
Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

A98-32468
AIAA-98-2790

The Michigan Aero Instructional Software
Project — TODOR Meets the World-Wide

Web

Kenneth G. Powell*
Vincent T. CoppoW

Department of Aerospace Engineering
The University of Michigan

Ann Arbor, MI 48109

April, 1998

Abstract
This paper describes an initiative begun re-
cently in the Aerospace Engineering Depart-
ment at the University of Michigan. It
concerns the development of Internet-based
educational software for aerospace engineer-
ing. The Java programming language is
used to develop "applets" — programs that
can be accessed via web browsers such as
Netscape Navigator or Internet Explorer from
anywhere on the world-wide web (WWW).
Each applet is a laboratory-like module,
in which students can learn interactively
about aerodynamics, astrodynamics, and
other aerospace disciplines. For instance, in
one applet, students can distribute point-
singularities and visualize the resulting po-
tential flow via various plots and animations.
The history behind the decision to start this
project, the choice of paradigm for the soft-
ware, and a list of the modules developed
to date are detailed. More information on
the project, and the modules themselves, can

'Associate Professor, AIAA Senior Member
t Assistant Professor, AIAA Member

be accessed through the home page of the
University of Michigan Aerospace Engineer-
ing Department's home page [1].

What Was TODOR?

In 1985, a project was begun in the Aeronau-
tics and Astronautics Department at MIT to
develop workstation-based educational soft-
ware for teaching aerospace engineering. The
work was funded by NSF and MIT's Project
Athena, and was named TODOR[3], in honor
of Theodore von Karman. In 1988, an NSF-
sponsored workshop was held to disseminate
the TODOR software to other aerospace en-
gineering departments around the country.
One of the departments represented at the
meeting was the Michigan Aerospace Engi-
neering department; the TODOR software
was installed at the University of Michigan
in 1988, and used extensively in undergradu-
ate classes until 1995.

TODOR was a package of software mod-
ules, all of which related to aerospace engi-
neering. Some of the modules were tutorial
in nature; others were set up more like ex-

730

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

perimental laboratories, in that the students
provided various input parameters, and the
output resulting from solving the problems
the student set up were plotted on the screen.
The software ran on UNIX workstations. The
TODOR package included:

• POTFLOW — A potential-flow labora-
tory, in which students could place point
singularities at various places on the
screen, and visualize the resulting flow
by plotting streamlines, tracking bubbles
through the flow, etc.

• MULTI — A panel method for multi-
element airfoils, including a prediction
of incipient separation. Students chose
sections, sizes and placement for slats,
main elements and flaps, and "flew" the
resulting airfoils, plotting the results.

• ID NOZZLE — A quasi-one-dimensional
nozzle module with variable area and
back pressure/reservoir pressure ratios.

These were, at least in the experience of
using TODOR in undergraduate classes at
Michigan, the most useful of the modules;
there were nine other modules of varying util-
ity/popularity.

TODOR was ahead of its time, both in a
good sense and in a bad sense. In the good
sense, TODOR made innovative use of work-
stations to allow students to learn by doing.
The aerodynamic modules, in particular, al-
lowed students an experience that combined
the best of analytical techniques and wind-
tunnel testing. They could design an airfoil
experiment, run it in a few seconds, and visu-
alize the results using simulated smoke flow,
pitot probes, etc. They could see the stream-
function for complicated collections of singu-
larities, doing in minutes what would take
hours with pencil and paper. Throughout,
the graphical output of the modules helped
the students build their intuitive skills about
fluids.

In the bad sense, TODOR was hampered
in its development by the relatively crude
state of graphical user interface (GUI) soft-
ware available on UNIX workstations at the
time. As a result, TODOR was difficult to
port to new architectures, in part due to a
proprietary layer of software in TODOR that
handled some of the GUI issues.

Ultimately, TODOR was unmaintainable,
at MIT as well as Michigan and other schools.
Reasons included the difficulty of maintaining
object files for multiple platforms, the pro-
prietary layer of GUI software, the necessity
of rebuilding the software each time the op-
erating system was upgraded on any of the
computers at any of the schools using the
software, and the difficulties associated with
distribution of the software from MIT to the
other schools.

Possible Models for a Follow-on
to TODOR
The Michigan Aero Instructional Software
(MAIS) project is an attempt to capture the
best elements of TODOR, while transcend-
ing as many as possible of the aspects that
led to TODOR's demise. Given recent de-
velopments in the computer world, many of
TODOR's shortcomings can currently be ad-
dressed. Three possible models for devel-
oping MAIS were considered; their relative
strengths and weaknesses are discussed be-
low.

Platform-Dependent Machine Code

This consists of a compiled Language, a
graphics library, a GUI library and a nu-
merical library. This is the mode in which
TODOR was written. FORTRAN was
used as the compiled language, and the X-
Windows toolkit and a proprietary layer of
software called BLOX were used for the
graphics and the graphical interface. The

731

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

modules of TODOR did not explicitly make
use of a numerical library; necessary nu-
merical tools (linear algebra routines, ODE
solvers, etc.) were written from scratch. If
the MAIS project were done in this mode,
the best choices for the pieces might be:

• C++ for the compiled language;

• X-Windows toolkit for the graphics li-
brary;

• Motif for the GUI library;

• Numerical recipes for the numerical li-
brary.

