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Fluid physics associated with a pitching and plunging airfoil, while critical to the 

development of flapping wing air vehicles, is not adequately understood. To help 

assess the state-of-the-art of engineering predictive tools, we utilize recently obtained 

experimental information based on particle image velocimetry (PIV) in a water tunnel 

from two different facilities to examine the effects of chord Reynolds number, and the 

airfoil shape on the associated flow structures. Two rigid airfoils, SD7003 and flat 

plate, undergoing pitching and plunging motion in nominally two-dimensional 

conditions are  investigated with the aid of the original Menter’s Shear Stress 

Transport (SST) turbulence model and a modified version which limits the production 

of turbulence kinetic energy to reduce the build-up of turbulence in stagnation 

regions. We consider two kinematic schemes, a pitching and plunging, and a pure 

plunging motion. For the SD7003 airfoil under pitching and plunging motion, the 

original SST model offers consistently favorable agreement with both PIV 

measurements. For the pure plunging SD7003 airfoil case, depending on the 

turbulence characteristics including those caused the motion of the wing, and the 

implied eddy viscosity level, qualitatively different flow structures are observed 

experimentally and computationally. The flat plate creates flow fields insensitive to the 

Reynolds number, and quite different from those around the SD7003 airfoil, due to 

the leading edge effect. 

Nomenclature 

A    = pitching amplitude, in degrees 

CL    = airfoil lift coefficient per unit span 

𝐶𝐿,fp,10𝐾,max/mean  = max/mean flat plate lift coefficient per unit span at 𝑅𝑒 = 1×10
4
, 

c    = airfoil chord (=152.4mm) 

f    = airfoil oscillation pitching/plunging frequency 

h    = plunging position as function of time 

h0    = non-dimensional plunging amplitude 

k    = reduced frequency of pitch or plunge, 𝑘 = 2𝜋𝑓𝑐 (2𝑈∞)   
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Re    = Reynolds number, 𝑅𝑒 = 𝑈∞𝑐 𝜈 , 𝜈 taken as 10
-6

 in SI units for water at 20ºC 

𝑆𝑖𝑗     = strain-rate tensor, symmetric part of the velocity gradient tensor, i.e. 𝜕𝑢𝑖 𝜕𝑥𝑗 = 𝑆𝑖𝑗 + Ω𝑖𝑗  

St    = Strouhal number, 𝑆𝑡 = 2𝑓𝑐ℎ0/𝑈∞ = 2𝑘ℎ0/𝜋 

t/T    = dimensionless time, in fractions of one oscillation period 

T     = airfoil oscillation period, 𝑇 = 1/𝑓 

𝑢𝑖     = velocity vector  

U∞    = free stream (reference) velocity 

𝑥𝑖     = position vector 

xp    = pitch pivot point: fraction of chord downstream from airfoil leading edge 

    = kinematic angle of incidence due to pitch 

0    = mean angle of attack (that is, the constant pitch angle offset from zero) 

e    = total angle of attack from trigonometric combination of pitch and plunge 

𝜙    = phase difference between pitching and plunging; positive  pitch leads 

𝜆    = ratio of pitch-amplitude to plunge-induced angle of attack  

    = vorticity 

Ω𝑖𝑗     = vorticity tensor, anti-symmetric part of the velocity gradient tensor, see strain-rate tensor 

 

 

I. Introduction 

he unsteady aerodynamics of biological flapping flyers has been the subject of numerous investigations 

by biologists and aerodynamicists. As reviewed by Shyy et al.
1
, important features of the aerodynamics 

of biological flapping flyers result from large flapping wing movement and rotation, small size, and low flight 

speeds. When characteristic lengths and velocities become smaller, the Reynolds number decreases. In 

addition, as the wing sizes decrease and flapping wing motion becomes faster, the flow field becomes more 

unsteady and exhibit complex flow structures. Consequently, the flow fields around the flapping wings 

feature the formation of large scale vortex structures, onset of separation and reattachment, near-wall pressure 

and velocity variations, lag between the instantaneous wing orientation, three dimensional effects, and 

development of the corresponding flow field
2,3,4,5,6,7

. Most of natural flapping flyers have a wide range of 

aspect ratio wings and flap at a Strouhal number in the range from 0.2 to 0.4
8
, which suggests that 

fundamental features of vorticity dynamics and time-dependent aerodynamic loads must be accurately 

predicted. As reviewed by Shyy et al.
1
 and reported by Tang et al.

9
, Trizila et al.

11
, and Wang, Birch, and 

Dickinson
9
 for two-dimensional cases, and Shyy and Liu

12
, Shyy et al.

4
, Ramamurti and Sandberg

13
, and 

Aono, Liang, and Liu
14

 for three-dimensional cases, the fluid physics associated with the flapping wing is 

qualitatively and quantitatively influenced by the kinematics as well as the Reynolds number. These studies 

focused on the flow regime of the Reynolds number around 10
2
 and 10

3
, where issues such as turbulence are 

less dominant. In this work, we have a specific focus on the fluid physics at a higher Reynolds number 

regime, between 1×10
4
 and 6×10

4
. 

Overall, the combination of low Reynolds number (𝑅𝑒 < 10
5
) phenomena and large topological changes in 

flow structure encountered in flapping wing flows suggest departure from classical unsteady airfoil theory
15

. 

Critical issues include the role of leading edge and trailing edge vortex shedding
16

, interaction of the time 

dependent wing pressure distribution with shed vortices, and the role of transition in shear layers bounding 

regions of laminar separation
17,18

. Prior to current interest in flapping wing aerodynamics, dynamic stall of 

helicopter blades was perhaps the main application for high-rate unsteady aerodynamics in a nominally two 

dimensional wing, but the Reynolds number is much higher. It was established that the dominant feature of 

dynamic stall is the formation and shedding of a strong vortex-like disturbance near the leading edge. 

McCroskey et al.
19

 pointed out that as the vortex passes over the airfoil surface, it significantly changes the 

chordwise pressure distribution and produces transient forces and moments that are fundamentally different 

from those in static stall. Comprehensive reviews of dynamic stall are given by McCroskey
20

, Carr
21

, and Carr 

and McCroskey
22

. Ohmi et al.
23,24

 experimentally examined the starting flows past a two-dimensional 

oscillating and translating airfoil, finding that the reduced frequency is the dominant parameter of the flow. 

