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Abstract 

A typical approach in surrogate-based modeling is to assess the performance of 

alternative surrogate models and select the model that performs the best. In this paper, 

we extend the utility of an ensemble of surrogates to: i) identify regions of high 

uncertainties at locations where predictions of surrogates widely differ, and ii) provide a 

more robust approximation approach. We explore the possibility of using the best 

surrogate or a weighted average surrogate model instead of individual surrogate models. 

The weights associated with each surrogate model are determined based on the errors in 

surrogates. We demonstrate the advantages of an ensemble of surrogates using 

analytical problems and an engineering problem of radial turbine design for space 

launch vehicle. We show that for a single problem the choice of the surrogate can be 

substantially influenced by the design of experiments. 

I. Introduction 

Surrogate models have been extensively used in the design and optimization of computationally expensive 

problems. Different surrogate models have been shown to perform well in different conditions. Barthelemy and 

Haftka
1
 reviewed the application of meta-modeling techniques in structural optimization. Sobeiszczanski-

Sobieski and Haftka
2
 reviewed different surrogate modeling applications in multi-disciplinary optimization. 

Giunta and Watson
3
 compared polynomial response surface approximations and Kriging on analytical example 

problems of varying dimensions. Simpson et al.4 reviewed different surrogates and gave recommendations on 

the usage of different surrogates for different problems. Jin et al.
5
 compared different surrogate models based on 

multiple performance criteria such as accuracy, robustness, efficiency, transparency and conceptual simplicity. 

They recommended using radial basis function for high-order nonlinear problems, Kriging for low-order 

nonlinear problems in high dimension spaces and polynomial response surfaces for low-order nonlinear 

problems. They also noted difficulties in constructing different surrogate models. Li and Padula
6
 and Queipo et 

al.
7
 recently reviewed different surrogate models used in the aerospace industry. 

There are also a number of studies comparing different surrogates for specific applications. Papila et al.
8
, 

Shyy et al.9, Vaidyanathan et al.10, Mack et al.11 presented studies comparing radial basis neural networks and 

response surfaces while designing the liquid rocket injector, supersonic turbines, and the shape of bluff body for 

mixing enhancement. For crashworthiness optimization, Stander et al.
12
 compared polynomial response surface 

approximation, Kriging and neural networks while Fang et al.
13
 compared polynomial response surface 

approximation and radial basis functions. As expected, no single surrogate model is superior in general. 

While most researchers have primarily been concerned with the choice among different surrogates, there 

has been relatively little work about use of an ensemble of surrogates. Zerpa et al.
14
 presented one application of 

using an ensemble of surrogates to construct weighted average surrogate model for the optimization of an alkali-

surfactant-polymer flooding process. They suggested that the weighted average surrogate model has better 

modeling capabilities than individual surrogates. 

Typically the cost of obtaining data required for developing surrogate models is high, and it is desired to 

extract as much information as possible from the data. Using an ensemble of surrogates, which can be 

constructed without a significant expense compared to the cost of acquiring data, can prove effective in distilling 
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correct trends from the data and may protect against bad surrogate models. Averaging surrogates is one 

approach motivated by our inability to find a unique solution to the non-linear inverse problem of identifying the 

model from a limited set of data (Queipo et al.
7
). In this context, model averaging essentially serves as an 

approach to account for model uncertainty. In this work, we explore methods to exploit the potential of use of an 

ensemble of surrogates. Specifically, we present the following two aspects: 

i. Ensemble of surrogates can be used to identify regions where we expect large uncertainties (contrast) 

ii. Use of an ensemble of surrogates via weighted averaging (combination) or selection of best surrogate 

model based on error statistics for more robust approximation than individual surrogates  

We demonstrate the advantages of an ensemble of surrogates using analytical problems and an engineering 

problem of radial turbine design for space launch vehicle. This paper is organized as follows: In the next 

section, we present a method to use an ensemble of surrogates to identify the regions with large uncertainty, and 

the conceptual framework of constructing weighted average surrogate models. Thereafter we discuss the test 

problems, numerical procedure and results supporting our claims. We close the paper by recapitulating salient 

points presented. 

II. Conceptual Framework 

A. Identification of Region of Large Uncertainty 
Surrogate models are used to predict the response in unsampled regions. There is an uncertainty associated 

with the predictions. An ensemble of surrogates can be used to identify the regions of large uncertainty. The 

concept is described as follows: Let there be NSM surrogate models. We compute the standard deviation of the 

predictions at a design point x as, 
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The standard deviation of the predictions will be high in regions where the surrogates differ greatly. A high 

standard deviation may indicate a region of high uncertainty in the predictions of any of the surrogates, and 

additional sampling points in this region can reduce that uncertainty. Note that while high standard deviation 

indicates high uncertainty, low standard deviation does not guarantee high accuracy. It is possible for all 

surrogate models to predict similar response (yielding low standard deviation) yet perform poorly in a region. 

B. Weighted Average Surrogate Model Concept 

We develop a weighted average surrogate model as, 
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A surrogate model, deemed more accurate, should be assigned a large weight, and conversely, a less 

accurate model should have lower influence on the predictions. The confidence in surrogate models is given by 

different measures of “goodness” (quality of fit) which can be broadly characterized as (i) global versus local 

measures and (ii) measures based on surrogate models versus measures based on data. Weights associated with 

each surrogate based on the local measures of goodness are function of space ( )x
i i

w w= ; for example, 

weights based on the pointwise model error estimates like prediction variance, mean squared error (surrogate 
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based), or weights based on the interpolated cross-validation errors (data based). When weights are selected 

based on the basis of global measures of goodness, they are fixed in design space ( ) , xx
i i

w C= ∀ ; for example, 

weights based on RMS error σ̂  for polynomial response surface approximation, process variance for Kriging 

(surrogate based), or weights based on cross-validation error (data based). While variable weights may capture 

local behavior better than constant weights, reasonable selection of weight functions is a formidable task. 

Zerpa et al.
14
 constructed a local weighted average model from three surrogates (polynomial response 

surface approximation, Kriging and radial basis functions) for the optimization of an alkali surfactant-polymer 

flooding process. Their approach was based on the pointwise estimate of the variance predicted by the three 

surrogate models. 

There are different strategies of selecting weights. A few can be enumerated as follows: 

2.2.1 Non-parametric Surrogate Filter (NPSF) 

Weights are a function of relative magnitude of (global data-based) errors. The weight associated with ith 

surrogate is given as: 
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where Ej is the global data-based error measure for j
th
 surrogate model. This choice of weights gives only a 

small premium to the better surrogates when NSM is large. For example, the best surrogate has a weight equal to 

or less than ( )1
1

SM
N −

, which becomes unreasonably low when NSM is large. On the positive side the 

weights selected this way protect against errors induced by the surrogate models which perform extremely well 

at the sampled data points but give poor predictions at unsampled locations. 

