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Abstract 

,4 method for adaptive refinement of a Cartesian mesh and 
corresponding time-step adaptation,  for the solution of the 
unsteady Euler equations, is presented. In this work, a lin- 
ear reconstruction of distributions inside cells, and Roe’s 
approximate Riemann solver for interface fluxes, are used. 
11ie wave strengths dnd s a v e  speeds needed for the fiux 
calculation are reused in various ways. In particular, in 
order to prevent moving discontinuities from running out 
of fine cells during one global time-step, wave speeds and 
wave directions are used to predict the region traversed by 
the  waves; these are then flagged for refinement. More- 
over, the  curirature of one-dimensional wave-strength dis- 
tributions is introduced as the  key quantity in refinement 
and recoarsening criteria. T h e  numerical results presented 
show that  this method can obtain the same accuracy on 
the adaptive grid as on  a uniform grid with cells as fine 
as the finest cells of the adaptive grid, at large savings of 
computing time. 

r r  

1 Introduction 

JT’hen solving aerodynamic problems with computational 
methods we run into t!ie problem of grid generation. Two 
major questions are: 
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1. How to create any grid in the presence of complex 
body shapes; 

2 .  How to  get sufficient resolution in p!aces where t11,: 
action is. 

The  adaptive Cartesian approach of De Zeeuw and Poir- 
e!] [I] ms‘vers these questions by allowing irregular cells, 
cut off by the body from Cartesian cells, and by embeil- 
ding refined ce& wherever needed to ieso!ve geometz-iz 
and/or flow details. The code developed in [l] is for two- 
dimensional steady flow. 

The present work extends the approach of De Zeenw 
and Powell to unsteady flow. A code for unsteady f l o ~  
has been developed that  responds to adaptive spatial rc- 
finement by time-step adaptation,  i.e., by using many 
small time steps in refined regions in order to  match a 
single large time step used in coarse cells. In  this ~ v a y ,  
explicit time-marching can be used throughout the com- 
putational domain and temporal accuracy is preserved. 
unlike in implicit methods, where only s t a b i l i t y  is mail;- 
tained. The present code achieves second-order accurac;; 
in time, which is a non-trivial extension. 

2 Time Discretization 

It is generally agreed upon tha t  second-order accuracy i n  
space and time is a minimum requirement for an EiilLi 

(or Navier-Stokes) code to be useful in efficiently solv- 
ing problems of transient flow. Some codes for transient 
(PPM) and for steady fiorvs (e.g., CFL3D [2]) use spatia! 



differencing techniques tha t  would lead to third-order spa- 
tial accuracy if there were only one space dimension. Full 
third-order accuracy in multi-dimensionai space is rarely 
achieved (see, however, Barth [3]), and I;ime-mxching has 
never gone beyond second-order accuracy. 

In the present work we have chosen io; explicit mulsi- 
stage marching in time. This technique is rouiineiy Iijed 
for steady-state calculations and t h e r e h e  h:* 5ard 

clude a discussion on the  use of tile 
in searching for time-marching ~ch, .~ .  = q e s  i h z . ;  aze :fi 

sense optimal. This  technique is appli 
three-stage convection schemes, cf 2~ rn 
curacy. Furthermore, we investigated car 
formulas with regard to  their accurxy  
between regions of coarse and fine cei!s 

analyzed regarding temporal accuracy. EIO?? :n- 

2.1 A Design Criterion for Tirne-.4cc!irrlte 
Multi-S tage schemes 

When selecting a multi-stage scheme for time ma;ch:i;q it 
is best to s tar t  from a family of schemes with ~ l : r  same 
order of accuracy, and then select the most desiiable one 
according to some design criterion. For instance. i f  seisnd- 
order t ime accuracy is to be achieved, at  least t w o  stages 
are needed, and preferably three, for some :Iet-dain of 
choice. The design criterion must take into accoun t  u-hat 
class of problems t h e  scheme will be applied to,  i i l  par- 
ticular, whether the  solutions sought will be smooth or 
discontinuous. 