However, they also demonstrated that as the pitching frequency increases, the patterns of the vortex wake are 

dependent on both the reduced frequency and the amplitude. Visbal and Shang
25

 performed numerical 

investigations of the flow structure around a rapidly pitching NACA0015 airfoil at Reynolds number of 10
4
 

by solving the full two-dimensional Navier-Stokes equations. They observed a strong dependence of the 

T 
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primary flow features on the pitch rate and pitch pivot point location. At a fixed axial location, the dynamic 

stall can be delayed with increased pitch rate, suggesting that lags between evolution of flow separation and 

the airfoil motion kinematics should increase with increasing reduced frequency. Choudhuri and Knight
26

 

examined the effects of compressibility, pitch rate, and Reynolds number on the initial stages of two-

dimensional unsteady separation of laminar subsonic flow over a pitching airfoil in the Reynolds numbers 

ranging from 10
4
 to 10

5
, finding that increasing the Reynolds number hastens the appearance of the primary 

recirculating region. 

The afore-mentioned studies focus mostly on transients following the initiation of the airfoil motion from 

the rest. Others considered the periodic or phase-averaged behavior of pitch/plunge motions after initial 

transients have relaxed, typically with a focus on motion kinematics for optimal thrust efficiency. Platzer and 

Jones
27

 discussed theoretical prediction of thrust efficiency compared with flow visualization and thrust 

measurements for an airfoil in pure plunging motion over a wide range of reduced frequencies and reduced 

amplitudes. Young and Lai
28

 used a two-dimensional Reynolds-Averaged Navier-Stokes (RANS) approach to 

study the frequency-amplitude parameter space for optimal thrust efficiency. Lian and Shyy
29

 used RANS 

methods to study the effect of an abstraction of gusts on a pitching/plunging airfoil, with evidence that the 

flapping motion has gust load alleviation potential, and that gusts can cause hysteresis in the force history and 

affect the transition process. Visbal, Gordnier, and Galbraith
30

 performed high-fidelity implicit large-eddy 

simulations to investigate three-dimensional unsteady fluid physics around a SD7003 airfoil plunging at 

reduced frequency of 3.93. 

Lentink and Gerritsma
31

 considered different airfoil shapes numerically to investigate the role of shapes 

on the aerodynamic performance. They computed flow around hovering airfoils at 𝑅𝑒  = 𝑂(102) , and 

concluded that the thin airfoil with aft camber outperformed other airfoils including the more conventional 

airfoil shapes with thick and blunt leading edges. 

In this paper we conduct an extended investigation of previous studies by Kang, et al.
32

, and Ol, et al.
33

. 

We study the numerical modeling aspects on the flow field of nominally two-dimensional airfoils undergoing 

combined pitching and plunging at Reynolds numbers 1×10
4
, 3×10

4
,
 
and 6×10

4
. The two different sets of 

kinematics represent a weak dynamic stall (under combined pitching-plunging) and a stronger dynamic stall 

(under pure plunging), respectively. Two different foils are considered: the SD7003 airfoil and a flat plate 

with 2.3% thickness. Experimental and computational flow field results are compared: two versions of 

Menter’s Shear Stress Transport (SST) turbulence closures for two-dimensional RANS computations, and 

phase-averaged Particle Image Velocimetry (PIV) measurements. The focus of the investigation is (i) to 

understand the fluid physics observed in the experiments, (ii) to qualitatively and quantitatively ascertain the 

performance of RANS computations, aimed at aiding engineering design, and (iii) to probe the implications 

of the Reynolds number, kinematics, and airfoil shapes. The experiments were recently obtained in two 

different facilities, one at the Air Vehicle Directory of the Air Force Research Laboratory (AFRL) and the 

other at Department of Aerospace Engineering of the University of Michigan (UM). The consistency and 

inconsistency of the experimental as well as computational endeavors offer significant opportunities for us to 

probe the modeling and experimental implications, and the interplay between fluid physics and geometry and 

pitch-plunge motion under different Reynolds number. 

 

 

II. Experimental, and Computational Setup 

A. Experimental Approach 

Experimental data are obtained through 2-component digital particle image velocimetry (DPIV) 

experimental technique from both facilities: AFRL Horizontal Free-surface Water Tunnel (HFWT) and 

University of Michigan Low-Turbulence Water Channel, see Ol et al.
33

, and Baik et al.
34

, for the detailed 

discussion on the experimental setup, respectively. The SD7003 airfoil model, and flat plate model with 

rounded leading and trailing edge are mounted less than 1 mm from the wall in order to minimize the three-

dimensional effect. The model used in HFWT has approximately 15 cm shorter span due to shorter test 

section width. The main difference between the two facilities is in the model mounting scheme which brought 

different levels of tunnel free-surface and blockage effects. A short comparison between the two facilities is 

tabulated in Table 1. 
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Table 1. Similarity and differences between the two facilities (UM Water Channel and AFRL HFWT). 

  UM Water Channel AFRL HFWT 

Test section height (cm) 61 61 

Test section width (cm) 61 46 

SD7003 airfoil chord (cm) 15.2 15.24 

SD7003 airfoil span (cm) 60.0 45.7 

Flat plate chord (cm) 15.2 15.24 

Flat plate span (cm) 60.1 45.7 

Wall-to-airfoil gap (cm) < 0.1 < 0.1 

Particle seeding 3 micron diameter TiO2 2~3 micron diameter TiO2 

Freestream turbulence intensity < 1% 0.4 – 0.5% 

Model mounting scheme 

Wall-to-endplate vertical 

cantilevered mount with endplate 

just below the water surface 

Wall-to-wall horizontal mount 

with vertical support rods at the 

center of test section 

 

 

B. Computational Approach 

The governing equations for the numerical simulation are the RANS equations coupled with Menter’s 

SST model
37, 38

, and the continuity equation for incompressible flow, 

𝜕

𝜕𝑥𝑖
 𝑢𝑖 = 0  

𝜕

𝜕𝑡
  𝑢𝑖 +

𝜕

𝜕𝑥𝑗
 𝑢𝑗𝑢𝑖 = −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
  𝜈 + 𝜈𝑡 

𝜕𝑢𝑖

𝜕𝑥𝑗
    

𝜈𝑡 =
𝑎1𝑘

max 𝑎1𝜔, S 𝐹2 
  

𝜏𝑖𝑗 = 𝜌𝜈𝑡  
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
 −

2

3
𝜌𝑘𝛿𝑖𝑗   

𝜕𝑘

𝜕𝑡
 +

𝜕

𝜕𝑥𝑗
 𝑢𝑗𝑘 = 𝑃 𝑘 − 𝛽∗𝜔𝑘 +

𝜕

𝜕𝑥𝑗
  𝜈 + 𝜍𝑘𝜈𝑡 

𝜕𝑘

𝜕𝑥𝑗
   (1) 