2.2.2 Best PRESS for Exclusive Assignments 

Traditional method of using an ensemble of surrogates is to select the best model among all considered 

surrogate models. However, once the choice is made, it is usually kept even as the design of experiment is 

refined. If the choice is revisited for each new design of experiment, we consider it as a weighting scheme where 

the model with least (global data-based) error is assigned a weight of one and all other models are assigned zero 

weight. In this study, we call this strategy the “best PRESS model”. 

2.2.3 Parametric Surrogate Filter (PSF) 

As discussed above, there are two issues associated with the selection of weights: (i) weights should reflect 

our confidence in the surrogate model, and (ii) weights should filter out adverse effects of the model which 

represents the data well but performs poorly in unexplored regions. A strategy to select weights which addresses 

both issues can be formulated as follows: 
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This weighting scheme requires the user to specify two parameters α  and β  which respectively control 

the importance of averaging and importance of individual surrogate. Small values of α  and large negative 

values of β  impart high weights to the best surrogate model. Large α  values and small negative β  values 

represent high confidence in the averaging scheme. In this study, we have used 0.05and 1α β= = − . The 

sensitivity to these parameters is studied in a section on parameter sensitivity.  

The above-mentioned formulation of weighting schemes is used with generalized mean square cross-

validation error (GMSE) (leave-one-out cross validation or PRESS in polynomial response surface 

approximation terminology), defined in the Appendix, as global data-based error measure, by replacing 
j

E  by 
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j
GMSE . We have used three surrogate models, polynomial response surface approximation (PRS), Kriging 

(KRG) and radial basis neural networks (RBNN) (Orr
15
), to construct the weighted average surrogate model. 

The parametric weighted surrogate model (PWS) can then be given as follows: 

ˆ ˆ ˆ ˆ
pws prs prs krg krg rbnn rbnn

y w y w y w y= + +        (5) 

where weights are selected according to the parametric surrogate filter PSF (Equation (4)). The rationale behind 

selecting these surrogate models to demonstrate the proposed approach was (i) these surrogate models are 

commonly used by practitioners and (ii) they represent different parametric and non-parametric approaches 

(Queipo et al.7).  

The cost of constructing surrogate models is usually low compared to that of analysis. If this cost is not 

small (for example, when using a Kriging model and GMSE for large data sets), the user may want to explore 

surrogate models that provide a compromise solution between accuracy and construction cost. In general, the 

choice of surrogate models which are most amenable to averaging and uncertainty identification remains a 

question of future research (Sanchez et al.
16
). 

Since global measures of error depend on the data and design of experiments, weights implicitly depend on 

the choice of the design of experiments. This dependence can be seen from Figure 1 where we show boxplots of 

weights obtained for 1000 instances of Latin hypercube sampling (LHS) design of experiments (DOEs) for 

Camelback function (described in next section). The center line of each boxplot shows the 50
th
-percentile 

(median) value and the box encompasses the 25
th
 - and 75

th
 -percentile of the data. The leader lines (horizontal 

lines) are plotted at a distance of 1.5 times the inter-quartile range in each direction or the limit of the data (if the 

limit of the data falls within 1.5 times inter-quartile range). The data points outside the horizontal lines are 

shown by placing a ‘+’ sign for each point. 

We can see that the weights for different surrogates vary over a wide range with DOEs. The weights also 

give an assessment of relative contribution of different surrogate models to the weighted average surrogate 

model. In this example polynomial response surface approximation had the highest weight most of the time (880 

times) but not all the times (59 times Kriging had the highest weight and 61 times RBNN had the highest 

weight). 

III. Test Problems, Numerical Procedure, and Prediction Metrics 

A. Test Problems 
To test the predictive capabilities of the proposed approach of using an ensemble of surrogates, we employ 

two types of problems: (i) analytical (Dixon-Szegö17) which are often used to test global optimization methods, 

and (ii) industrial: a radial turbine design problem (Mack et al.
18
) motivated by space launch. The details of each 

test problem are given as follows: 

(i) Branin-Hoo Function 

( ) ( )
2

2

2

[ 5,10], [0,15]

5.1 5 1( , )   -   - 6   10 1- cos( ) 10
84

x y

x xf x y y x

∈ − ∈

= + + +π ππ

    (6) 

(ii) Camelback Function 
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Figure 2 depicts these two-variable test problems and shows zones of high gradients. 

(iv) Hartman Functions 

( ) ( )
( )

1 2

2

1 1

exp

, , , [0,1]

x

x
n i

m n

i ij j ij
i j

f c a x p

where x x x x

= =

= − − −

= ∈

 
 
 

∑ ∑

K

       (9) 

Two instances of this problem are considered based on the number of design variables. For the chosen 

examples, m = 4. 

(a) Hartman3 

This problem has three variables. The choice of parameters is given in Table 1 (Dixon-Szegö
17
). 

(b) Hartman6 
This instance of the problem has six design variables and the parameters used in the function are tabulated 

in Table 2 (Dixon-Szegö
17
). 

Figure 3 illustrates the complexity of the analytical problems. It shows the boxplots of function values at a 

uniform grid of points with 21 points in each direction (for Hartman problem with six variables we used 5 points 

in each direction); the mean, coefficient of variation and median are given in Table 3. We can see that for all the 

problems the coefficient of variation was close to one or more which indicates large variation in the function 

values. It is clear from Figure 3 that the function values follow non-uniform distribution which is also reflected 

by large differences in the mean and median. These conditions translate into high gradients in the functions and 

may pose difficulties in accurate modeling of the responses. Goldstein-Price and Hartman problem with six 

variables had a significant number of points which had higher function values than the inter-quartile range of the 

data. This is reflected in high coefficient of variation of these two functions. 

(v) Radial Turbine Design for Space Launch 
As described by Mack et al.18, this six-variable problem is motivated by the design of compact radial 

turbine used to drive pumps that deliver liquid hydrogen and liquid oxygen to combustion chamber of a 

spacecraft. The objective of the design is to increase the work output of a turbine in the liquid rocket expander 

cycle engine while keeping the overall weight of the turbine low. If the turbine inlet temperature is held 

constant, the increase in turbine work is directly proportional to the increase in efficiency. Thus the design goal 

is to maximize the turbine efficiency while minimizing the turbine weight. Our interest in this problem is to 

develop accurate surrogate model(s) of the efficiency as a function of six design variables. The description of 

design variables and their corresponding ranges are given in Table 4 (Mack et al.
18
).  

The objectives of the design were calculated using a one-dimensional flow analysis “Meanline” code 

(Huber
19
). Mack et al.

18
 identified the appropriate region of interest by iteratively refining the design space. 

They also identified the most important variables using global sensitivity analysis.  