There is a very useful tool based on the Fourier t rans-  

the initial-value distribution. This method is c i i w r i h d  
by LVesseling [SI; it measures the total La-error a iirlear 
convection scheme makes in convecting a spatial d i i i r ibu-  
tion with a specific frequency content. Thiough Pxrs-Val's 
theorem, the numerical error integrated over the space  do- 
main is transformed to an  integral over the fiei i i i?ncy (de 
main. In  many cases this integral can be obt,airied arialyt- 
ically, allowing analytical minimization. Jb'hen opt  i r z i i z ing  
a scheme for application to problems of discontin u o  1 1 s  flow, 
the initial-value distribution for which the intpgral f i r o r  
is minimized, is chosen to  be a s t ep  f u n d i o n .  T!:is means 
that  t he  errors in frequency space are weighted w i t h  the 
inverse of the  frequency. A scheme thus optii:iized wil l  
produce minimal spurious oscillations near a d i scon t inu -  
ity. 

According to Parseval's equality, the truncation error 
un+' (z)  - u:&it satisfies the  following equation: 

,nf form, x7hich actua!!y takes iz to  accsunt the "-," 1 ' ' '  " I  

here ,B denotes frequency, v the Courant number, arid 9 
the amplification factor of the scheme. Comparison 0.; 
the scheme's amplification factor with the exact amplifi- 
cation factor, in order to get an idea about the accuracy 
of the scheme, is commonplace; Equation 1, though, siig- 
gests that  the error in the amplification factor should be 
weighted with the spectrum of the initial values. Dzfi~ic 
the weighted norm Ilg(0, u) - gexact(4, .)/I by 

liS(,O, v) - gexact(.O, 412 = 
co 

p(P)Ig(P, u) - gexact(P, v)12dO: (2) 1, 
where the weight function p equals to the square of tile 
modulus of the Fourier transform of the distribution nt 
time t". For a step function the weight function will be 
&?) = &, For the family of convection schemes stud- 
ied in [5], based on a five-point stencil at  the initial time 
level, the selection procedure based on minimizing this 
n m m  yields an  apwind-biased scheme, confirming the rep-  
utation of such schemes to  represent moving or stead\: 
discontinuities with reduced oscillations. 

2.1.1 4 n  example 

Consider the first-order upwind-differencing operato:, 
with Fourier transform 

t = --Y(I - e-" ).  

A11 three-stage schemes with second-order temporal accu- 
racy can be represented by the amplification factor 

where a is a free parameter to 3e  determined by the min- 
imization process, and 

The error norm is 

= 6cyzv6 + a(-3v5 + 3v4 - 3u3  + 3 ~ ~ 1 1 -  vi 

(3) 
Y4 

2 
+- - v3 + Y 2  + (-2 + v ) j l -  PI .  

Plots of this integral against v for two values of c y ,  corn- - - 
puied with the above formula or by numerical integration, 
are shown in Figure 1. 

It is seen in Figure 1 tha t  u = 1 is a turning poi:it 
- gexact(3r v)"" (') for three-stage schemes; beyond this point the truncation 

27r 
co 

1c"(P)121g(p' 
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Integral I(1st upwind scheme) 
4 . 2 0  

3.60- 

- 
3 0 0 -  

Figure 1: L2-error committed after one time-srep when 
convecting a step-function. T h e  scheme used includes 
first-order upwind differencing and third-order three-stage 
time-marching. The error is given in the form of an inte- 
gral I over all frequencies, which depends on the Courant 
number v. This simple case served to verify tha t  the nu- 
merically evaluated integral (dashed line) was close to its 
exact value (solid line). For cy = 0 (dotted line; two-stage 
scheme) the error increases monotonically. 

error is increasing rapidly. This  suggests tha t ,  in prac- 
tical applications, one should use v 5 1. Note tha t  the 
above analysis is for a scheme with only first-order spatial 
accuracy. The analytical evaluation of the integral I for 
third-order upwind-biased differencing (parameter value 
6 = 5 ;  see [SI) is much more tedious, but  numerical in- 
tegration gives a reliable result. Plots of the integral for 
various values of cr are shown in Figure 2. 