𝜕𝜔

𝜕𝑡
 +

𝜕

𝜕𝑥𝑗
 𝑢𝑗𝜔 = −

𝛾

𝜈𝑡

𝜏𝑖𝑗

𝜌

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝛽𝜔2 +

𝜕

𝜕𝑥𝑗
  𝜈 + 𝜍𝜔𝜈𝑡 

𝜕𝜔

𝜕𝑥𝑗
    

where 𝑎1, 𝛽, 𝛽∗, 𝛾, 𝜍𝑘 , 𝜍𝜔 ,𝐹2 are defined as in Menter’s SST formulation
37

, ui is the velocity component in 

the i
th

 direction, xi is the i
th

 component of the position vector, t is time, 𝜌 is density, p is pressure, 𝜈 is the 

kinematic viscosity, 𝜈𝑡  is the eddy viscosity, 𝑆 =  2𝑆𝑖𝑗 𝑆𝑖𝑗  is the invariant measure of the strain rate. 

Compared to Menter’s original SST turbulence model a limiter has been built in to the production term, 𝑃 𝑘 , in 

the turbulence kinetic energy (TKE) equation, Eq. (1), as 

 

𝑃𝑘 = 𝜇𝑡
𝜕𝑢𝑖

𝜕𝑥𝑗
 
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
 , 

𝑃 𝑘 = min 𝑃𝑘 , 10 ⋅ 𝛽∗𝜌𝑘𝜔 , 
 

where 𝑃𝑘  is the production term in the original SST formulation, to prevent the build-up of turbulence in 

stagnation regions. Another change is the use of invariant measure of the strain-rate tensor in the formulation 
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for the eddy viscosity instead of the vorticity magnitude, Ω =  2Ω𝑖𝑗Ω𝑖𝑗 . The strain-rate invariant is 

considered to be a better measure for the fluid deformation, since the Boussinesq approximation is also based 

on the strain-rate. The two differences between the original and the modified SST formulation are 

summarized in Table 2. 

 These equations are solved with the in-house solver Loci-STREAM
39

. Loci-STREAM is a parallelized 

unstructured curvilinear pressure-based finite-volume code with moving grid capabilities. The present 

calculations uses implicit first order time stepping. The convection terms are treated using the second order 

upwind scheme
40, 41

 while pressure and viscous terms are treated using second order schemes. The geometric 

conservation law
42, 43

, a necessary consideration in domains with moving boundaries, is satisfied. 

 
Table 2 Original38 and modified37 SST turbulence model 

 Original SST Modified SST 

Production term of TKE equation 𝑃𝑘 = 𝜇𝑡
𝜕𝑢𝑖

𝜕𝑥𝑗
 
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
  𝑃 𝑘 = min 𝑃𝑘 , 10 ⋅ 𝛽∗𝜌𝑘𝜔  

Eddy viscosity 𝜈𝑡 =
𝑎1𝑘

max 𝑎1𝜔,Ω 𝐹2 
 𝜈𝑡 =

𝑎1𝑘

max 𝑎1𝜔, S 𝐹2 
 

 

 The numerical solutions are computed in open bounded domain with Loci-STREAM on an unstructured 

grid with 46281, and 32204 mixed elements for the SD7003 airfoil, and flat plate, respectively, see Figure 1. 

The outer boundaries of the computational domain are 50 (Figure 1(a1)), and 30 chord lengths apart (Figure 

1(b1)), respectively. The thickness of the flat plate is 2.3% chord length and the leading and trailing edges are 

rounded (radius of 1.15 % chord length). The boundary conditions are as follows: on the airfoil no-slip 

conditions are imposed; the outer boundaries are incompressible inlets; and the inlet turbulence intensity is 

0.5%. The computations are run assuming fully-turbulent, with no attempt to model transition or to prescribe 

the chordwise location of when to turn on the production term in the turbulence model. 

 The spatial and temporal sensitivity studies are shown in Appendix A. 

 

  
(a1) SD7003 airfoil in open bounded domain (a2) Mixed elements near the SD7003 airfoil 

  
(b1) Flat plate airfoil in open bounded domain (b2) Mixed elements near the flat plate 

Figure 1. Computational grid systems: (a) SD7003; (b) Flat plate.  
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C. Case Description 

The motion kinematics time histories are described by 

 

ℎ 𝑡 = ℎ0𝑐 cos 2𝜋𝑡/𝑇  

𝛼 𝑡 = 𝛼0 + 𝐴cos 2𝜋 𝑡/𝑇 + 𝜙   

 

where ℎ is the location of the center of rotation (𝑥𝑝/𝑐 = 0.25) of the airfoil measured normal to the free 

stream, ℎ0 is the normalized amplitude of the plunge motion, 𝑇 is the motion physical period, 𝑐 is the airfoil 

chord, 𝛼 is the geometrical angle of attack (AoA) measured relative to the incoming free stream with velocity, 

𝑈∞ , 𝛼0 is the mean angle of attack, and 𝐴 is the amplitude of the pitching motion, see Figure 2. 

 

 
Figure 2. Schematic of SD7003 airfoil positions in downstroke (RED) and upstroke (BLUE), and the definition of 

the free stream direction and the effective angle of attack (effective AoA) due to plunging motion. 

 

The effective angle of attack, 𝛼𝑒 , is a linear combination of the pitching angle and the induced angle due 

to plunging motion, and can be written as, 

 

𝛼𝑒 = 𝛼0 + 𝜆 arctan 𝜋𝑆𝑡 cos 2𝜋 𝑓𝑡 + 𝜙  + arctan 𝜋𝑆𝑡 sin 2𝜋𝑓𝑡   
 

where 𝑆𝑡 = 2𝑓𝑐ℎ0 𝑈∞  is the Strouhal number, and 𝜆 = 𝐴 arctan max ℎ  𝑈∞    is the ratio of the maximum 

effective angles of attack of the pitching motion to the plunge motion, where ℎ  is the plunge velocity, see 

Figure 3. The Reynolds number is varied by changing the flow speed, 𝑅𝑒 = 𝑈∞𝑐 𝜈 . It is clear from the 

kinematics that maintaining the same effective angle of attack time history requires a constant Strouhal 

number and constant 𝜆 . Thus, as 𝑅𝑒  varies, the reduced frequency, 𝑘 = 𝜋𝑓𝑐 𝑈∞ = 𝜋𝑆𝑡  2ℎ0   , and the 

Strouhal number are kept constant by varying the physical frequency proportionately. 