B. Numerical Procedure 

For all analytical problems, Latin hypercube sampling (LHS) was used to pick design points such that the 

minimum distance between the design points is maximized. We used Matlab
20
® routine lhsdesign with maximin 

criterion (maximize the minimum distance between points) and a maximum of 20 iterations to obtain optimal 

configuration of points. For the radial turbine design problem, Mack et al.
18
 sampled 323 designs in the six-

dimensional region of interest, using LHS and a five level factorial design on the three most important design 

variables (identified by global sensitivity analysis). Out of these 323 designs, 13 designs were found infeasible. 

The remaining 310 design points were used to construct and test the surrogate models. For this study, we 

randomly select 56 points to construct the surrogate model and use the remaining 254 points to test the surrogate 

model. To reduce the effect of random sampling for both analytical and radial turbine design problems we 

present results based on 1000 instances of design of experiments for all the problems in low dimension spaces. 

However to keep computational cost low for six-variable problems, we used 100 design of experiments and then 

used 1000 bootstrap (Hesterberg et al.
21
) samples to estimate results.  

The numerical settings used to fit different surrogate models for each problem are given in Table 5. The 

total number of test points (on a uniform grid) is 
Nvp  where Nv is the number of variables and p is the number 

of points along each direction (Table 5) except for the radial turbine problem where the number represents the 

total number of test points. We used reduced-quadratic or reduced-cubic polynomials for PRS. A Gaussian 

correlation function and a linear trend model were used in Kriging approximation of all test problems. 

Parameters “Spread” and “Goal” for radial basis neural network were selected according to problem 
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characteristics (spread controls the decay rate of radial basis function and goal is the desired level of accuracy 

of the RBNN model on training points). It should be pointed out that no attempt was made to improve the 

predictions of any surrogate model. 

C. Prediction Metrics  

The following metrics were used to compare the prediction capabilities of different surrogate models:  

(i) Correlation Coefficient  

 The correlation coefficient between actual and predicted response at the test points ( )ˆ,R y y  is given as 

( )
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It is numerically evaluated from the data for test points by implementing quadrature
**
 for integration 

(Ueberhuber22) as given in (11). 
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where y  is the mean of actual response, ŷ  is the mean of predicted response, 
test

N  is the number of test points, 

and 
i

γ  is the weight used for integration using trapezoidal rule. For radial turbine problem, we used a non-

uniform set of data points so the correlation coefficient is obtained using (11) with weight 1
i

γ = . For a high 

quality surrogate model, the correlation coefficient should be as high as possible. The maximum value of 

( )ˆ,R y y  is one which defines exact linear relationship between the predicted and the actual response. 

(ii) RMS Error  

For all the test problems the actual response at test points was known, which allowed us to compute error at 

all test points. The root mean square error (RMSE) in the design domain, as defined in (12), was used to assess 

the goodness of the predictions.  

21
ˆ( )

V

RMSE y y dv
V

= −∫          (12) 

Equation (12) can be evaluated using trapezoidal rule as denoted in (13). 

2

1

ˆ( )test
N

i i i

testi

y y
RMSE

N

γ

=

−
= ∑         (13) 

For radial turbine problem, we used (13) with weight 1
i

γ =  to get RMS error. Of course, a good surrogate 

model gives low RMS error. 

(iii) Maximum Error  

Another measure of the quality of prediction of a surrogate is the maximum absolute error at the test points. 

This is required to be low. A combination of high correlation coefficient and low RMS and maximum error 

would indicate a good prediction. 

                                                           

 

 
** Here we used trapezoidal rule for integration. 
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IV. Results and Discussion 

In this section, we present some numerical results to demonstrate the capabilities of multiple surrogate 

models using the test problems discussed in Section 3.   

A. Identification of Zones of High Uncertainty 

We demonstrate the application of an ensemble of surrogates to identify region of high uncertainty with the 

help of different test problems. Results for a single instance of a DOE for Branin-Hoo example are presented in 

detail. Figure 4 shows the contour plots of absolute errors in prediction ( ( ) ( )ˆx xy y− ) due to different 

surrogate models and the standard deviation of the responses. 

Figure 4(A)-(C) shows contour plots of actual absolute errors in different surrogate models. It can be seen 

that the middle section of the design space was approximated very well (errors are low) but the left boundary 

was poorly represented by different surrogate models. The errors (and hence responses) from PRS, KRG and 

RBNN differed in the region close to the top-left corner. The contour plot of the standard deviation (Figure 

4(D)) of predicted responses correctly indicated the region of high uncertainty near the top-left corner due to 

high standard deviation. It also appropriately identified good predictions in the central region of design space. 

The predictions in the region of high uncertainty can be improved by sampling additional points. 

It is also noted that although all the surrogate models had high errors near the bottom-left corner of the 

design space (Figure 4(A)-(C)), the standard deviation of the predicted responses was not high. This means that 

we can use the standard deviation of surrogate models to identify regions of high uncertainty but we can-not use 

it to identify regions of high fidelity. This particular situation demands further investigation if the objective of 

using an ensemble of surrogates was to identify region of high error in the predictions. 

To further show the independence of the result with respect to design of experiments, we simulated the 

Branin-Hoo function with 1000 DOEs. For each DOE, we computed the standard deviation of responses in 

design space. At the location of maximum standard deviation for each DOE we computed actual errors in the 

predictions of different surrogates. Similarly, we calculated actual errors in the predictions of different 

surrogates at the location of minimum standard deviation. Figure 5(A) shows the magnitude of maximum 

standard deviation and actual errors in predictions using different surrogates for 1000 DOEs and Figure 5(B) 

shows the magnitude of minimum standard deviation and actual errors in predictions using different surrogates 

from 1000 DOEs. By comparing Figure 5(A) and (B), it is clear that high standard deviation of responses 

corresponded to the regions with large uncertainties in predictions and low standard deviation corresponded to 

regions with low uncertainty and there was an order of magnitude difference. 

To generalize the findings, we simulated all test problems and identified the actual errors at the locations of 

maximum and minimum standard deviation of responses. The results are summarized in Table 6 and Table 7. A 

one-to-one comparison of results for different test problems show that when the standard deviation of responses 

was highest, the actual errors in predictions were high and when the standard deviation of responses was lowest, 

the actual errors in predictions were low. We note that the results are more useful for a qualitative comparison 

than quantitative; i.e., identifying the regions where we expect large uncertainties in prediction rather than 

quantifying the magnitude of actual errors.  

We also estimated the maximum (over the entire design space) errors due to each surrogate model for 

different test problems and compared with the maximum standard deviation of responses. The results are 

presented in Table 8. While the maximum standard deviation of responses was same order of magnitude as the 

maximum actual error for all surrogate models, it underestimated the maximum error by a factor of 2.5 – 4.0. 

