optimization of EMS and the stability analysis and optimization. The approach developed in this paper 

can be applied to a wide range of EMS design problems including body mounting system and 

powertrain mounting system. Reliability assessment of the optimum design is also conducted in order 

to consider uncertainties of the system parameters due to the manufacturing and assembling variations. 

Design optimization of a real vessel-mounting system in an innovative concept vehicle is used as an 

example to demonstrate the feasibility of the approach developed. 
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1. Introduction 

Elastomeric mounting system (EMS) has extensive applications to control noise, vibration and 

harshness (NVH) in aerospace, automotive, marine, and other related fields. EMS can be made 

compact, they are cost-effective and easy to maintain. Therefore, EMS has been used to isolate vehicle 

structure from engine vibration since the 1930s (Lord, 1930). Extensive efforts have been made since 

then to improve the performance of the elastomeric mounts (Browne and Taylor, 1939, Coleman and 

Alstadt, 1959, Miller, Ahmadian, 1992).  Another typical EMS in automotive vehicles is cabin-frame 

(as well as bed-frame) mounting system, which is used to isolate cabin (and bed) from the vibration of 

vehicle frame and to reduce the noise level so as to improve riding quality.  

An EMS generally consists of three or more mounts. The behavior of the EMS not only depends 

on the performance of individual mounts but also on the complete system configuration. The design of 

an EMS involves the selection of materials for desired mechanical properties and determination of the 

locations and orientations of the individual mounts. The development of EMS has mostly concentrated 

on improvement of quasi-static (amplitude-dependent) and dynamics (frequency-dependent) properties.  

The traditional “trial-and-error” methods in EMS design are highly dependent upon the 

engineer’s experience and the allowable flexibility in modifying the system. Extensive experiments 

and analyses are required to meet the design criteria even in one aspect of the system performance, 

which turns out to be very time consuming. When multidisciplinary system performance objectives are 

considered, it becomes much more difficult to find a suitable design. A computerized automated 

design method such as optimization with reliable modeling techniques is highly desirable. Significant 

work has been done in this area since the late 1970s, but little work was found which consider 

multidisciplinary design objectives.  
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A simplest EMS model consists of a rigid body with a number of elastomeric mounts that support 

the rigid body. The rigid body can represent, for example, a powertrain unit, a cabin or a bed in a 

vehicle, which has six degrees of freedom (DOF). The rigid body can translate and rotate about the 

three-independent Cartesian axes. The mounts are usually modeled as springs and dampers with 

viscous elastic or viscoelastic properties in each of the three principal directions.  

Different objectives of optimization have been considered in the literature. One objective of the 

optimization is to tune the natural frequencies of the mounting system to a desired range to avoid 

resonance and to improve the isolation of vibration and shock (Johnson and Subhaedar, 1979, Arai, 

Bernard and Starkey, 1983, Geck and Patton, 1984, Spiekermann, Radeliffe and Goodman, 1985, 

Kubozuka and Gray, 1993). Swanson, Wu and Ashrafiuno (1993) also showed that the transmitted 

forces through the mounts can be directly minimized in order to obtain a truly optimum design of the 

mounting system. Ashrafiuon (1993) further used these criteria to minimize the dynamic forces 

transmitted from the engine to the body. Other studies in the literature also used these two objectives 

(Wise and Reid, 1984, Suresh, Shankar and Bokil, 1993, Lee, Yin and Kim, 1995).  

No work has been found in the literature related to the stability analysis of the general purpose 

EMS. In this paper, we derived an eigenvalue problem base on a second-order approximation of the 

original nonlinear dynamic equation of the EMS for the stability analysis. The eigenvalue problem can 

be solved to determine the buckling load and related buckling mode of the system. The stability related 

objective is first time introduced to the design optimization of EMS, which can be used to improve 

system behavior due to the nonlinear bifurcation. In addition to the stability objective, other design 

objectives, including quasi-static, dynamic, and durability targets, are also considered. Optimization 

with the multidisciplinary objectives leads to a much practical and reliable design in all aspects of the 

EMS. 