The choice of reduced frequency, 𝑘 = 0.25, is motivated in part by cruise-type conditions for flapping 

flight of bird. Although the corresponding Strouhal number, 𝑆𝑡 = 0.08, is below the range for maximum 

propulsion efficiency
46

, the present flow conditions are on the upper-end of the dynamic-stall literature, where 

the main application is helicopter blade aerodynamics
20,47

, and for which the traditional analytical or 

phenomenological models in aeronautics tend to focus. As is often taken in applications motivated by 

maximizing propulsive efficiency of pitching and plunging motion
46

, pitching leads plunging by one quarter 

of motion period: phase 𝜙 = 0.25 and thus the airfoil “feathers”, with the geometric pitching angle partially 

cancelling the plunge-induced angle of attack, arctan ℎ 𝑈∞  . The pitching amplitude, 𝐴, is computed from 

the value of  λ= 0.6 for the combined pitching and plunging case, while for the pure plunging case, λ =0. The 

total effective angle of attack time-trace, 𝛼𝑒 , straddles the static stall value of  approximately 11º 
48

; this is 

just the sum of the pitching and plunging angles with appropriate phase shift. 

Effective AoA 

x1 

Pitching and plunging 
x2 

ℎ(𝑡) 
𝑈∞  

ℎ  𝑡  
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Figure 3. Time history of effective angle of attack (e) for the pitching and plunging kinematics (red line) and the 

pure plunging kinematics (blue line). 

 

 

 

 

III. Results and Discussion 

A. Flow around a SD7003 Airfoil at 𝑹𝒆 = 6×10
4
 

1. Pitching and Plunging Case 

In the previous study
32

 the numerical solution using the original SST turbulence closure showed an 

excellent agreement with the experimental data (UM) at this Reynolds number qualitatively, and 

quantitatively. 

Figure 4 shows the normalized mean streamwise velocity, 𝑢1/𝑈∞ , contours along with planar streamlines 

from the numerical and the experimental results from the UM and AFRL at 𝑡/𝑇 = 0.00, 0.25, 0.42, 0.50, and 

0.75, respectively. The numerical solution with the modified SST turbulence model overpredicts the 

separation leading to generation of vortical structures at the bottom of the downstroke, 𝑡/𝑇 = 0.50, which is 

not observed in both PIV data. This is also illustrated in Figure 5, which shows 𝑢1/𝑈∞ -component velocity 

profiles at four different time instants at constant 𝑥1/𝑐 = 0.25. 

The overprediction of separation when using the modified SST model could be explained by the use of a 

limiter for the production term in the TKE equation. The build-up of turbulence near stagnation flow region is 

prevented, reducing the eddy viscosity in the RANS model. Figure 6 shows the local Reynolds number 

contours defined as 𝑈∞𝑐  𝜈 + 𝜈𝑡   from the numerical computations using both SST turbulence closures at 

𝑡/𝑇 = 0.25 for the pitching and plunging SD7003 airfoil. The limiter of the production in the TKE equation, 

see Eq. (1), enforced in the modified SST model results in substantially lower eddy viscosity, and hence 

higher local Reynolds number. Using the original SST turbulence model the viscosity ratio is at maximum 

near the leading edge. For the modified SST model, by limiting the production of TKE the local Reynolds 

number near the leading edge of the airfoil is close to 6×10
4
, i.e. the amount of eddy viscosity in this region 

of the flow is small. Hence the flow tends to separate near the leading edge which is observed at 𝑡/𝑇 = 0.42 

and 0.50 in Figure 4. 

On the other hand, the agreement between the two experimental measurements is excellent, both in 

streamwise velocity contours as well as in streamlines. During the downstroke motion the numerical solution 

with the modified SST model tends to predict larger reversed flow regions. The flow exhibits separation 

between the center of the downstroke and the bottom of the downstroke (Figure 4), corresponding to the 

maximum instantaneous effective angle of attack of 13.6°. Note that this value for the effective angle of 

attack is well beyond the static stall angle of 11°. 
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Modified SST Original SST UMPIV AFRL PIV 𝑡/𝑇 

    

0.00 

    

0.25 

    

0.42 

    

0.50 

    

0.75 

Figure 4. 𝒖𝟏/𝑼∞  contours and the instantaneous streamlines over pitching and plunging SD7003 airfoil at 𝒌 = 

0.25, 𝝀 =0.6, and at 𝑹𝒆 = 6×104 from numerical (Modified SST, Original SST), and experimental (UM, AFRL) 

results.  

 
Figure 5. 𝒖𝟏/𝑼∞  profiles from numerical (Modified SST, Original SST), and experimental (UM, AFRL) results at 

𝒕 𝑻  = 0.25, 0.33, 0.42, and 0.50 at constant 𝒙𝟏/𝒄 = 0.25 at 𝑹𝒆 = 6×104, 𝒌 = 0.25, 𝝀 =0.6 for the pitching and plunging 

SD7003 airfoil. 
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(a) Original SST (b) Modified SST 

Figure 6 Local Reynolds number contours using (a) the original SST, and (b) the modified SST at 𝒕/𝑻 = 0.25 for 

pitching and plunging SD7003 airfoil at 𝑹𝒆 = 6×104,  𝒌 = 0.25, 𝝀 =0.6. 

 

2. Pure plunging case 

Using the original version of SST turbulence model the computation showed a thinner but open 

separation
32

, however the approach with the modified version of SST model the numerical result is able to 

predict the vortical structure with reattachment at 𝑥1/𝑐 ~ 0.8 at 𝑡/𝑇 = 0.25. 