If MAIS were programmed in this mode, it
would address one important shortcoming of
TODOR; there would be no proprietary layer
of software that needed to be ported each
time a new platform was employed. TODOR
was developed in the very early days of X-
Windows, and Motif was unavailable. How-
ever, many of the other difficulties associated
with maintaining TODOR would not be ad-
dressed by adopting this model.

Commercial Engineering Package

There would be many advantages to using
MATLAB (or Maple or Mathematica) as the
base for an instructional software project.
MATLAB has graphics, GUI and numerical
libraries combined in one package. Educa-
tional software written in MATLAB could
be run by anyone who has a MATLAB li-
cense (many engineering colleges have site li-
censes for MATLAB). It could be run on a
variety of platforms, with no need to rebuild
object libraries, since MATLAB is an inter-
preted, rather than compiled language. All
of these are very strong reasons to base edu-
cational software on MATLAB. Indeed, there
are only three shortcomings to this approach,
and they are minor compared to those over-
come by the approach:

1. As a programming language, MATLAB
is slow and somewhat limited (e.g. it
has no support for multi-dimensional ar-
rays);

2. MATLAB source files would need to be
distributed to anyone wanting to use the
software;

3. The software could not be run by anyone
who did not have access to MATLAB.

Neither of these shortcomings is very onerous,
and there is a lot of engineering educational
software being developed in MATLAB cur-
rently. However, there is one more mode for
educational software, only recently available,
that is even more attractive.

Platform-Independent
Code

Interpreted

Java is an object-oriented programming lan-
guage, developed at Sun Microsystems, be-
ginning in 1991 [2]. While it was originally
envisioned as a language for programming
consumer electronic devices, it grew into a
full-blown computer language that incorpo-
rates its own graphics, GUI and networking
libraries. There are two characteristics of the
language that make it an excellent choice for
educational software. First, Java is an in-
terpreted, rather than a compiled language.
Thus, a single version of the source code
can be developed that will run on any ma-
chine that can run a Java interpreter. Sec-
ond, a certain class of Java programs, called
applets, can be embedded in WWW home
pages. Given these two characteristics, and
the fact that the leading web browsers (e.g.
Netscape Navigator and Microsoft Internet
Explorer) incorporate Java interpreters, the
following is true:

Anyone in the world with a web
browser and access to the world-wide

732

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

web can link to the computer that
contains the educational software,
"check out" a copy of the executable
code, and run it locally inside a web
browser.

A Java applet works in the following way:

• Source code is written in Java, a lan-
guage that resembles C++.

• The source code is converted into
machine-independent bytecodes.

• The bytecodes are stored on a WWW
server.

• A remote user clicks on a web-page hy-
pertext link.

• The bytecodes are copied across the net,
and interpreted by the Java interpreter
of the web browser being used.

In one fell swoop, Java solves the code-
portability and code-distribution problems
associated with most educational software.
Also, given that web browsers and internet
access are more prevalent than MATLAB site
licenses, many more people have access to
the software than would under the MATLAB
mode. K-12 schools, in particular, are not
likely to have access to MATLAB, but, more
and more, do have WWW access and Java-
capable web browsers.

Java does have some disadvantages, rela-
tive to the other two modes. None of these
seems insurmountable, however. In particu-
lar:

• Java is a new language, and there is a
smaller pool of competent programmers
than for more established languages.
However, it is relatively easy to learn,
especially for those familiar with C++.
And the pool of competent programmers
is growing at a dramatic rate.

• Java lacks much of the numerical and
scientific graphics software available in
MATLAB. However, development is go-
ing on in Java across the country, and
many of these capabilities will soon be
available. In particular, the Java 2D
suite of classes in the 1.2 release of
Java, and the upcoming Java 3D suite
of classes, provide support for vectors,
matrices, quaternions, and 2D and 3D
graphics.

• Java is slower than compiled languages
such as C++. However, whereas two
years ago Java was an order of magni-
tude slower on scientific applications, the
advent of so-called "just-in-time compil-
ers" has dramatically narrowed the per-
formance gap.

Design of the MAIS Package
The MAIS package is therefore planned as a
library of Java applets, all of which can be
accessed from a home page in the Aerospace
Engineering Department at the University
of Michigan [1]. Michigan students, and
students at other colleges (and even high
schools) will gain access to it through their
web browsers, simply by knowing the loca-
tion of the hyptertext link.