To facilitate the comparison of schemes, we may elim- 
inate the dependence of the  integral on v by integrating 
over the stable range of v. T h a t  is, we minimize 

1 U r n l X  CQ 

I a v e  = - 1 J1, Ih"i2lg(p, v )  - g e x a c t ( P .  Y j / 2 d ~ d v .  
u r n a x  

(4) 
Plots of Iave and  vmax versus cy are shown in Figure 3 .  The 
minimum error occurs for cy = 0.072, but this is mainly so 
because, for this value of 0, Y,,, is not much greater than 
1. Wi th  increasing cy the stability region grows rapidly, 
causing a rise in I,,, up  to  cr = 0.15. For larger values 
of cy the error decreases, which again is mostly due to  
urnax decreasing toward 1. Looking back at Figure 2 we 
conclude that  the third-order scheme ( a  = i) is preferable 

0.00 
0 00 030 0 60 0 90 1.20 1.50 1 8 0  2 

v 
0 

Figure 2: &error as a function of Courant number, f s r  
three different three-stage schemes and third-order spatia! 
differencing. The error is plotted only for the  stable range 
of these scheme. The value cr = 0.072(dashed line) y idd  
the lowest average error; cy = (solid line) yields thirci- 
order time accuracy; cy = 5 (dotted line). 

tQ the optimal scheme: its error is hard!y greater thni! 
the  error of the optimal scheme, i t  offers a much large: 
stability range, a:id therefore increased robustness, and i i 
is formally third-order accurate. 

In the  present code a two-stage second-order algoritlin: 
is implemented, which, in combination with adaptatioii, 
already leads to a complex sequence of steps. In principli-. 
the three-stage method can be programmed in the s m i c  
manner; whether this is worth-while remains to be seen. 
It may be argued that  the local mesh refinement is a more 
efficient way to increase resolution by the higher-order in-  
terpolation in space and time. 

2.2 Time Discretization and Mesh Re- 
finement Combined 

The  spatial embedding technique of De Zeeuw and P o w  
ell employs the quad-tree data  structure: one parent cell 
generates four child cells (Figure 4). The spatial dis- 
cretization follows the  reconstruction/evolution approach: 
in each cell gradients of flow quantities are formed (by 
evaluating a contour integral, see Figure 5); these are USCJ 
to evaluate states at the cell boundaries. Interface fu s s s  
are then computed from the two different states found 011 

opposite sides of the interface, using Roe's approximate 
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Integral I,,, vs a and urnax 
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Figure 3: Maximum stable Courant number (dashed line) 
and average of La-error (11) over the  stable Courant- 
number range (solid line), for three-stage schemes with 
free parameter a. Spatial differencing is third-order (h: = 
i): the amplification factor of the time-marching scheme 
is 1 + z + $ z 2  + az3 .  Kote that  the  average error increases 
sharply with the stability range. 

Riemann solver; for details see [l]. 
The time-adaptation procedure introduces halving of 

the time step for every ievei of spatial refinement; in con- 
sequence, for each level of refinement the number of times 
a cell is updated doubles. Updating starts  with the coars- 
est cells and cascades down to  the finest cells. In order 
to simplify the  spatia1 discretization and the update prc- 
cedure, the spatial grid is constrained such as to always 
have at least two cells of the same size adjacent to each 
other in any direction (horizontal, vertical, diagonal). 

The  time-marching scheme is a simple two-stage proce- 
dure, based on the  midpoint integration rule: 

Parent Cell 

Cell Level I 

Children Cells 

Cell Level 1+1 

Figure 4: Parent/Children Relationship 

X 

Figure 5 :  Normal And Special Paths 

According to  Shu and Osher [7], this time-marching 
scheme is not Total-Variation Diminishing (TVD); their 
two-stage TVD scheme is based on trapezoidal integrn- 
tion. When updating a fine cell adjacent to a coarse c-!l 
with the TVD scheme, the prediction step is problemat.ic: 
by matching the t ime level in the coarse cell, the fine ccll 
might go unstable. A compromise would be to use t ! ;c  
mid-point rule in this coarse ceii; this has not yet bel711 
tested. 

Scheme ( 5 )  is used at any level of refinement; the timc- 
step used at cells of level I ,  refined 1 - 1 times, is At/2'-', 
where At is the global time-step used. Now suppose we arc 
about to update I-level cells by a time-step At,. Owing LO 
our restriction on the local variation in cell size, only C T ~  

other levels of refinement will play a role in the updatc: 
1 + 1 and 1 - 1. 