 

 

 
Modified SST Original SST UMPIV AFRL PIV 𝑡/𝑇 

    

0.00 

    

0.25 

    

0.50 

    

0.75 

 

Figure 7. 𝒖𝟏/𝑼∞  contours and instantaneous streamlines over pure plunging SD7003 airfoil at 𝒌 = 0.25, 𝝀 =0.0, 

and at 𝑹𝒆 = 6×104 from numerical (Modified SST, Original SST), and experimental (UM, AFRL) results. 

 

Figure 7 shows the 𝑢1/𝑈∞  contour plots and the instantaneous streamlines from the numerical 

computation and the experimental measurements from the UM and AFRL water tunnels for the pure plunging 

SD7003 airfoil at 𝑡/𝑇  = 0.00, 0.25, 0.50, and 0.75. The agreement between the computational and the 

experimental approaches is favorable when the flow is largely attached. When the flow exhibits massive 

separation, for example at 𝑡/𝑇  = 0.50, the experimental and computational results show noticeable 

differences in phase as well as the size of flow separation. The details of the vortical structures differ in all 

results; however, it is interesting to observe that the original SST model matched the PIV results from the UM 

facility better, while the modified SST model produced result more consistent with that from the AFRL 
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facility. The consistent/inconsistent results appeared at 𝑡/𝑇  = 0.50 where a smaller vortical structure is 

evinced on the suction side of the airfoil in the UM facility, while in AFRL data such a vortical structure is 

hardly present. 

As already discussed, the flow tends to separate more substantially under the modified SST model than 

under the original SST model due to different eddy viscosity levels predicted. The exact cause of the 

difference between the two PIV data is not clear right now. Based on the computational assessment, the 

effective inlet turbulence level of the two tunnels associated with the wing motion may be different. The 

differences in the experimental setup, i.e. mounting schemes, and tunnel dimensions, are tabulated in Table 1. 

 

 

B. Reynolds Number Effect on Pitching and Plunging SD7003 Airfoil: Re = 1×10
4
, 3×10

4
, and 6×10

4
 

The pitching and plunging case is conducted at three different 𝑅𝑒: 1×10
4
, 3×10

4
 and 6×10

4
 to assess the 

effect of Reynolds number on the fluid physics. 

At 𝑅𝑒 = 3×10
4
, the comparison between the experiment (UM) and the numerical simulations are similar to 

that at 𝑅𝑒 = 6×10
4
: the numerical simulation with the modified SST closure predicts flow separation similar 

to the structures shown in Figure 6, while the experimental data, and numerical computation using the 

original version of SST show mostly attached flow, see Figure 10. The reason behind this discrepancy can be 

explained by the same reasoning used for 𝑅𝑒 = 6×10
4
 case; the modified SST model limits the production of 

turbulence kinetic energy hence reducing the eddy viscosity. 

 

 
Figure 8 𝒖𝟏/𝑼∞  profiles from the numerical (Modified SST, Original SST), and experimental (UM) results at 𝒕 𝑻  

= 025, 0.33, 0.42, and 0.50 at constant 𝒙/𝒄 = 0.50 at 𝑹𝒆 = 3×104, 𝒌 = 0.25, 𝝀 =0.6 for the pitching and plunging 

SD7003 airfoil. 

 

At 𝑅𝑒 = 1×10
4
, numerical simulation predicts a layer of reversed flow throughout the length of the chord. 

The experimental data acquired at UM facility show reversed flow at the wall and a boundary layer of similar 

thickness. Both numerical prediction of the flow separation near the leading edge agrees well with the 

experimental data. In the contour plots of the experimental data, multiple vortical structures are observed 

during middle of downstroke, see Figure 9(c, e), which are not present in other Reynolds numbers considered. 

Figure 9(a) plots 𝑢1/𝑈∞ -component velocity profiles at four time instants at a constant downstream location 

as indicated. At 𝑡/𝑇  = 0.25 and 0.33 the 𝑢1/𝑈∞ -component velocity profile of the experimental data 

overshoots when recovering back to the freestream velocity magnitude. This overshoot could be explained by 

noticing the presence of the small vortical structures shown in the 𝑢1/𝑈∞  contour plots. Furthermore, at 𝑅𝑒 = 

1×10
4
, the flow from both SST models evinces similar 𝑢1/𝑈∞  velocity profiles with reversed flow regions 
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near the airfoil. At this Reynolds number the sum of eddy viscosity and laminar viscosity is comparable in the 

results using both turbulence closures due to weaker turbulence strength. 

Figure 10 shows the time histories of lift coefficient for the Reynolds numbers considered using the 

original SST turbulence model. The influence of the Reynolds number on the global trend and the maximum 

lift coefficient is slight, however at 𝑅𝑒 = 1×10
4 

the lift drop between 𝑡/𝑇 = 0.42 and 0.75 is noticeably 

different than at other Reynolds numbers. This is because at 𝑅𝑒 = 1×10
4
 flow separates on the suction side of 

the airfoil while at 𝑅𝑒 = 6×10
4
 and 3×10

4
 the flow is mostly attached. 

 

 
(a) 𝑢1/𝑈∞  profiles from numerical (Modified SST, Original SST), and experimental (UM) results at constant 

𝑥1 𝑐 = 0.25 at 𝑡/𝑇 = 0.25, 0.33, 0.42, and 0.50.  

 

  
(b) 𝑢1/𝑈∞  contour at 𝑡/𝑇 = 0.25, original SST (c) 𝑢1/𝑈∞  contour at 𝑡/𝑇 = 0.25, UMPIV 

  

  
(d) 𝑢1/𝑈∞  contour at 𝑡/𝑇 = 0.33, original SST (e) 𝑢1/𝑈∞  contour at 𝑡/𝑇 = 0.33, UMPIV 
Figure 9. 𝒖𝟏/𝑼∞  profiles and contours from numerical (Modified SST, Original SST), and experimental (UM) 

results at 𝑹𝒆 = 1×104, 𝒌 = 0.25, 𝝀 =0.6for the pitching and plunging SD7003 airfoil. 
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(a) lift coefficient (b) drag coefficient 
Figure 10. Time histories of (a) lift coefficient and (b) drag coefficient for the pitching and plunging SD7003 airfoil 

for Re = 1×104, 3×104, and 6×104 (k = 0.25, λ=0.6). Note that numerical solution is obtained using the original SST 

turbulence model. 