In the practical EMS design, uncertainties of the system parameters have to be considered. For 

example, manufacturing variation will induce uncertainties in the stiffness of the individual mounts, 

and assembling errors may cause uncertainties in the locations and orientations of these mounts.  In 

order to estimate the reliability and robustness of the optimum design, a reliability assessment is 

essential. Approximation techniques developed to assess a component or system reliability can be 
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broadly categorized into two groups: a) random sampling methods, and b) analytical methods. The 

selection of methods depends on the problem involved. In this paper, a prevalent method- Monte Carlo 

simulation is used to assess the reliability of the optimum design.  

This paper is organized as follows. In Section 2, the basic system equations for the quasi-static, 

frequency response, eigenvalue, and stability of the general purpose EMS are derived; the equations 

for the stability analysis of general EMS are first time considered. In Section 3, optimal design 

problems of the EMS are considered by defining different design objectives and assessing the 

reliability of the optimum design. As an example, in Section 4, design optimization of a real EMS in 

an innovative concept vehicle is considered with multidisciplinary objectives followed by the 

reliability assessment of the optimum design. Section 5 concludes the paper and further outlines 

possible future research. 

2. Basic Equations of a General Elastomeric Mounting System 

2.1 Quasi-static, frequency response and eigenvalue analyses 

The EMS considered in this paper is modeled as a rigid body, which is supported by a number of 

elastomeric mounts. It is assumed that all mounts are seated on a rigid base. Note that this assumption 

can be easily extended to consider a flexible base. As shown in Fig. 1, the origin of the global 

coordinate system is at the center of gravity (C.G.) of the rigid-body, while X and Y-axes are parallel 

to the base, Z is normal to the base.  The rigid body consists of six independent degrees of freedom 

(DOF), which include three translational and three rotational coordinates. 

Assume that T
ccc zyx },,{}{ =cr is the translational displacement vector of the C.G. of the rigid 

body, and T
zyx },,{}{ θθθ=Θ is the linear angle vector that represents a small rotation of the rigid 

body about its C.G., where zy  , , θθθ x  are components of the rotation with respect to three axes of the 

global coordinate system, then a complete set of independent generalized coordinates for the EMS can 

be defined as 

 c{ } { , }T T T=q r Θ  (1) 
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Under the assumption of “small” motion, the EMS equation can be linearized about its initial 

configuration and thus written as 

 [ ]{ } [ ]{ } [ ]{ } { }+ + =M q C q K q p&& &  (2) 

where [ ]M denotes the inertia matrix; [ ]C denotes the damping matrix; [ ]K denotes the stiffness 

matrix, and { }p  is the force vector (including the torques) applied at the body C.G.. 

The stiffness and damping matrices are contributed from each mount, and in general we have 

 ∑
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where N  is the total number of the mounts that support the rigid body, and 
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is the stiffness matrix from the i -th mount, here ]~[ ir  is a skew matrix of the position vector }{ ir , 

while T
iii zyx },,{}{ =ir  is the position vector of the i -th mount, and we have 
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where ix , iy , iz  are the coordinates of the i -th mount measured at the body-fixed coordinate system 

(as shown in Fig. 1); ][ ik is the stiffness matrix of mount i  measured in the global coordinate system. 

Assuming a (linear) viscous elastic mount, ][ ik can be expressed as 

 i i i i[ ] [ ][ ][ ]T′=k A k A   (6) 

where i[ ]′k  is the stiffness matrix of the i -th mount measured in the mount local coordinate system, 

and i[ ]A  is the transposition matrix, which can be defined, for example, using Euler angles. 

Assuming a viscous damping matrix for the i -th mount, namely, 

 i i[ ] [ ]iη′ ′=c k  (7) 

where iη  is the loss factor of the i -th mount, then the viscous damping matrix that contributes to the 

global damping matrix [ ]C  in Eq. (3), of mount i , can be obtained as  
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 [ ] [ ]i i iη=C K  (8) 

Based on Eq. (2), for a frequency response problem, we have 

 ( )2[ ] [ ] [ ] { } { }jω ω+ − =K C M q p  (9) 

where }{q  and }{p  are the amplitudes of the body C.G. displacement and force vectors, respectively, 

ω  is the excitation frequency.  

For the quasi-static analysis, assuming  

 { } [ ]{ }= −p M a  (10) 

is the inertia force applied on the body, where }{a  is a given acceleration vector of the rigid body, 

then we have 

 [ ]{ } { }=K q p  (11) 

Finally, for the modal analysis, we have 

      ( )[ ] [ ] 0n nλ− =K M φ  (12) 

where nλ  donates the n -th eigenvalue of the EMS, and nφ is the corresponding eigenvector.  