2.2.1 

At first, we consider the boundary between the cell of lese1 
1 and a possible neighbor at level l+ l ;  here, as at any otli;.r 
cell boundary, we must evaluate fluxes. In the two-st.agc 
method we need to first carry out the predictor s tage;  
which achieves only first-order accuracy in time. The  i n i -  
tial Talues, a('), are used to  evaluate the gradients in dl 
cells, which, in turn,  are used to  reconstruct the ''riglit,'. 
and "left" face values. Subsequently, one can compute t ! I C  
fluxes based on Roe's [8] approximate Riemann solver o:i 

all child-cell faces (level I + 1) of the fine-coarse boundary. 
Conservation dictates we must sum these child-cell fluxi.; 
to get the flux across the  full parent-cell boundary jleviil 
I ) .  Now the predictor step a t  level I can be completed. 

Interaction at ( I ,  I + 1) Boundary 
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For the corrector-stage calculation, we need new fluxes 
at the cell boundary; therefore, we need new input values 
for the  flux function, hence, new gradient values. ;il order 
t o  make i t  possible t o  evaluate the gradients not only in 
the I-level cells themselves bu t  alsc i~ tke abutted (i - 1)- 
level cells, some ( I  + 1)-levels near :he boufidary z x s t  
be  updated by a step Atl+l(= +At!). 
t he  gradients in these cells we cafi, Ggein. 
right and left face values, and  coEpuxe : 
for the correction stage in the  ce2s at. !e 
procedure is shown in Figure 6 - Figilre 9. 
are not Ehe final fluxes; in order to  x5eL-e cocser-at:on in 
time, the  fluxes in the  I-level cells sdjacez; to :hi0 !\I. I $  I )  
boundary must  undergo a correction a h r  ?lit) . i -  ::8-;d>tel 
cells have been fully updated.  

. .  

2.2 .2  

To make it possible to  update /-level cells, ir, ;a assumed 
tha t  we have already obtained, in the cells at !eve1 I - I, 
first- and second-order-accurate solutions a t  X r -  1 and 
first-order-accurate solutions at iAtr-1. This dictates the 
order in which the cells of different levels are treated. Hav- 
ing these solutions in the coarser cells one may, by interpo- 
lation, get first- and second-order accurate values at any 
time between t" and t"+Atr-l. In particular, by using lin- 
ear interpolation one can get first-order-accurate solutions 
after time-steps :Atl-l(= ;At!) and $Ati-1(= $At,); 
these are needed to compute the gradients for corrector- 
stage use in I-level calculations. By using quadratic inter- 
polation, one can get second-order-accurate solutions at  
t n  + ;&{-I(= At,), which can be used as the initial con- 
ditions for predictor-stage use in the second application of 
scheme 5 to  l-level cells. These interpolation procedures 
are illustrated in Figure 10. 

Interaction at ( I ,  1 - l j  Boundary 

2 .2 .3  Conservation in Time 

In the above update procedure, the fluxes actually used 
occur a t  the corrector stage rather than the predictor 
stage. At an  ( / , I  - 1) boundary, however, the corrector- 

have completed the predictor-corrector stage. The upd;<i (. 

procedure then cascades from lower-level cells to higher- 
level cells. Once the predictor-corrector scheme has bc:il 

completed in ( I  + 1)-level cells, one returns to the /-level 
cells for the conservation correction, and so on. 

3 Time-h/Iarching in Cut Cells 
If the geometry is just  slightly complex or its dimensioi!, 
are unfavorable, the square cells of an Cartesian giid ma) 
be cut by bodies. Instead of reducing the time step, X L  

can combine the cut cell with an uncut neighbor to fcjtin 
a larger cell and determine its evolution as part of t:i, 

evolution of the full cell. The full update procedure f i , i  
cut cells is as follows: 

1. compute the  gradients in the cut cell just  as in an!. 
uncut cell; 

2.  compute the  area average of the gradient, 

where n is the total number of merged cells ar,d ail 

uncut: 

3 .  

4. 

5 .  

6 .  

7. 

stage fluxes a t  t" + + A t /  and t" + $ A t ( ,  used in updating 
the /-level cell, are not used in the provisional update of 
the ( I  - 1)-level cell. Conservation requires that  the same 
fluxes be used in both cells; hence, from the detailed fluxes 
used for the I-level cells we must construct parent fluxes 

The 

4 
by averaging and  apply these to the ( I -  1)-level cell. This 
amounts to a correction of the  solution a t  t" + Atl-1 in 
the coarse cell. The procedure is illustrated in Figure 11. 