 

 

 

 

C. Flow around Flat Plate at 𝑹𝒆 = 1×10
4

, 3×10
4
, and 6×10

4
 

1. Pitching and plunging case 

 The pitching and plunging case for two-dimensional flat plate is conducted at three different 𝑅𝑒: 1×10
4
, 

3×10
4
, and 6×10

4
 numerically, and experimentally (UM). The PIV data at AFRL are only taken at 𝑅𝑒 = 

6×10
4
. Figure 11 shows the comparison of the numerical computation with the PIV measurements at 𝑅𝑒 = 

6×10
4
. Qualitatively all 𝑢1/𝑈∞  contours agree well. In the experiment the leading edge separation, and the 

vortical structure generated as the effective angle of attack increases, has phase delay compared to the 

numerical results as shown by the location of the maximal accelerated flow region at 𝑡/𝑇 = 0.25, and 0.50. 

Furthermore, the leading edge effect overwhelms the difference between turbulence models. 

 The differences between results in Figure 11 using the original and the modified SST turbulence model 

are small. Figure 12 shows the local Reynolds number contours from the computations using both SST 

turbulence closures at 𝑡/𝑇 = 0.25 for the pitching and plunging flat plate. Similar eddy viscosity effects as in 

Figure 6 are observed that the eddy viscosity level in the result using the modified SST model is lower at the 

leading edge compared to the computation using the original version of SST. However, in the critical regions 

above the plate, the two models produce comparable eddy viscosity distributions due to the leading edge 

effect. Consequently, the resulting flow structures from the two models are similar as well. 

 Figure 13 shows the 𝑢1/𝑈∞  profiles along 𝑥2/𝑐 at constant 𝑥1/𝑐 locations on the flat plate at 𝑡/𝑇 = 0.00 

where the both numerical results show the largest reversed flow region, followed by the PIV measurements in 

AFRL. The flow reattaches before 𝑥1/𝑐 = 0.25 in the UM experimental data. The results from all approaches 

agree well in the wake region.  

 At 𝑡/𝑇 = 0.00 when the flow is attached the viscosity plays a role in shaping the normalized streamwise 

velocity profile as shown in Figure 14. In Figure 14 three Reynolds numbers, 𝑅𝑒 = 1×10
4
, 3×10

4
, and 6×10

4
 

have been considered numerically (modified SST) and experimentally in the UM facility. At 𝑥1/𝑐 = 0.25 the 

𝑢1/𝑈∞  profiles from the experiments at 𝑅𝑒 = 6×10
4
 shows attached flow, and at 𝑅𝑒 = 1×10

4
 separated flow. 

On the other hand, when the flow is largely separated as at 𝑡/𝑇 = 0.50, see Figure 15, the influence from the 

Reynolds number is negligible, and the numerical computation using the original SST turbulence closure 

agrees well with the PIV measurements in UM. 
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Modified SST Original SST UMPIV AFRL PIV 𝑡/𝑇 
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0.50 
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Figure 11 𝒖𝟏/𝑼∞  contours around the pitching and plunging flat plate at 𝒌 = 0.25, 𝝀 = 0.6, and 𝑹𝒆 = 6×104 from 

numerical (Modified SST, Original SST), and experimental (UM, AFRL) results at 𝒕/𝑻 = 0.00, 0.25, 0.50, and 0.75. 

 

 

 

 

 

 

  
(a) Original SST (b) Modified SST 

Figure 12 Local Reynolds number contours using (a) the original SST, and (b) the modified SST at 𝒕/𝑻 = 0.25 for 

pitching and plunging flat plate at 𝑹𝒆 = 6×104,  𝒌 = 0.25, 𝝀 =0.6. 
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Figure 13 𝒖𝟏/𝑼∞  profiles from the numerical (Modified SST, Original SST), and experimental (UM, AFRL) 

results at constant 𝒙𝟏 𝒄  = 0.125, 0.25, 0.50, 0.75, and 0.25 behind the trailing edge at 𝒕/𝑻 = 0.00 at 𝑹𝒆 = 6×104, 𝒌 = 

0.25, 𝝀 =0.6 for the pitching and plunging flat plate. 

 

 

 

 

 
Figure 14 𝒖𝟏/𝑼∞  profiles from the numerical (original SST) and experimental (UM) results at constant 𝒙𝟏 𝒄  = 

0.125, 0.25, 0.50, 0.75, and 0.25 behind the trailing edge at 𝒕/𝑻 = 0.00 at 𝑹𝒆 = 1×104, 3×104, and 6×104, 𝒌 = 0.25, 𝝀 

=0.6 for the pitching and plunging flat plate. 
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Figure 15 𝒖𝟏/𝑼∞  profiles from the numerical (original SST) and experimental (UM) results at constant 𝒙𝟏 𝒄  = 

0.125, 0.25, 0.50, 0.75, and 0.25 behind the trailing edge at 𝒕/𝑻 = 0.50 at 𝑹𝒆 = 1×104, 3×104, and 6×104, 𝒌 = 0.25, 𝝀 

=0.6 for the pitching and plunging flat plate. 

 

 

The time histories of lift coefficient, and drag coefficient from the numerical computations (original SST) 

are shown in Figure 16. Both coefficients are on top of each other for 𝑅𝑒 = 3×10
4
, and 6×10

4
 indicating that 

the Reynolds number effect is minimal for these kinematics. At 𝑅𝑒 = 1×10
4
 the maximum of lift coefficient 

around 𝑡/𝑇 = 0.25 occurs slightly earlier and is smaller in magnitude: 𝐶𝐿, fp,10K, max= 2.50, than for 𝑅𝑒 = 6×10
4
 

(𝐶𝐿, fp,60K, max= 2.55), and 3×10
4
 (𝐶𝐿, fp,60K, max=2.55). Similarly the time histories of drag coefficient for 𝑅𝑒 = 

3×10
4
, and 6×10

4
 coincide whereas for 𝑅𝑒 = 1×10

4
 the drag is slightly larger between 𝑡/𝑇 = 0.25 to 1.0. 

 

 

  
(a) lift coefficient (b) drag coefficient 

Figure 16. Time histories of (a) lift coefficient and (b) drag coefficient for a flat plate at 𝒌 = 0.25, and 𝝀 = 0.6 for 𝑹𝒆 

= 1×104
, 3×104, and 6×104. Note that numerical solution is obtained using the original SST turbulence model. 
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2. Pure plunge case  

 

 

 
Modified SST Original SST UMPIV 𝑡/𝑇 
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Figure 17 𝒖𝟏/𝑼∞ contours and over pure plunging flat plate at k = 0.25, λ = 0.0, and Re = 6×104, 𝒌 = 0.25, 𝝀 =0.0 

from numerical (Modified SST, Original SST), and experimental (UM) results at t/T = 0.00, 0.25, 0.50, and 0.75. 