When the number of data points to construct the surrogate model was increased (Branin-Hoo function was 

modeled with 31 points and Camelback function was modeled with 40 points, refer to Section 6.2.5 for details 

about modeling) the underestimation of the maximum actual error was reduced. 

The main conclusions of the results presented in this section are: (i) dissimilar predictions of surrogate 

models (high standard deviation of responses) indicate regions of high errors, (ii) similar predictions of 

surrogate models (low standard deviation of responses) do not necessarily imply small errors and, (iii) the 

maximum standard deviation of responses underestimates the actual maximum error. 

B. Robust Approximation via Ensemble of Surrogates 

Next, we demonstrate the need of robust approximation with the help of Table 9 that enlists the number of 

times each surrogate yields the least PRESS error for all test problems. As can be seen, no surrogate model is 

universally the best for all problems. Besides, for any given problem, the choice of best surrogate model is 

affected by the design of experiment (except radial turbine design problem). The results presented in Table 9 

clearly establish the need to search approximation models which are robust (i.e. the same surrogate model can 

be applied to different problems, and the results produced are not significantly influenced by the choice of 

DOE).  
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We present results to reflect the advantages of using an ensemble of surrogates. We compare the parametric 

weighted surrogate (PWS) model and the surrogate model corresponding to the best generalization error among 

the three surrogates (best PRESS model) with individual surrogate models (PRS, Kriging and RBNN). For each 

problem, the summary of the results based on 1000 DOEs is shown with the help of boxplots. A small size of 

the box suggests small variation in results with respect to the choice of design of experiment. 

6.2.1. Correlations  

Figure 6 shows the correlation coefficient (between actual and predicted responses) for different test 

problems. The results were statistically significant (p-value is smaller than 1e-4) for all problems and DOEs. It 

is evident that no single surrogate worked the best for all problems and correlation coefficient for individual 

surrogates varied with DOE. Both the best PRESS and the PWS models were better than the worst surrogate 

model and at par with the corresponding best surrogate for most problems. The PWS model generally performed 

better than the best PRESS model. The variation in results with respect to design of experiments for both the 

PWS model and the best PRESS model was also comparable to best surrogate for all problems except Hartman 

problem with six variables.  

For all the problems we observed that some of the design of experiments (DOEs) yielded very poor 

correlations. Analysis of the corresponding experiments revealed two scenarios: 

i. Some times the DOE was not satisfactory and a large portion of the design space was unsampled. This 

led to poor performance of all the surrogate models.  

ii. For a few poor correlation cases, despite a good DOE, one or more surrogates failed to capture the 

correct trends. 

The PWS model and the best PRESS model were able to correct the anomalies in these scenarios to some 

extent. The tail of the boxplot corresponding to the PWS model and the best PRESS model was shorter 

compared to the worst surrogate (Figure 6).  

Table 10 shows the mean and the coefficient of variation for different test problems to assess the 

performance of different surrogate models. It is clear that the average correlation coefficient for the PWS model 

was either the best or the second best for all the test problems. Also the low coefficient of variation underscored 

the relatively low sensitivity of the PWS model with respect to the choice of design of experiments. 

Performance of the best PRESS model was also comparable to the best surrogate model for each problem. The 

overall performance of all three surrogates was comparable. It can also be seen from Table 10 that the PWS 

model outperformed the best PRESS model for all cases but radial turbine design problem. 

The mean of the correlation coefficient for different problems is reported based on one set of 1000 DOEs. 

Since the distribution of mean is approximately Gaussian, the coefficient of variation of the mean (of correlation 

coefficient) can be given as 

DOE

COV
N

 where COV is the coefficient of variation (of correlation coefficient) 

based on 1000 DOEs ( 1000
DOE

N = ), leading to a coefficient of variation of the mean that is about 30 times 

lower than the native coefficient of variation. The number of digits in the table is based on this estimate of the 

coefficient of variation. 

We verified the results by performing the bootstrap analysis (Hesterberg et al.
21
 2005) by considering 1000 

samples of 1000 DOEs each. The distribution of the mean for one representative case (mean correlation 

coefficient predicted using Kriging approximation for Branin-Hoo function) is plotted in Figure 7. The mean 

correlation coefficient evidently follows Gaussian distribution as the data falls on the straight line depicting the 

normal distribution. Similar results were observed for all other cases. Bootstrapping also confirmed that the 

coefficient of variation of the mean value followed the simple expression given above. 

6.2.2. RMS Errors  

Next we compared different surrogate models based on the RMS errors in predictions at test points. Figure 

8 shows the results on different test problems. While no single surrogate performed the best on all problems, 

individual surrogate models approximated different problems better than others. The parametric weighted 

surrogate (PWS) model and the best PRESS model performed reasonably for all test problems. The results 

indicate that if we know that a particular surrogate performs the best for a given problem, it is best to use that 

surrogate model for approximation. However, for most problems the best surrogate model is not known a priori 

or the choice of best surrogate may get affected by choice of DOE (Table 9). Then an ensemble of surrogates 

(via the PWS or the best PRESS model) may prove beneficial to protect against the worst surrogate model.  

The mean and coefficient of variation of RMS errors using different surrogates on different problems are 

tabulated in Table 11. Note that, Kriging (most often) had the lowest RMS errors compared to other surrogates. 

When the RMS errors due to all surrogates were comparable, as was the case for Branin-Hoo and Camelback 

functions, the predictions using the PWS model were more accurate (lower RMS error) than any individual 

surrogate. However when one or more surrogate models were much more inaccurate than others, the predictions 
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using the PWS model were only reasonably close to the accurate surrogate model(s). We also observed that both 

the best PRESS model and the PWS model were able to significantly reduce the errors compared to the worst 

surrogate. This suggests that using an ensemble of surrogate models, we can protect against poor choice of a 

surrogate.  

The PWS model generally yielded lower RMS errors than the best PRESS model. Relatively poor 

performance of the PWS model (compared to the best PRESS model) for six variables Hartman problem and 

radial turbine problem was attributed to accurate modeling of the response by one surrogate or inaccuracy in the 

representation of weights (see section on the role of generalized cross-validation errors). 

6.2.3. Maximum Absolute Errors  

Figure 9 shows the maximum absolute error for 1000 DOEs using different surrogate models on different 

test problems. As was observed for RMS errors, the PWS model and the best PRESS model performed 

reasonably for all test problems though individual surrogate models performed better for different test problems.  

Numerical quantification of the results is given in Table 12. The maximum absolute error obtained using 

the PWS model and the best PRESS model were comparable to the maximum absolute error obtained using the 

best surrogate model for that test problem. For most cases, the PWS model also delivered a lower maximum 

absolute error than the best PRESS model. Relatively poor performance of the PWS model for Goldstein-Price 

test problem was attributed to the poor performance of one of the surrogate models (RBNN) on the prediction 

points. 