A Sample Applet — Potential Flow

One of the modules currently implemented
is a potential-flow laboratory, in which point
singularities can be introduced, and the re-
sulting flow analyzed via visualizations and
animations. This module borrows heavily
from ideas implemented in TODOR's POT-
FLOW module, and is really a tribute to
TODOR. Figures 1-5 demonstrate a simple
session with the Potential flow module. Fig-
ure 1 shows the first screen of the module.
Figure 2 shows the screen reached by press-

733

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

ing the "Build New Flow" button. Here, the
student has built up a flow from a collection
of elements — a free-stream, a vortex and a
doublet, in this example — by clicking on the
appropriate buttons and placing the items
in position with the mouse. Directly under-
neath the plotting window is a line that con-
tains the current location of the mouse, and
the computed velocity and pressure at that
location; this information is updated contin-
uously as the mouse is moved. Figure 3 shows
the screen reached by returning to the main
menu and pressing the "Analyze Flow" but-
ton. Figure 4 shows the screen reached by
pressing "Plot Flow Quantities;" here, the
student has plotted a number of streamlines
by pressing the appropriate button and using
the mouse. Finally, Figure 5 shows the final
frame of an animation in which the student
has released a "bubble array" starting at a
location chosen with the mouse.

Other Applets

Other modules currently implemented or in
development include:

• An interplanetary space-flight module,
in which students can define origin and
destination planets and dates, and ana-
lyze the resulting transfer orbit.

• A rotational kinematics module, in
which multiple transformations of an
object using various rotation methods
(Euler, Axis-Angle, Quaternion) can be
viewed and compared.

• A potential-flow plus boundary-layer
module for airfoils, in which students can
"build" airfoils (including multi-element
systems), and compute and plot the Cp,
lift and drag via a viscous/inviscid cou-
pling method.

• A 3D wing incompressible flow module,
based on a vortex-lattice method.

• A nozzle-flow code, in which students
can study the effect of area distribution
on the pressure and Mach-number distri-
bution in a nozzle.

User-Interface Issues

This project is in its earliest phases, and is
presented here in the hopes of soliciting in-
terest and feedback that can help in making
the end-product as useful as possible.

Some design choices have been made so as
to give the modules a consistent look and feel,
and allow for reusability of many of the Java
classes developed for the modules. Each mod-
ule consists of:

• A plotting window, contained in the top
half of the applet;

• A panel of buttons, contained in the bot-
tom left corner of the applet;

• A window containing informational mes-
sages and/or input fields, contained in
the bottom right corner of the applet.

Based on the button selections made by the
student, one or all of the plotting, button and
info/inputs window can be updated. This
simple structure has proven generally appli-
cable to a wide variety of modules.

All of the modules have been developed in
an object-oriented fashion, to promote reuse
of code. Some of the classes that have been
developed that may be useful to others with
an interest in developing Java-based educa-
tional software include:

• Point Singularity and DistributedSingu-
larity classes, that contain stream-
function, velocity-potential and velocity-
component influences for various singu-
lar solutions of Laplace's equation;

• A PotentialFlow class, that computes ve-
locities, stream functions, and velocity

734

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

Mouse at (-2.31, 6.78) Uelocity is (8.68, 6.80) Cp - 1.88

Build New Flow

Modify EHisting Flow

Rnalyze Flow

Quit

Mouse at (-1.88, 8.68) Uelocity Is (B.99, 8.89)
(•> Use Mouse to Position Items

QUse Tent to Position Items

Cp = B.fl

fldd Uniform Stream

Hdd Source or Sink

___Hdd DorteH
Bdd Doublet ~

Return to Main Menu

735

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

Mouse at (-1.94, 8.3B) Llelocity is (B.97, B.88) Cp- B.03

List Flotu Elements

Plot Flom Quantities

flnimate Flow

Return to Main Menu

Mouse at (-8.74,-B.31) Uelocity is (8.79, 8.82) Cp = 8.36

Plot Uelocity [lectors __
Plot Single Streamline
Plot Streamline flrray__
Plot Isopotential Line

Plot Isopotential Hrray
___Clear Screen __

Return to flnalyze Flow Menu

736

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

Mouse at (-2.31, 8.62) Uelocity is (8.99, B.B7) cp = e.ee
Rnimate Single Bubble

Rnimate Bubble flrray

Rnimate Fluid Element

Clear Screen

Return to flnalyze Flow Menu

potentials for flows described as collec- ules (including bug reports!) can be sent to
tions of singularities; the same address.

• An OrbitElements class, that can com-
pute the elements of an orbit from a va-
riety of inputs, and includes the orbit el-
ements for the planets and some major
asteroids and comets;

• An Orbit class, that can compute iner-
tial positions and velocities on an orbit
as a function of time, and can compute
Lambert transfers.

• A number of classes in support of com-
puting and displaying rotational kine-
matics (Quaternions, Euler angles, etc.);

• A wide variety of support classes for sci-
entific graphics and numerical methods.

Source code for these classes can be ob-
tained by e-mailing the first author (pow-
ell@umich.edu). Any feedback on the mod-

References
[1] University of Michigan Department

of Aerospace Engineering home page,
http://www.engin.umich.edu/dept/aero.

[2] P. Naughton, The Java Handbook, Mc-
Graw Hill, 1996.

[3] E. M. Murman, A. R. LaVin and S. C. El-
lis, Enhancing Fluid Mechanics Education
with Workstation-Based Software, AIAA
Paper AIAA-88-0001, 1988.

737