Note that the displacement at each mount due to the rigid body motion { }q can be obtained as  

 }{]~[}{}{ ΘrrU ici
T+=  (13) 

The force transmitted to the base through the i -th mount can be then obtained as 

 }]{[}{ iii UkF −=  (14) 

2.2 Stability analysis 

Consider a perturbation on the rigid body from its equilibrium position that results in a small 

displacement{ } { , }T T T
c=q r Θ . The potential energy due to the perturbation can be written as 

 { } { } { } { }T T
cV = +r F Θ τ  (15) 

where { } { , , }T
x y zF F F=F  denotes the external force vector applied on the C.G., 

{ } [ ]{ }c=τ r F% denotes the torque vector resulted from the perturbation of the C.G. and the force 

applied, and [ ]cr%  is the skew matrix of the vector { }cr . Note that { }τ  defined in this paper is a 
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higher-order non-linear effect, which is considered in here as it has a major contribution to the stability 

condition. Equation (15) can be then rewritten as 

 
1{ } { } { } [ ]{ }
2

T T
b GV λ= +q p q K q  (16) 

where { } { , 0}T T=p F , bλ = F  denotes the amplitude of { }F , and [ ]GK  is so-called the geometry 

stiffness matrix, 
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where α , β ,γ  are direction cosines of the force vector { }F  measured at the global coordinate system. 

The internal energy stored in the EMS due to the perturbation can be written as 

 
1{ } [ ]{ }
2

TU = q K q  (19) 

The total energy stored in the EMS due to the perturbation then becomes 

 U VΠ = −  (20) 

The stability condition of the mechanical system requires the Hessian matrix of Π  to be positive, 

which results in a critical condition: 

 
2

det 0
i jq q

⎡ ⎤∂ Π
=⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
 (21) 

or a corresponding eigenvalue problem 

 ([ ] [ ]){ } 0b G bλ− =K K φ  (22) 

where bλ  denotes the critical buckling force, and { }bφ is the corresponding buckling mode. 

3. Optimal Design Process 

3.1 Optimization problems of EMS 
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Assuming 1 2{ } { , , , }T
nx x x= …x stands for a vector of the design variables, an optimization problem 

of the general mounting system can be written as: 

Find { }x  such that 
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Subject to  ( ) 0,  ( 1, 2, , )
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where ix denotes a design variable, which can be a location, orientation,  stiffness or damping variable 

of an individual mount, ix  and ix are the lower and upper bounds of ix , ( 1, 2, ,i n= K ); 

)(xf denotes the objective function, and )(xjh  ( 1, 2, ,j m= K ) are the constraint functions. )(xf  

can be defined as one of, or a combination of, the below: 

1. Displacement and rotation of the body C.G., i.e 

}{}{}{}{)1(1 ΘΘrr cc
TTf αα +−=   (24) 

where )10( ≤≤αα  is a given weighting parameter. 

2. Mean eigenvalue of the system (Ma, Kikuchi and Cheng, 1995) 
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where ),,2,1( mi
in K=λ  are the eigenvalues to be optimized (defined in Eq. (12)), 1,  2, -2n = , or 

other, is a parameter used to define different design problems, ),,2,1( miwi K=  are given weighting 

coefficients, ),,2,1( 0 mi
i

K=λ  are given target eigenvalues, 0λ  and α  are constants which are used 

only for adjusting the dimension of the objective function.  

3. Critical buckling force of the system 

bf λ=3   (26) 

where bλ  is defined in Eq. (22). 

4. Maximum mounting force 
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},,2,1,max{4 NiFf i K==   (27) 

where }{}{ ii FF T
iF =  is the magnitude of the transmitted force }{ iF  at the i -th mount.  