 

Figure 17 shows the 𝑢1/𝑈∞  contour plots from the numerical computations and the experimental 

measurement (UM) for the pure plunging flat plate at 𝑡/𝑇 = 0.00, 0.25, 0.50, and 0.75 at 𝑅𝑒 = 6×10
4
. When 

the flat plate plunges down, the effective angle of attack increases to its maximum at 𝑡/𝑇  = 0.25 and 

generates a large vortical structure enveloping the suction side of the flat plate. This vortical structure serves 

as a mechanism to enhance lift by its lower pressure region in the core. The Reynolds number effect for the 

pure plunging case is minimal suggesting that the flow and the aerodynamic loading are either dominated by 

the given kinematics or the shape of the airfoil. 

The 𝑢1/𝑈∞   velocity profiles from two SST turbulence models agree with each other, and are close to the 

experimental results from the UM facility at 𝑅𝑒 = 6×10
4
 for the pure plunging flat plate at different chord 

locations at 𝑡/𝑇 = 0.50, see Figure 18. As also the 𝑢1/𝑈∞  contour plots in Figure 17 suggest the flow is 

characterized and the difference between the two SST models are overwhelmed by the massive separation 

due to the sharp leading edge, and the pure plunging kinematics with effective angles of attack exceeding the 

static stall values (Figure 3). 

The Reynolds number effect is also minimal for the pure plunging flat plate between 𝑅𝑒 = 1×10
4
 and 𝑅𝑒 = 

6×10
4
, as shown in Figure 19. Using the original SST turbulence model two numerical solutions at 𝑅𝑒 = 

1×10
4
 and 𝑅𝑒 = 6×10

4
, respectively, have been computed and the resulting 𝑢1/𝑈∞   velocity profiles at 𝑡/𝑇 = 

0.50 show that the difference between two profiles at various chordwise locations is small. 

Figure 20 shows the time history of force coefficients for the pure plunging flat plate at 𝑅𝑒 = 1×10
4
, and 

6×10
4
 from the numerical computation using the original SST turbulence closure. The flow at 𝑅𝑒 = 3×10

4
, 

both resulting aerodynamic forces, as well as flow structures are similar to the flow at 𝑅𝑒 = 6×10
4
. Both lift 

and drag coefficients are negligibly affected by the Reynolds number variation. The lift coefficient reaches its 

maximum at 𝑡/𝑇 = 0.25, decreases, and starts to recover at 𝑡/𝑇 = 0.75. Although the maximum lift coefficient 

is larger than the pitching and plunging case, the mean lift/drag coefficient is smaller/larger. 
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Figure 18 𝒖𝟏/𝑼∞ profiles from the numerical (Modified SST, Original SST), and experimental (UM) results at 

constant x_1⁄c = 0.125, 0.25, 0.50, 0.75, and 0.25 behind the trailing edge at t/T = 0.50 at 𝑹𝒆 = 6×104, 𝒌 = 0.25, 𝝀 

=0.0 for the pure plunging flat plate. 

 

 

 

 
Figure 19 𝒖𝟏/𝑼∞ profiles from the numerical (original SST) results at constant x⁄c = 0.125, 0.25, 0.50, 0.75, and 

0.25 behind the trailing edge at t/T = 0.50 at 𝑹𝒆 = 1×104, and 6×104, 𝒌 = 0.25, 𝝀 =0.0 for the pure plunging flat 

plate. 
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D. Shape Effect on Aerodynamics: SD7003 versus Flat Plate 

In order to investigate the effects of airfoil shapes in the case of pure plunging, and pitching and plunging 

motion on the time histories of lift coefficient, the comparisons are shown in Figure 21 for 𝑅𝑒 = 1×10
4
, 

6×10
4
. Note that the lift coefficients are obtained using the original SST turbulence model shown in Figure 

21. 

  
(a) pitching and plunging, 𝑅𝑒 = 6×10

4
 (b) pure plunging, 𝑅𝑒 = 6×10

4
 

  
(c) pitching and plunging, 𝑅𝑒 = 1×10

4
 (d) pure plunging, 𝑅𝑒 = 1×10

4
 

Figure 21. Time histories of pitching and plunging, and pure plunging two-dimensional flat plate (blue line), and 

SD7003 airfoil (red line) at 𝒌 = 0.25, and 𝝀 = 0.6 at 𝑹𝒆 = 1×104
, and 6×104, respectively. Results using the original 

SST turbulence models are presented. 

  
(a) lift coefficient (b) drag coefficient 

Figure 20. Time history of (a) lift coefficient and (b) drag coefficient for a two-dimensional flat plate at 𝒌 = 0.25, 

and 𝝀 = 0.6 for 𝑹𝒆 = 1×104
, and 6×104, respectively. Note that numerical solution is obtained using the original SST 

turbulence model. 
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It is clear that the results of the flat plate (blue lines in Figure 21) showed larger lift peaks than those of 

the SD7003 airfoil (red lines in Figure 21) within the range of Reynolds number and airfoil kinematics 

considered in this study. Moreover, it is found that there is remarkable phase delay of peak in the case of pure 

plunging at 𝑅𝑒 = 6×10
4
. This is because the flow separates earlier over the flat plate during downstroke due to 

the sharp leading edge of the flat plate, see Figure 4, and Figure 11. 

Mean and maximum force coefficients are summarized as function of Reynolds number in Appendix B 

(see Figure 23, and in Table 3). The maximum lift is obtained by the flat plate for both kinematics. 

Furthermore, the force coefficients of the flat plate are insensitive to the Reynolds number. It is also 

interesting to note that the mean drag coefficient is lower for the SD7003 airfoil, and the mean lift coefficient 

is larger for the SD7003 airfoil for 𝑅𝑒 = 3×10
4
, and 6×10

4
 

 

IV. Summary and Conclusion 

This paper addresses modeling aspects of the fluid physics associated with two specific airfoils: a SD7003 

airfoil, and a two-dimensional flat plate with 2.3% thickness undergoing two sets of wing kinematics (i.e., 

pitching and plunging, and pure plunging) at Re range from 1×10
4
 to 6×10

4
 and k of 0.25. It is found that two-

dimensional RANS computations with the Menter’s original and modified SST turbulence models provided 

qualitatively, and quantitatively - depending on the flow conditions - good predictions in terms of velocity 

fields compared to two-dimensional phase-averaged PIV data in the water channel from two different 

facilities. 