2.3.4 Computational Priority of Different Levels 

As mentioned above, before we can start  to  integrate in I -  
level cells, we should already have first- and second-order- 
accurate solutions a t  At l -1~  and first-order-accurate solu- 
tions a t  :Atl-l; tha t  is, ( I  - 1)-level cells should already 

compute the residuals in the cut cells just as in ar.- 
uncut cell; 

compute the area average of the residual; 

update the merged cells; 

update the average gradient in the merged cells; 

use the average gradient to reconstruct separate z L i ;  
averages in the cut-cell and uncut-cell portion of ti., 
merged cell. 

whole procedure is illustrated in Figure 12. 

Automatic Grid Adaptation 
An adaptive grid may be refined or recoarsened 2s dic- 
tated by the amount of detail in the flow. The  refine- 
ment/recoarsening criterion used in this work is based on  
the curvature of one-dimensional wave-strength distribil- 
tions; the wave strengths are a by-product of eva1uatii:g 
Roe's flux function. In two dimensions there are four f a x i -  
lies of waves for each coordinate direction, leading to rig]:[ 
different curvat,ure values in each cell. If a particular ci i r-  

vature in the cell is above a predetermined fraction oft!:: 



maximum for i ts  own family, the cell is flagged for re- 
finement, if i t  drops below another, lower threshold, it is 
flagged for recoarsening. 

The wave information is used once more for the predic- 
tion of the area where cells need to be refined; for this pre- 
diction the wave speeds, including their sign, encer. Wave 
speeds and propagation directions are used to estimate 
how far strong waves (identified by the x w i e  5t . rwshs)  
will propagate during the  next global time step: the A s  
t o  be traversed by these waves are flagged rai reE!Lerzent. 
The prediction procedure, illustrated by Figures id - ;.3: 

is as follows: 

. +  

1. 

2. 

3 .  

4. 

use the wave speed and the wave direcrion to ?;..e- 
dict the number,  (NZ, Ny), 3i fine cilis (/-!e-,:.ei) in 
z- and y-directions for the highest ievel ( i - l e v d j  ~ i ! s  
containing strong waves; (0,O) means that the xiTi;ives 
in this cell are not strong enough to implement the 
fine-cell prediction technique. 

use the number (iVz, N y )  to construct a :riang!e or a 
line (degenerating from the triangle if either iVZ = 0 
or AT, = 0) and then flag the cells covered by any part 
of the triangle; 

refine all flagged cells and use the smoothing pioce- 
dure, (see 141) to eliminate undesirable features in the 
resulting mesh. 

apply steps 2-3 recursively until /-level cells cover all 
the triangles. 

5 Numerical Results 

The shock-tube problem is a popular test-case for algo- 
rithms intended for solving unsteady flow problem. Fig- 
ure 16 shows the solution of the one-dimensional >hock- 
tube problem with the two-dimensional code. No predic- 
tion of wave motion was used in flagging cells for refinc- 
ment.  For comparison, the  solution on a uniform grid cf 
the finest cells is also shown; the accuracy of the sola- 
tion on the adaptive grid is disappointing. The reason ;; 
readily discovered upon inspection of the grid: the impor- 
tant  flow features to be resolved, such as the right-runniiig 
shock, tend to move out of the refined grid in the coarse of 
the full time-step. On the  basis of this result i t  was con- 
cluded that  spatial refinement ought to be based on the 
predicted motion of flow features tha t  need to be resolved 
Figure 17 shows the  solution of the Riemann problem on 
a grid adapted in anticipation of the motion of flow fea- 
tures. The improvement in accuracy is dramatic: the so- 
lution is essentially the  same as for a uniformly fine grid. 
Furthermore, the results indicate tha t  according to our re- 
finement criterion based on curvature, the solution inside 
the expansion wave is partly regarded as smooth: i t  need 
not be resolved by the highest-level cells. 

The  second test case is uniform supersonic flow led 
through a channel with a forward-facing step. Figure 15- 
20 show results a t  time= 0.5 and 4.0 for a uniform grid and 
an  adaptive grid; the uniform-grid cells are everywhere BS 

fine as the highest-level cells of the  adaptive grid. There is - - 
very little difference between the two solutions, bu t  ouly 
one-third CPU time is spent on grid-adapt,ive calculation. 