3.2 Multidisciplinary objectives reduction approach 

In a multidisciplinary design optimization problem, it is critical to study the relationships (trading-offs) 

of all different objectives and to handle them in one single design process. In this paper, we introduce 

a general approach, which can be used to reduce the total number of the multidisciplinary design 

objectives in a practical structural optimization problem without debasing the optimality of the final 

design, so as to simplify the design problem. The approach can be explained as following: Firstly, a 

series of single objective optimization (SOO) are conducted for all individual objectives in the design 

problem. Secondly, the resultant SOO designs are evaluated for all the other multidisciplinary 

objectives. Based on the evaluation results, we can divide the objectives into different groups. In the 

same group, the objectives are consistent with each other, while in different groups, objectives are 

conflict. Finally, we can choose from each group a representative design objective. By considering the 

representative objective, the other objectives in the same group can be then reduced, which results in a 

much simpler design problem. This objective reduction approach is based on the natural characteristics 

of an engineering structure in responding to different physical processes, therefore, it can be 

generalized for the same class of structures. We will further demonstrate effectiveness of this approach 

through an example of real engineering design problem. 

3.3 Reliability assessment for optimal design 

For reliability analyses of the EMS, the probabilistic performance measure can be defined as  

  1)( max −=
d

dG X   or   1)(
min

−=
d
dG X  (28) 

where }{X  is a random vector representing the uncertainties of the design parameters, maxd ( mind ) is 

the maximum (minimum) value of the design target, d  is the actual value of the design target. Here, a 

failure event is defined as 0)( ≤XG , and the probability of failure fp  is defined as 
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 }0)({ ≤= XGPp f  (29) 

which is generally calculated by the integral 

 ∫ ∫ ≤
=

0)(
)(

X X dXX
Gf fp L  (30) 

where )(XXf  is the probability density function (PDF) of }{X and the probability is evaluated by the 

multidimensional integration over the failure region )(XG . 

The reliability R  is the probability that the EMS works properly, and it is given by 

 fpGPR −=>= 1}0)({ X  (31) 

It is very difficult or even impossible to analytically compute the multidimensional integration in Eq. 

(30). Some approximation methods, such as the first order reliability method (FORM) (Madsen, Krenk 

and Lind, 1986) or the asymptotic second-order reliability method (SORM) (Hasofer and Lind, 1974) 

with a rotationally invariant reliability measure, have been developed to provide efficient solutions, 

while maintaining a reasonable level of accuracy. In this paper, instead, we simply use Monte Carlo 

simulation to investigate the robustness of the optimal design. The reason for this lies in the fact that 

calculating the response function of the general purpose EMS defined in this paper is not expensive, so 

the large number of function evaluations for an effective Monte Carlo simulation can be performed 

without much computational cost. 

4. Example Design Problem 

4.1 Design model 

As an example design problem, we considered a vessel-mounting system which is employed in an 

innovative concept vehicle. The demonstration system has a vessel supported by four mounts made of 

elastomeric bushings; the mounts are connected to the frame of the vehicle. 

In the current research, the vessel is assumed as a rigid body with a total mass of 256.7 Kg. The 

moment of inertia matrix is 

 

7.7 1.1 3.7
1.1 52.0 1.0

3.7 1.0 55.2

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

I 2mKg ⋅  (32) 
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The bushings have axial stiffness coefficient 1.4 5xk e′ =  N/m and radial stiffness 1.4 6y zk k e′ ′= =  

N/m. The three orthogonal local coordinate axes of each bushing are originally parallel to the axes of 

the global coordinate system. Damping effects of the bushings are neglected. The locations of the body 

C.G. and each bushing are listed in Table 1. The major load considered in the current design is the 

inertia forces of the vessel when the vehicle has accelerations or decelerations during braking or 

steering. The load is assumed as a worst case of 10g inertia force applied to the C.G. of the body in the 

X-Y plane with an angle θ  counter clockwise from the positive X axis. Different loading conditions 

are considered by varying the angle θ  with the constant amplitude of the load. 

The design variables considered in the current design problem are the orientation angles of the 

bushings about the Z-axis. The design variable vector is therefore 1 2 3 4{ } { , , , }Tα α α α=x , 

where iα  represents the orientation angle of the i -th bushing ( 4 3, 2, ,1=i ) with the lower and upper 

bounds 2π−  and 2π   for all orientation angles. Four design objectives are considered as following: 

1. The maximum body C.G. displacement should not exceed 20 mm; 

2. The fundamental eigenfrequency of the system should be greater than 10 Hz; 

3. Critical buckling force should be greater than 100 KN; 

4. The maximum bushing force should be less than 12 KN. 

Note that the above objectives do not reflect the actual requirements of the vessel-mounting system 

design.  The design objectives listed above are only for demonstration purpose. 