The results presented in this section suggest that the strategy of using an ensemble of surrogate models 

potentially yields robust approximation (good correlation, low RMS and maximum errors) for problems of 

varying complexities and dimensions and the results are less sensitive to the choice of DOE. The PWS model 

may have an advantage compared to the best PRESS model.  

6.2.4. Studying the Role of Generalized Cross-validation Errors 

We observed that the PWS model did not perform well for Camelback and Goldstein-Price function where 

RBNN model noticeably yielded large variations. To investigate the underlying issue, we studied the weights 

and hence the role of PRESS error which is used to determine the weights. Our initial assumption was that the 

PRESS error is a good estimate of the actual RMS errors for all surrogate models. To validate this assumption, 

we computed the ratio of actual RMS errors and PRESS for different surrogate models over 1000 DOEs. The 

results are summarized in Figure 10 and corresponding mean and standard deviation (based on 1000 DOEs) are 

given in Table 13.  

It is observed from the results that PRESS (generalized cross-validation error) on average underestimated 

actual RMS errors for polynomial response surface approximation but overestimated RMS error in Kriging and 

RBNN. For Goldstein-Price the mean was skewed for RBNN because of three simulations which gave very 

large ratio of RMS error and PRESS (the median is 0.42). The implication of this under/over estimate was that 

the weights associated with polynomial response surface model were overestimated and weights for Kriging and 

radial basis neural network were underestimated. Noticeably, there were a large number of instances for 

Camelback and Goldstein-Price functions where PRESS underestimated the RMS errors for RBNN (see long 

tail of points with RMS error to PRESS ratio greater than two). This indicated wrong emphasis of RBNN model 

for these models compared to other more accurate surrogates and hence relatively poor performance of the 

parametric weighted surrogate model was observed. This anomaly in accurately representing the actual errors or 

developing measures to correct the weight to account for the over-/under-estimation is a scope of future 

research. 

6.2.5. Effect of Sampling Density 

Often an initial DOE identifies regions of interest, and then the DOE is refined in these regions. At other 

times, the initial DOE is found insufficient for good approximation, so that it must be refined. The refinement of 

the DOE can be carried out in two ways: (i) increasing the number of points in the original design space, and (ii) 

reducing the size of design space. The refinement of the DOE may change the identity of the best surrogate 

model, so that even if a single surrogate model is used, it may be useful to switch surrogates. Additionally the 

choice between best PRESS and the PWS model may depend on sampling density. To investigate these issues, 

we study two representative problems: Branin-Hoo function and Camelback function which were not adequately 

approximated by different surrogate models (low correlations). Both problems are now modeled with increased 

number of points (31 points were used for Branin-Hoo function and Camelback function was modeled with 40 

points) such that all regions were adequately modeled. We used a cubic polynomial to model Branin-Hoo 

function and a quartic polynomial to model Camelback function. All other parameters were kept the same. The 

results obtained for the increased number of points were compared with the previously presented results for 

smaller number of points in Table 14 and Table 15. 
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As can be seen from Table 14 and Table 15, the predictions improved with increasing number of points. 

The improvement in Kriging (which models the local behavior better) was significantly more than the other two 

surrogates. The performance of both the best PRESS model and the PWS model was comparable to the best 

individual surrogate model and significantly better than the worst surrogate model. For the problems considered 

here, the best PRESS model outperformed the PWS model. This result is expected because of much improved 

modeling of the objective function by one or more of the surrogates. The results corroborate our earlier findings: 

(i) if we a priori know the best surrogate model for a given problem, that surrogate should be used for 

approximation and, (ii) ensemble of surrogates protects us against the worst surrogate model. These results were 

evident irrespective of the number of points used to model the response. However, we also note that even if a 

single surrogate is used, its choice depends on sampling density. For Branin-Hoo function with 12 points, the 

polynomial response surface approximation had the best correlation and lowest maximum error. Its mean RMS 

error is slightly higher than Kriging but standard deviation is much better. With 31 points Kriging is the best 

surrogate. 

6.2.6. Sensitivity Analysis of PSF Parameters 

To study the effect of variation in the parameters α  and β  (see (4)), we constructed the PWS model for 

Goldstein-Price function with different values of α  and β . This problem was selected because of significant 

differences in the performance of different surrogate models. All other parameters were kept the same. The 

comparison of correlation coefficient and errors based on 1000 DOE samples is given in Table 16. To eliminate 

the skewness of the data due to a few spurious results, we show median, 1st and 3rd quartile data for all cases. 

When we increased α  keeping β  constant, we observed modest decrease in errors. This was expected 

because by increasing α  we reduced the importance of individual surrogates and assigned more importance to 

the averaging, which helped in reducing the effect of bad surrogates. However, it is noteworthy that a few 

designs which gave poor performance of one surrogate deteriorated the performance of the PWS model for 

respective cases. By increasing β  keeping α  constant, we emphasized the importance of individual surrogates 

more than the averaging. For this case, the overall effect was the deterioration of correlation and increase in 

errors. The effect of variation in β  on the results was more pronounced than the effect of variation in α . The 

above results indicated that the parameters α  and β  should be chosen according to the performance of the 

individual surrogates. 

V. Conclusions 

In this paper, we presented a case to simultaneously use multiple surrogates (i) to identify regions of high 

uncertainty in predictions, and (ii) to develop a robust approximation strategy. The main findings of the paper 

can be summarized as follows. 

i. Regions of high standard deviation in the predicted response of the surrogates correspond to high errors 

in the predictions of the surrogates. However we caution the user not to interpret the regions of low 

standard deviation (uncertainty) as regions of low error. 

ii. The magnitude of the standard deviation of responses usually underestimates the error. 

iii. Simultaneous use of multiple surrogate models can improve robustness of the predictions by reducing 

the impact of a poor surrogate model (which may be an artifact of choice of design of experiment or the 

inherent unsuitability of the surrogate to the problem). Two suggested ways of using an ensemble of 

surrogates were to construct parametric weighted surrogate model or to select the surrogate model 

which has the least PRESS error among all considered surrogate models.  

iv. The proposed PRESS error based selection of multiple surrogates performed at par with the best 

individual surrogate model for all test problems and showed relatively low sensitivity to the choice of 

DOE, sampling density, and dimensionality of the problem.  

v. The parametric weighted surrogate model yielded best correlation between actual and predicted 

response for different test problems.  

vi. While different surrogates performed the best for reducing error (RMS and maximum absolute error) in 

different test problems, the performance of surrogate models was influenced by the selection of DOE. 