The  next figures show how, in the two-dimensional c d -  
d a t i o n ,  the main shock moves out of the  refined regia:i 
(Figwe 21) unless wave-speed-based refinement is usctl 

Nes t ,  Figure 23 shows uniform- and adaptive-grid SO!U- 

tions for an  axi-symmetric flow problem also solved on Ti? 

adaptive grid by Quirk 1113, namely, that  of a shock X'Y>'C 

leaving a barrel. Again, there is very little difference bc- 
tween the solutions, but  the savings are huge. Figures '2-1 
and 25 show that  the fine-cell clusters agree well with f l i t :  

flow features. 
For validating our treatment of cut cells, t he  c s e  IJI' 

uniform supersonic flow through a channel with a forward- 
facing step is reused. In order to  compare the results with 
the previous ones, only the cells along the vertical side o f  
the step are cut by the body; the cells on the top side of t h e  

different cut-cell area ratio: defined by the area ratio of  
a cut cell to an uncut cell of the same level, are choseii: 
Arulio = 0.5 and Aratio = 0.01. We reduced the time 
step to obtain solutions in the first case without mersins 
of c u t  cells, for comparison of the solution with the cut- 
cell-merging method. Figures 26 and 27 show the results 
obtained with cell-merging and with a reduced time-strp. 

In this way we avoid the  loss of resolution of important  
flow features incurred when these run out of a refined re- 
gio11. For convenience, we name the prediction method 
i:dynalnic~~ and the method wit,hout prediction in  
this paper. The dynamic refinement method has become 
one of the nicest features of the present adaptive-mesh 
code. I t  is very effective, as the  next section will show, and 
surprisingly, uses only 1% of the total computing time. 

In spite of i ts  complexity, the prediction method has a 
flaw: i t  is based strictly on waves traveling in the grid 
directions. Thus,  a steady oblique shock Wave in super- 
sonic flow is not detected as such, but is described by 
a combination of waves traveling in the grid directions at 
apprecia.ble speeds. T h e  prediction algorithm flags a band 
of cells for refinement, but  during the next time step the 
wave does not move, and the refined cells are recoarsened. 
The resulting cycles of unnecessary refining and recoars- 
ening may be avoided by the  use of a multi-dimensional 

ficiency this should also be used in the flux function. As 
this flux function still lacks the  robustness of the flux func- 
tion based on grid-aligned waves, we have chosen another 
method to detect steady waves: we check the value of the 
residual in each cell. If wave strengths are high b u t  the 
residual is small, there must be cancellation of waves, and 
no pre-refinement is done. 

22). 

*.." b,ave mode! such as tha t  of Eumsey et al. [9, IO]; for ef- step is still aligned with the body. Two cases of extremely 
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s t e p  1 : Set initlal randifion. /I 

t 

/ 

r - 
Y 

P 
J. J. 

s t e p  3 . Raconsmct letf and right face values. 

Figure 6: Procedure for lowerer-level cells nest to bound- 
ary. 

t 

t 

step 6 : U p d a t e  I-lavei mIl6 1OAt and ;At 1 .  
/ x  

Figure 7 :  Continued. 

,. 
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‘ t  

t 

Y 

step 10 :Compute fluxes. 
step 7 : Update I+l-level cell to Atl+l (=id!) for gaoient 

J X  

calculations. ‘ I  

step 9 : Reconstri;ct left and right face values. 
Jx 

Figure 8: Continued. 

step 11 : S u m  childran’s fluxes as parens’ fluxes. 
J X  

step 8 : Compute gradients for corrector stage uses. 
Jx 

step 3 2 : Complete predlctor-corrector stage on I-level calls. 
J X  

Figure 9: Conclusion. 



J x  s:ep 3 : Corrector stage calciilallon 

J, step 2 : Pmdictor stage calculation. 

t t  

_. 1 igri:.e 10: Procedure for higher-level cells nest to boundary. 
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J, step 1 : Cirncbte cnildren llux 
at c3irec!or stage. 

1 
' 8  

step 5 : A v e r a p  Darerts' fluxes 
al A [  and ; A I , .  

I 

A step 2 : Sum chiidrun's fluxes as 
parent's flux (wnservatbn 
in spaca). 

/x step 6 : Sum children's fluxes a0 
parent's flux (conservalion 
:n space). 

JL, dL, 

step 6 : Correct 1-1 level cell 
4n boundary by usrng 
raw lluxeg 

~ ~ g u r e  11: Conservation in time in t.he boundary cells. 
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(1) inidal sate wedor and gradients 

(3) Compte the resid& of each cell. 

" t  

(5) Update the mrgd dl 

Figure 12: The procedure of updating a merged cell. 