4.2 Design results and discussion 

The original design assumes all the four bushings are oriented with their axial direction parallel to the 

X-axis of the global coordinate system, i.e., T}00,0,0,{}{ =x . This design provides a very 

weak support for the vessel along the forward-afterward direction, which results in a maximal 45mm 

forward-afterward movement of the vessel when the G-force is applied along the same direction. 

To improve the EMS design, firstly, a design optimization is carried out to minimize the body 

C.G. displacement for the G-force along the X-direction, i.e., 
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              { }1Minimize    ( ) ( ),  0f f θ θ= =
x

x   (33) 

The optimum angles obtained are listed in Table 2, which shows that all bushings should be 

oriented nearly 90  degrees. This new design is referred as Design 1. The objective function of the new 

design has been improved from original 45 mm to 5 mm in this case for the given load direction. 

However, the optimality of this design highly depends on the loading direction assumed. 

Figure 2 illustrates the variation of the body C.G. displacement with different loading directions. 

It can be seen that both the original design and Design 1 are highly load-dependent, which produce 

small displacement only for certain loading directions. Both designs may fail to meet the design 

objective if the load is applied along a totally different direction.  

Secondly, we allow the load varying its direction, and to minimize the maximal body 

displacement with respect to all possible load directions. The optimization problem is then given as 

              { }1Minimize   ( ) max ( ),  for all f f θ θ=
x

x   (34) 

It can be seen from Fig. 2 that the new design (which is referred as Design 2), will eliminate the load-

dependency of the original design and Design 1. The maximum body C.G. displacement is 8.2 mm for 

all possible loading directions, which can satisfy the design objective. 

In order to meet the eigenfrequency requirement, thirdly, two optimization processes are carried 

out to maximize the eigenfrequencies of the vessel-mounting system. Design 3 is to maximize the 

fundamental eigenfrequency with an optimization problem defined as 

              1Maximize   ( )f λ=
x

x   (35) 

Design 4 is to maximize the mean-value of all the six eigenfrequencies of the system. The design 

problem is defined as 

             

16

1

1Maximize   ( )
i i

f
λ

−

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑x

x   (36) 

The optimization results for Design 3 and Design 4 are listed in Table 3. It can be seen that the lowest 

eigenfrequency can be increased to more than twice of the original value. We noticed that the optimum 

value obtained in Design 4 are very close to that obtained from Design 3, this is because the lowest 
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eigenfrequency 1λ  has large contribution to the mean-eigenvalue defined in Eq. (36). It will be seen 

later that Design 4 is slightly better than Design 3 in terms of all other objectives considered (refer to 

Table 3). 

Design 4 will also eliminate the load-dependency of the original design for the quasi-static 

loading case as shown in Fig. 2. This can be interpreted by that the eignfrequencies of the system 

represent the system stiffness in a global sense and this characteristic is independent of the external 

loads. Moreover, Design 4 results in smaller body C.G. displacement than Design 3 (see Table 3) since 

it also increased the higher eigenfrequencies of the system. 

Design 5 is to maximize the critical buckling force so as to obtain a most stable vessel-mounting 

system. The optimization problem is given as 

             Maximize   ( ) bf λ=
x

x   (37) 

where bλ  is defined in Eq. (22) and the optimization is for all possible loading directions. Figure 3 

shows the critical buckling force obtained from the design process, and compares it with the critical 

buckling force when the original design or Design 4 is used. It can be seen that the original design 

yields a low buckling force when  is near 90  and 270θ o o . This can be explained as follows: when 

force is applied along these two directions, the mounting system along the forcing direction is much 

stiffer than that of the perpendicular direction, but the system has only a very small resistance to the 

yaw motion of the vessel. This results in a worst stability condition for the system. It can also be seen 

from Fig. 3 that the optimum design can significantly improve the stability by a factor near to 3. It is 

important to note that Design 4 (from the eigenvalue optimization) is as good as the current design 

(Design 5). This indicates that maximizing system eigenvalues can also improve the stability of the 

system. 

Figure 4 illustrates dependency of the critical buckling force on the axial stiffness of the bushings. 

It is seen that the stability of the original design strongly depends on the axial stiffness of the bushings. 