Ensemble of surrogates (via the parametric weighted surrogate and the best PRESS model) performed 

at par with the corresponding best surrogate model for all test problems. The parametric weighted 

surrogate model in general outperformed the surrogate model with best PRESS error.  

vii. It was also observed that PRESS in general underestimated the actual RMS error for polynomial 

response surface approximation and overestimated the actual RMS error for Kriging and radial basis 

neural network. The correction in weights to account for the under-/over- estimate of RMS errors by 

PRESS is a scope of future research.  
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viii. Though the best individual surrogate can change with increase in sampling density, the ensemble of 

surrogates performs comparably with the best surrogate.  

We conclude that for most practical problems, where the best surrogate is not known beforehand, use of an 

ensemble of surrogates may prove a robust approximation method. 
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Figure 1 Boxplots of weights for 1000 DOE instances (Camelback function) W-PRS, W-KRG and W-

RBNN are weights associated with polynomial response surface approximation, Kriging and radial basis 

neural network models respectively. 

 
(A) Branin-Hoo function    (B) Camelback function 

 
(C) Goldstein-Price 

Figure 2 Contour plots of two variable test functions. 
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Figure 3 Boxplots of function values of different analytical functions. 

 
(A) Contours of absolute error in PRS  (B) Contours of absolute error in Kriging 

  
(C) Contours of absolute error in RBNN  (D) Standard deviation of predictions 

Figure 4 Contour plots of errors and standard deviation of predictions considering PRS, KRG, and 

RBNN surrogate models for Branin-Hoo function. 
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(a) Maximum standard deviation and   (b) Minimum standard deviation and  

corresponding actual errors   corresponding actual errors  

Figure 5 Maximum/Minimum standard deviation of responses and actual errors in prediction of different 

surrogates at corresponding locations (boxplots of 1000 DOEs using Branin-Hoo function) (s_resp is 

standard deviation of responses, e_PRS, e_KRG, e_RBNN are actual errors in PRS, KRG and RBNN).  
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 (A) Branin-Hoo    (B) Camelback 

 
 (C) Goldstein-Price   (D) Hartman – 3 variables 

 
 (E) Hartman – 6 variables  (F) Radial turbine design 

Figure 6 Correlations between actual and predicted response for different test problems. 1000 instances 

of DOEs were considered for all test problems except Hartman-6 and radial turbine design problem for 

which we show results based on 100 samples. The center line of each boxplot shows the median value and 

the box encompasses the 25
th
- and 75

th
-percentile of the data. The leader lines (horizontal lines) are 

plotted at a distance of 1.5 times the inter-quartile range in each direction or the limit of the data (if the 

limit of the data falls within 1.5 times inter-quartile range). 
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Figure 7 Normal distribution approximation of the sample mean correlation coefficient data obtained 

using 1000 bootstrap samples (KRG, Branin-Hoo function). 
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 (A) Branin-Hoo    (B) Camelback 

      
 (C) Goldstein-Price   (D) Hartman – 3 variables 

  
 (E) Hartman – 6 variables  (F) Radial turbine design problem 

Figure 8 RMS errors in design space for different surrogate models. 1000 instances of DOEs were 

considered for all test problems except Hartman-6 and radial turbine design problem for which we show 

results based on 100 samples.   
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 (A) Branin-Hoo    (B) Camelback  

 
 (C) Goldstein-Price   (D) Hartman – 3 variables 

  
 (E) Hartman – 6 variables  (F) Radial turbine design problem 

Figure 9 Maximum absolute error in design space for different surrogate models. 1000 instances of DOEs 

were considered for all test problem except Hartman-6 and radial turbine design problem for which we 

show results based on 100 samples. 
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 (A) Branin-Hoo

*
    (B) Camelback 

 
 (C) Goldstein-Price

**
    (D) Hartman–3 variables 

 
 (E) Hartman–6 variables   (F) Radial turbine design problem  

Figure 10 Boxplots of ratio of RMS error and PRESS over 1000 DOEs for different problems (* For 

Branin-Hoo function, one simulation yielded RMSE/PRESS ratio ~O(20) for PRS, ** For Goldstein-Price 

problem, three simulations yielded high ratio of RMS error and PRESS error (20-80) for RBNN). 

Table 1 Parameters used in Hartman function with three variables. 

i a
ij
 c

i
 p

ij
 

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673 

2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470 

3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547 

4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828 
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Table 2 Parameters used in Hartman function with six variables. 

i aij ci 

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 

2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 

3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 

4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 

i pij 

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650 

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

Table 3 Mean, coefficient of variation (COV) and median of different analytical functions. 

 Branin-Hoo Camelback Goldstein-Price Hartman-3v Hartman-6v 

Mean 49.5 19.1 49179 -0.8 -0.06 

COV 1.0 1.8 3.9 -1.2 -5.1 

Median 36.7 11.8 8114 -0.5 -0.04 

Table 4 Range of design variables for radial turbine design problem. 

Variable Description Minimum Maximum 

RPM Rotational speed 100000 150000 

Reaction Percentage of stage pressure drop across rotor 0.40 0.57 

U/Cisen Isentropic velocity ratio 0.56 0.63 

Tip Flow Ratio of flow parameter to a choked flow parameter 0.30 0.53 

Dhex% Exit hub diameter as a % of inlet diameter 0.1 0.4 

AN2Frac Used to calculate annulus area (stress indicator) 0.68 0.85 

Table 5 Numerical setup for the test problems.  

  
Branin-Hoo Camelback GoldStein-Price Hartman3 Hartman6 

Radial 

Turbine 

# of variables 2 2 2 3 6 6 

# of design 

points 
12 20 25 40 150 56 

# of test pts
*
 21 21 21 21 5 254 

Order of 

polynomial 
2 3 3 3 3 2 

Spread 0.2 0.3 0.5 0.4 0.5 1 

Goal 10 10 2500 0.05 0.05 0.01 

*
Total number of points is number of points along a direction raised to the power of the number of 

variables (e.g. 21
3
 for Hartman problem with three variables). For the radial turbine problem, 254 

indicate total number of test points. Spread controls the decay rate of radial basis function and Goal is 

the desired level of accuracy of the RBNN model on training points. 
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Table 6 Median, 1
st
 and 3

rd
 quartile of the maximum standard deviation and actual errors in predictions 

of different surrogates at the location corresponding to maximum standard deviation over 1000 DOEs for 

different test problems. 