The figures show little difference. Finally, using the cell- 
merging method with regular time steps in the case of 
very tiny cut cells (Zl rat io = 0.01) did not create any sta- 
bility problem, as seen from the result in Figure 25. More 
numerical resclts are presented in [4]. 

6 Conclusions 
In this paper, we study two major approaches to efficiently 
and accurately resolve the flow features in unsteady-flow 
calculation: 

1. creating some grid capable of resolving small details 
of the flow; 

2. implementing a high-order-accurate scheme in time 
and space on the unstructured grid. 

T h e  first approach is to apply the technique of self- 
adaptive mesh refinement t o  a Cartesian mesh, and use a 
corresponding time-step adaptation.  A process has been 
developed xhereby the  computational grid automatically 

Figure 13: An example . .  of predicting cells of /-level by 
wave speeds and wave directions 

adapts to the flow features t,hat require high resolution. 
Furthermore, the strategy c '  'me-adaptation, i.e.! usin; 
many small time-steps on tk ~ .ice-level grid as cornpard  
to one large step on the coarsest grid level, makes t h e  
technique of the adaptive mesh refinement achieve a high 
efficiency. 

Regarding the second approach, a second-ordzr- 
accurate method based on upwindbiased differencing has 
been applied in our calculations. For time marching, f s r  
achieving second-order-accurate solutions in time, a two- 
stage method is employed. The  wave strengths and wavz 
speeds needed for the flux calculation are reused in vari- 
ous ways. In particular, the curvature of one-dimensiorlal 
wave-strength distributions is introduced as the key c , ~ , . . n -  
tity in refinement and recoarsening criteria. Furthermori., 
in order to  prevent moving discontinuities from runniirg 
out of fine cells during one global time-step, wave speetls 
and wave directions are used to predict the region tra- 
versed by the waves; these are then flagged for refinenii-ill. 
This dynamic refinement method is very efficient and is 
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Figure 14: An example of predicting cells of i-ievel by Figure 15: An example of predicting cells of I-level ~ I J ,  

wave speeds and wave directions (continued). irave speeds ... wave ^.. ~ uIIccLIv,,s ,I:”,.-+;-.- (conclusion). 

one of the most attractive features of our approach 
The  combination of techniques can accurately resolve 

flow features not only in regions of smooth flow for TX- 
ample,  inside an  expansion fan, but  also in a resion id11 
of discontinuities. The numerical results show that a u r  
method can achieve the same accuracy on the xdaptiLe 
grid as on a uniform grid with cells as fine as the finest 
cells of the adaptive grid, a t  large savings of computing 
time. 

For full details the reader is referred to the first au thor ’ s  
thesis [4]. 
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Density Line Contours 
Uniform grid (16128 cells) 

0 00 1 0 0  2 00 3 I O  

Figure 18: Uniform-grid solution. 
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Densitv Line Contours. 

3 00 

Yu-Liang Density Line Contours. 

dynamic Laplace recoarsening (0.15.0.01) (3747 cells) time=0.5 
3.00 1 

7 00 

I 

I 

Figure 19  : Adapt ively-refined-grid solution; t ime=O. 5 

1.00 

0.00 I 1 1 I 
0 00 1.00 2.00 3 00 

Figure 20: Adaptiveiy-refined-grid solution; time=4.0 

Figure 21: No refinement based on predicted wave motion 

Yu-Liang Density Line Contours. 
adaptive dynamic method (0.15,0.025) tirne=0.5 

1.00 , I I I I I I I I I I I I C F  

Figure 22: Refinement b a e d  on predicted wave motion. 
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Density Line Contours. 
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. ,  Figure 23: Blast-wave problem: density distribution on 
uniform (top) and adaptive (bottom) grid; time=0.3. 

Figure 24: 
ti me = 0.5 7 0. 

Density distribution on the adaptive griii ~ 



Density Line Contours 
Densitv Line Contours. 
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Figure 25: Density distribution on the adaptive grid; Figure 27: 
time=0.570. reduced-time-step method. 

Density distribution and grid; r,ime=l.0; 

Density Line Contours. 
Time=l.O Aratio=0.5 
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Figure 26: Density distribution and grid; tine=l.O; cell- 
merging method. cell-merging method; time= 2.0 and = 0.01. 

Figure 23: Density distiibution and grid obtained with  

16 