This indicates that when the axial stiffness becomes smaller and smaller, the stability of the system 

will become a critical issue, although the current system does not have a stability problem. It is also 

seen in Fig. 4 that Design 5 results in a buckling force which is linearly dependent of the axial stiffness, 
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but with a much higher minimum value, while Design 4 has almost no dependency on the variation of 

the axial stiffness. In other word, Design 4 is a much better design in terms of absorbing the 

uncertainty of the bushing stiffness.  

From the above study, bearing the objectives reduction approach in mind, we conclude that the 

first three design objectives are consistent and can be included in the same group, say, group 1, 

maximizing the mean eigenfrequency of the system (Design 4) is chosen as a representative objective 

of the group, whose resultant design can meet all the first three design objectives. With this, our design 

task becomes much simpler. 

The last single design task is to minimize the forces transmitted through the bushings. The goal is 

to minimize the maximum bushing force carried by all bushings. This objective is set to reduce the 

failure of the bushing. For this purpose, the design problem is defined as 

} allfor  and 4 3, 2, ,1 ),(max{)( Minmize θθ == iFf ix
x

 (38) 

The resultant design (Design 6) has significantly reduced the maximum bushing forces, for example, 

from 14.7 KN in Design 5 to 7.4 KN in the current design (other comparisons are shown in Table 3). 

However, as can be seen in Table 3, the new design turns out to be a bad design with respect to the 

other three design objectives considered in this paper. It is also seen in Table 3 that the Design 4 is 

good for the first three design tasks, but it is the worst for the last objective (minimize the maximum 

bushing force). Bearing the objectives reduction approach in mind, we can conclude now that the last 

design objective is in a different group, say, group 2, which is conflict with group 1 as defined before. 

There exists some trading-offs between the two groups. In order to meet the requirements of 

multidisciplinary objectives by one design, we define an optimization problem, which constraints the 

maximum force transmitted through each bushing as 11 KN and to maximize the mean-eigenvalue 

defined in Design 4, namely, 

16

1

1Maximize   ( )

Subject to  ( ) 11 ,  ( 1, 2,3,4 and for all )
i i

i

f

F KN i

λ

θ θ

−

=

⎛ ⎞
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⎝ ⎠

≤ =

∑x
x

 (39) 
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The final results are listed in Table 2 as Design 7, which has met all design objectives; it is, 

therefore, considered as the final design from the design process.  Figure 5 compares the maximum 

bushing forces obtained for three different designs (Design 4, 6 and 7) in terms of the loading direction. 

Note that different design requirements may result in a different design decision. However, the process 

proposed in this paper is general enough to deal with various design requirements. 

Table 2 summarizes the results for all design cases considered in this example. Table 3 

summaries the objective values obtained for different designs. 

4.3 Reliability assessment 

It is crucial to provide a reliability assessment for the optimal design. In this study, only the 

reliabilities with respect to the four design variables )4 ,3 ,2 ,1( , =iiα  are considered. Assume that all 

four design variables are normally distributed with the same standard deviation of 5 degrees. The 

mean values of these design variables are the optimization results of Design 7. Figure 6 shows an 

example probability density distribution of the first design variable. 

We then calculated the design reliabilities for all four objectives defined in this example, namely, 

body C.G. displacement, fundamental eigenfrequency, critical buckling force, and the maximum 

bushing force. Firstly, we assume that the example EMS will fail if the body C.G. goes a distance 

greater than 20 mm. The probabilistic performance measure is then defined as 

 1
20 mm( ) 1G

d
= −X  (40) 

The probability of failure fp  is next obtained by using the Monte Carlo simulation, which is 0.01 

with the reliability 99.01 =−= fpR . Figure 7 shows the probability density distribution of the body 

C.G. displacement. The result indicates that the system response in terms of the body C.G. 

displacement has 99% reliability if the optimum design is used. 

By the same way, the reliability for the first eigenfrequency being greater than 10 Hz can be 

obtained as 0.74R = , and the reliabilities for the critical buckling force and maximum bushing force 

can be obtained as 1.0 and 0.57, respectively, for the given design targets. 
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5.  Conclusions and Future Work 

In this paper, a systematic approach is developed for the design optimization of a general elastomeric 

mounting system with multidisciplinary design objectives. The design objectives include quasi-static 

response, eigenfrequencies of the mounting system, critical buckling force, and the maximum force 

transmitted through the mounts. Elastic instability of the general mounting system is first time 

considered in the EMS design problems. A general formulation that determines the critical buckling 

force and associated buckling mode has been developed, which can be readily generalized to predict 

the instability of a multi-body system and other similar systems with elastomeric mounts and bushings. 