Our efforts are highlighted as follows:  

i) Regarding the impacts of turbulence models on flow field around the SD7003, when the flow is 

attached, such as under pitching and plunging motion, the original formulation of SST turbulence closure 

offers consistently favorable agreement with the experimental results, while the modified SST turbulence 

model overpredicts flow separation. This can be due to a limiter in the production term of the turbulence 

kinetic energy equation reducing the build-up of turbulence near stagnation point regions, reducing the eddy 

viscosity. On the other hand, if the flow exhibits massive separation, the modified SST turbulence model 

shows better prediction of the experimental results, such as capturing flow reattachment. Finally for the flat 

plate cases, the leading edge effects overwhelms the difference between turbulence models. 

ii) For pitching and plunging case the flow over the SD7003 airfoil is attached in both experimental data, 

and the numerical data using the original SST turbulence model at 𝑅𝑒 = 3×10
4
, and 6×10

4
. At 𝑅𝑒 = 1×10

4
 

separation has been evinced from the leading edge both experimental as well as computational approaches.  

iii) For pure plunging SD7003 airfoil case, depending on the turbulence characteristics including those 

caused the motion of the wing, and the implied eddy viscosity level, qualitatively different flow structures are 

observed experimentally and computationally. 

iv) In case of the flow over the flat plate in all approaches the geometrical effect at the sharp leading edge 

of the flat plate is dominant, and triggers substantial separation from the leading edge for both kinematics. 

v) Regarding the comparison between SD7003 airfoil and flat plate, we have found that the mean/max lift 

coefficient of the flat plate is more insensitive to the variation of Reynolds number than the SD7003 airfoil. 

Although the maximum lift coefficient of flat plate is larger for all Reynolds numbers considered than that of 

SD7003 airfoil cases, the mean lift coefficient varies more strongly with the Reynolds number. There is 

significant difference in instantaneous lift coefficient, and flow structures between both airfoils under the 

same kinematics and flow conditions. 

In summary, the airfoil shape plays an important role to determine the flow features generated by the 

pitching and plunging, and pure plunging kinematics. Due to the larger leading edge radius of the SD7003 

airfoil, the effects of Reynolds number are obviously observed. Furthermore, for pitching and plunging case, 

more attached flow feature are present at higher 𝑅𝑒, whereas we observe flow separations from the leading 

edge observed at lower 𝑅𝑒. For pure plunging case a leading edge separation is seen at all Reynolds numbers 

In addition, the discrepancies shown in the previous work
32

 between the experimental and computational 

results at high 𝑅𝑒 that the computation could not capture the flow reattachment has been corrected by using 

the modified version of SST turbulence model. 
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Appendix 

A. Spatial and Temporal Sensitivity Study 

Spatial and temporal sensitivity tests for the SD7003 airfoil are performed by Kang et al.
32

 and the 

solution for the pitching and plunging SD7003 airfoil with 46281 cells using 𝑇/𝑑𝑡 = 480 is shown to be grid 

and time independent. In all computations the time step of 𝑇/𝑑𝑡 = 480 have been used. For the pitching and 

plunging flat plate the spatial sensitivity test is investigated at 𝑅𝑒 = 6×10
4
, 𝑘 = 0.25, and 𝜆 = 0.6. To assess 

the grid sensitivity time histories of lift coefficient on the baseline (9624 cells), finer (32204 cells) and the 

finest (65904 cells) grids are compared in Figure 22 using a time step of 𝑇/𝑑𝑡 = 480. All three solutions stay 

within maximum relative error of 2%, with the relative error between the finer and the finest grid smaller than 

between the baseline and the finer grid. Based on this observation, the finer grid has been chosen for all 

subsequent computations for the flat plate. 

 

 

 
Figure 22. Time histories of the lift coefficients using the baseline (9624 cells), finer (32204 cells), and the finest 

(65904 cells) grid using 𝑻/𝒅𝒕 = 480 over pitching and plunging two-dimensional flat plate at 𝑹𝒆 = 6×104, 𝒌 = 0.25, 

and 𝝀 = 0.6. 

 

 

B. Mean and Maximum Force Coefficient for the SD7003, and Flat Plate 

 
Table 3 Mean and maximum lift and drag coefficients for the investigated Reynolds numbers for the SD7003 

airfoil and the flat plate for the pitching and plunging, and the pure plunging at 𝒌 = 0.25 using the original SST 

turbulence closure. 

Airfoil Kinematics 𝑅𝑒  CL, mean  CL, max  CD, mean  CD, max 

SD7003 Pitching and Plunging 1×10
4
 0.70 1.23 0.032 0.11 

SD7003 Pitching and Plunging 3×10
4
 0.84 1.30 0.011 0.14 

SD7003 Pitching and Plunging 6×10
4
 0.89 1.34 0.0039 0.15 

SD7003 Pure Plunging 1×10
4
 0.69 2.16 0.089 0.30 

SD7003 Pure Plunging 3×10
4
 0.76 2.15 0.074 0.31 

SD7003 Pure Plunging 6×10
4
 0.79 2.23 0.063 0.32 

Flat plate Pitching and Plunging 1×10
4
 0.75 1.86 0.068 0.11 

Flat plate Pitching and Plunging 3×10
4
 0.77 1.90 0.061 0.10 

Flat plate Pitching and Plunging 6×10
4
 0.77 1.92 0.057 0.10 

Flat plate Pure Plunging 1×10
4
 0.70 2.50 0.12 0.34 

Flat plate Pure Plunging 3×10
4
 0.71 2.53 0.12 0.33 

Flat plate Pure Plunging 6×10
4
 0.73 2.55 0.12 0.33 
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(a) pitching and plunging, mean (b) pitching and plunging, max 

  
(c) Pure plunging, mean (d) Pure plunging, max 

Figure 23 Mean and maximum lift and drag coefficients as function of Reynolds number for the SD7003 airfoil 

and the flat plate for the pitching and plunging, and the pure plunging at 𝒌 = 0.25 using the original SST 

turbulence closure. 
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