 Branin-

Hoo 

Camelback Goldstein-

Price 

Hartman-3 Hartman-6 Radial 

turbine 

Median (Max std dev. 

of  response) 105 53 2.7e5 2.5 2.2 0.020 

Median (Actual error in 

PRS) 
114 61 2.9e5 3.9 3.9 0.0016 

Median (Actual error in 

KRG) 
42 111 3.6e5 0.7 0.2 0.004 

Median (Actual error in 

RBNN) 
110 95 2.5e5 0.6 0.1 0.033 

1st/3rd Quartile (Max std 

dev. of response) 
77/ 

134 

38/ 

85 

1.0e5/ 

4.2e5 

2.0/ 

3.2 

1.9/  

2.7 

0.017/ 

0.022 

1st/3rd Quartile (Actual 

error in PRS) 
78/ 

158 

32/ 

92 

1.0e5/ 

4.7e5 

2.8/ 

5.2 

3.3/ 

4.9 

0.0008/ 

0.0027 

1st/3rd Quartile (Actual 

error in KRG) 
21/ 

71 

66/ 

131 

1.4e5/ 

6.5e5 

0.3/ 

1.4 

0.1/ 

0.4 

0.002/ 

0.006 

1st/3rd Quartile (Actual 

error in RBNN) 
76/ 

132 

42/ 

161 

1.9e5/ 

5.7e5 

0.3/ 

1.1 

0.1/ 

0.3 

0.028/ 

0.038 

Table 7 Median, 1
st
 and 3

rd
 quartile of the minimum standard deviation and actual errors in predictions 

of different surrogates at the location corresponding to minimum standard deviation over 1000 DOEs for 

different test problems. 

 Branin-

Hoo 

Camelback Goldstein-

Price 

Hartman-3 Hartman-6 Radial 

turbine 

Median  (Min std dev. 

of  response) 0.41 0.26 492 0.0019 0.0011 2.1e-4 

Median (Actual error 

in PRS) 4.7 1.7 1630 0.063 0.06 1.0e-3 

Median (Actual error 

in KRG) 4.6 1.7 1513 0.062 0.07 1.1e-3 

Median (Actual error 

in RBNN) 4.7 1.7 1510 0.064 0.07 1.0e-3 

1st/3rd Quartile (Min 

std dev. of response) 
0.25/ 

0.67 

0.15/ 

0.40 

280/ 

770 

0.0012/ 

0.0029 

0.0007/ 

0.0017 

1.5e-4/ 

3.2e-4 

1st/3rd Quartile 

(Actual error in PRS) 
1.7/ 

9.8 

0.7/ 

4.4 

697/ 

3854 

0.025/ 

0.143 

0.03/ 

0.11 

5.0e-4/ 

1.9e-3 

1st/3rd Quartile 

(Actual error in KRG) 
1.8/ 

9.9 

0.6/ 

4.2 

525/ 

3842 

0.025/ 

0.143 

0.03/ 

0.11 

5.0e-4/ 

1.9e-3 

1
st
/3

rd
 Quartile 

(Actual error in 

RBNN) 

1.8/ 

9.7 

0.6/ 

4.2 

535/ 

3871 

0.024/ 

0.142 

0.03/ 

0.11 

5.0e-4/ 

2.1e-3 
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Table 8 Median, 1
st
 and 3

rd
 quartile of the maximum standard deviation and maximum actual errors in 

predictions of different surrogates over 1000 DOEs for different test problems (Number after Branin-Hoo 

and Camelback functions indicates the number of data points used to model the function). 

 Branin-

Hoo12 

Branin-

Hoo31 

Camelb

ack-20 

Camelb

ack-40 

Goldstein-

Price 

Hartma

n-3 

Hartma

n-6 

Radial 

turbine 

Median  (Max std 

dev. of  response) 105 88 53 42 2.7E+05 2.5 2.2 0.020 

Median (Max 

actual error in 

PRS) 

175 32 122 37 4.5E+05 4.1 4.0 0.087 

Median (Max 

actual error in 

KRG) 

232 25 135 37 5.3E+05 1.9 1.9 0.087 

Median (Max 

actual error in 

RBNN) 

268 173 135 80 3.9E+05 2.3 1.8 0.082 

1
st
/3

rd
 Quartile 

(Max std dev. of 

response) 

77/ 

134 

61/ 

116 

38/ 

85 

31/ 

58 

1.0e5/ 

4.2e5 

2.0/ 

3.2 

1.9/ 

2.7 

0.017/ 

0.022 

1st/3rd Quartile 

(Max actual error 

in PRS) 

150/ 

209 

27/ 

39 

106/ 

127 

31/ 

44 

3.7e5/ 

5.5e5 

3.2/ 

5.3 

3.4/ 

4.9 

0.082/ 

0.093 

1
st
/3

rd
 Quartile 

(Max actual error 

in KRG) 

146/ 

298 

16/ 

38 

123/ 

145 

26/ 

59 

3.9e5/ 

7.5e5 

1.7/ 

2.2 

1.7/ 

2.0 

0.082/ 

0.093 

1
st
/3

rd
 Quartile 

(Max actual error 

in RBNN) 

214/ 

294 

119/ 

233 

100/ 

181 

61/ 

107 

2.7e5/ 

6.7e5 

2.0/ 

2.6 

1.7/ 

1.9 

0.077/ 

0.087 

Table 9 Effect of design of experiment: Number of cases when an individual surrogate model yielded the 

least PRESS error (based on 1000 DOEs). 

 PRS KRG RBNN 

Branin-Hoo 715 131 154 

Camelback 880 59 61 

GoldStein-Price 659 143 198 

Hartman3 229 511 260 

Hartman6 400 119 481 

Radial Turbine 1000 0 0 
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Table 10 Mean and coefficient of variation (in parenthesis) of correlation coefficient between actual and 

predicted response (based on 1000 DOEs) for different surrogate models. 

 PRS KRG RBNN Best PRESS PWS 

Branin-Hoo 
0.79  

(0.08) 

0.76  

(0.24) 

0.75 

(0.18) 

0.79 

(0.12) 

0.84  

(0.11) 

Camelback 
0.69 

 (0.13) 

0.69  

(0.19) 

0.62 

(0.50) 

0.69  

(0.14) 

0.73  

(0.20) 

GoldStein-Price 
0.88 

(0.041) 

0.87  

(0.11) 

0.86 

(0.28) 

0.88  

(0.083) 

0.91  

(0.12) 

Hartman3 
0.80 

(0.073) 

0.92 

(0.052) 

0.90 

(0.059) 

0.89  

(0.074) 

0.92  

(0.028) 

Hartman6 
0.61 

(0.079) 

0.79 

(0.082) 

0.85 

(0.018) 

0.75  

(0.15) 

0.81  

(0.032) 

Radial Turbine 
0.9951 

(0.0015) 

0.9814 

(0.0088) 

0.8495 

(0.062) 

0.9951  

(0.0015) 

0.9946 

(0.0013) 

Table 11 The mean and the coefficient of variation (in parenthesis) of RMS errors in design space (based 

on 1000 instances of DOEs) for different surrogate models. 