An objective reduction approach is proposed in this paper as a general method for the 

multidisciplinary design optimization. This approach simplifies a multidisciplinary optimization 

problem by reducing the total number of the design objectives based on the natural characteristics of 

an engineering structure in responding to different physical processes. This approach and the results 

obtained through this approach can be generalized for other similar structural design problems with 

similar multidisciplinary objectives. For instance, the mean-eigenvalue defined in this paper represents 

a set of different objectives in a global sense, and this conclusion can be applied to other structures, 

such as a vehicle suspension system. 

By conducting a real mounting system design problem for a concept vehicle, we conclude that 

maximizing the mean-eigenfrequency of the system yields a design that can meet all design objectives 

in the design problem except the maximum bushing force. A combined design optimization problem 

with the reduced objectives is thereafter considered in order to compromise the conflict design targets 

and achieve the overall design goals. Furthermore, reliability analyses are conducted to assess the 

reliability of the final design for considering uncertainties of the parameters in the EMS design 

problem.  

Future work will further consider the flexibility of the body and the base, as well as to conduct 

reliability based design optimization for more general design problems. 
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Figure 1. Rigid body on elastomeric mounts  

 

 

Figure 2. Load-dependent and Load-independent designs 

 

 

Figure 3. Comparison of critical buckling force in different designs 
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Figure 4. Comparison of critical buckling force in different designs by considering variation of 
bushing axial stiffness 

 

Figure 5.   Comparison of maximum bushing force with different designs 

 

     
                     a) Bushing angle probabilistic distribution       b) C.G. displacement probabilistic distribution 
 

Figure 6. Design variable and response probabilistic distributions 
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Table 1. Bushing locations 

 X(mm) Y(mm) Z(mm)
Body C.G. 0 0 0 
Bushing 1 -459.8 521.5 -77.2 
Bushing 2 -457.0 -352.0 -76.6 
Bushing 3 206.0 520.9 77.4 
Bushing 4 206.2 -372.6 78.0 

 
 

Table 2. Optimum value for different objectives 

Design case Design description / design objectives Optimum angles (deg) 

0 Original design [0.0 0.0 0.0 0.0] 

1 Minimizing the amplitude of the body C.G. 
displacement while  0θ = o  

[83.0 86.8 -81.7 -87.2] 

2 Minimizing the amplitude of the body C.G. 
displacement for arbitrary θ  

[61.6 -28.4 -4.5 85.5] 

3 Maximizing the fundamental eigenfrequency [-53.8 43.7 40.9 -52.7] 

4 Maximizing  the mean value of all the six 
eigenfrequencies 

[-47.7 51.1 41.3 -46.2] 

5 Maximizing the critical buckling force [-81.9 65.3 62.4 -72.3] 

6 Minimizing the maximum bushing force [85.9 69.1 -89.9 72.5] 

7 Maximizing the mean value of all the six 
eigenfrequencies while constraining the maximum 
bushing force transmitted through each bushing 

[24.3 82.3 15.4 -37.7] 

 
 
 

Table 3. Comparison of design objectives with different designs 

                        Design  case 
Objectives 0 1 2 3 4 5 6 7 

Maximum body C.G. 
displacement (mm) 45.1 41.8 8.2∗ 9.1 8.7 22.1 47.4 16.6

1 7.4 7.7 14.9 16.4∗ 16.4∗ 10.6 7.1 ∗4.10

2 16.2 16.6 16.7 16.4 16.8∗ 16.5 16.5 ∗2.16
Natural 

frequencies (Hz) 
3 16.8 21.6 17.4 18.0 17.7∗ 21.8 22.2 ∗1.19

Critical buckling force (MN) 1.2 1.5 2.4 2.6 2.6 ∗6.2  1.0 1.0 

Maximum bushing force 
(KN) 8.6 11.8 11.5 12.9 12.5 14.7 7.4∗  ∗0.11

Note: numbers with (∗ ) are objectives or constraints. 