 PRS KRG RBNN Best PRESS PWS 

Branin-Hoo 
32.8 

(0.15) 

30.7  

(0.38) 

36.1  

(1.70) 

32.5 

(0.20) 

27.7 

(0.46) 

Camelback 
21.0 

(0.17) 

20.0  

(0.16) 

36.1  

(2.27) 

20.7  

(0.17) 

19.4 

(0.30) 

GoldStein-Price 
6.40e4 

(0.17) 

6.00e4 

(0.33) 

1.12e5 

(3.52) 

6.97e4  

(3.32) 

5.98e4 

(1.66) 

Hartman3 
0.60 

(0.20) 

0.34  

(0.28) 

0.43  

(0.55) 

0.41  

(0.34) 

0.36 

(0.16) 

Hartman6 
0.23 

(0.14) 

0.13  

(0.12) 

0.11 

(0.051) 

0.15  

(0.34) 

0.13 

(0.074) 

Radial Turbine 
0.0023 

(0.15) 

0.0043 

(0.23) 

0.0120 

(0.18) 

0.0023  

(0.15) 

0.0025 

(0.13) 

Table 12 The mean and the coefficient of variation (in parenthesis) of maximum absolute error in design 

space (based on 1000 instances of DOEs). 

 PRS KRG RBNN Best PRESS PWS 

Branin-Hoo 
182 

(0.25) 

222 

(0.41) 

258  

(0.75) 

198 

(0.29) 

202  

(0.35) 

Camelback 
127 

(0.24) 

133 

(0.12) 

236  

(2.41) 

126  

(0.23) 

128  

(0.33) 

GoldStein-Price 
4.74e5 

(0.28) 

5.63e5 

(0.37) 

1.08e6 

(3.55) 

5.56e5  

(2.96) 

5.31e5 

(1.64) 

Hartman3 
4.40 

(0.38) 

1.94 

(0.21) 

2.47  

(0.86) 

2.59  

(0.54) 

2.05 

(0.28) 

Hartman6 
4.24 

(0.29) 

1.89 

(0.11) 

1.84 

(0.092) 

2.62  

(0.43) 

1.90 

(0.17) 

Radial Turbine 
0.0120 

(0.28) 

0.0196 

(0.21) 

0.0346 

(0.22) 

0.0120  

(0.28) 

0.0118 

(0.20) 
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Table 13 The mean and the coefficient of variation of the ratio of RMS error and PRESS over 1000 

DOEs. 
*
Branin-Hoo and Goldstein-Price functions had significant difference in the mean and median 

values of RBNN. 

 PRS KRG RBNN 

Branin-Hoo* 0.97 (0.57) 0.67 (0.60) 0.72 (1.07) 

Camelback 1.20 (0.34) 0.76 (0.31) 0.73 (0.98) 

GoldStein-

Price
*
 

1.32 (0.75) 0.99 (0.83) 0.89 (3.33) 

Hartman3 1.22 (0.31) 0.78 (0.33) 0.85 (0.32) 

Hartman6 0.99 (0.12) 0.50 (0.17) 0.50 (0.14) 

Radial Turbine 1.34 (0.24) 1.02 (0.21) 0.97 (0.14) 

Table 14 Studying the impact of modeling high gradients using Branin-Hoo function (Branin-Hoo 12 is 

the case when we used 12 points for modeling and Branin-Hoo31 is the case when 31 points were used to 

model the response) We used 1000 DOEs samples to get mean and COV. 

  
PRS KRG RBNN 

Best 

PRESS 
PWS 

Branin-Hoo12 
0.79 

(0.08) 

0.76 

(0.24) 

0.75 

(0.18) 

0.79 

(0.12) 

0.84 

(0.11) 
Correlations 

Branin-Hoo31 
0.989 

(0.003) 

0.999 

(0.001) 

0.93 

(0.076) 

0.998 

(0.003) 

0.997 

(0.014) 

Branin-Hoo12 
33 

(0.15) 

31 

(0.38) 

36 

(1.70) 

33 

(0.20) 

28 

(0.46) 
RMS Error 

Branin-Hoo31 
7.6 

(0.11) 

2.3 

(0.53) 

19.3 

(1.27) 

2.6 

(0.64) 

4.1 

(0.54) 

Branin-Hoo12 
182 

(0.25) 

222 

(0.41) 

258 

(0.75) 

198 

(0.29) 

202 

(0.35) 
Max Error 

BraninHoo31 
34 

(0.31) 

30 

(0.63) 

183 

(0.80) 

31 

(0.60) 

41 

(0.53) 

Table 15 Studying the impact of modeling high gradients using Camelback function (Camelback20 is the 

case when we used 20 points for modeling and Camelback40 is the case when we used 40 points to model 

the response). We used 1000 DOEs to get mean and COV.  

  PRS KRG RBNN Best PRESS PWS 

Camelback20 0.69 (0.13) 0.69 (0.19) 0.62 (0.50) 0.69 (0.14) 0.73 (0.20) 
Correlations 

Camelback40 0.97 (0.010) 0.98 (0.039) 0.92 (0.080) 0.98 (0.015) 0.98 (0.010) 

Camelback20 21 (0.17) 20 (0.16) 36 (2.27) 21 (0.17) 19 (0.30) 
RMS Error 

Camelback40 6.9 (0.15) 4.7 (0.74) 11 (0.35) 5.0 (0.42) 5.4 (0.27) 

Camelback20 127 (0.24) 133 (0.12) 236 (2.41) 126 (0.23) 128 (0.33) 
Max Error 

Camelback40 39 (0.34) 48 (0.64) 90 (0.52) 40 (0.47) 43 (0.39) 
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Table 16 Effect of parameters in parametric surrogate filter used for PWS. Three settings of parameters 

α and β were selected. We show median, 1st and 3rd quartile data based on 1000 DOEs for Goldstein-

Price problem. 

 

 

PRS KRG RBNN 
Best 

PRESS 

PWS 

α=0.05, 

β=-1 

PWS 

α=0.5, 

β=-1 

PWS 

α=0.05, 

β=-5 

Median 0.89 0.90 0.94 0.89 0.93 0.93 0.91 

1
st
-quartile 0.86 0.84 0.88 0.86 0.90 0.90 0.88 Correlations 

3
rd
-quartile 0.90 0.94 0.97 0.91 0.95 0.95 0.94 

Median 6.14e4 5.56e4 4.35e4 5.92e4 4.91e4 4.84e4 5.41e4 

1st-quartile 5.58e4 4.51e4 3.39e4 5.18e4 4.10e4 4.07e4 4.47e4 RMS Error 

3
rd
-quartile 6.92e4 7.21e4 6.65e4 6.86e4 6.07e4 6.05e4 6.46e4 

Median 4.52e5 5.32e5 3.88e5 4.54e5 4.35e5 4.32e5 4.52e5 

1
st
-quartile 3.74e5 3.91e5 2.65e5 3.56e5 3.38e5 3.33e5 3.47e5 Max Error 

3rd-quartile 5.52e5 7.49e5 6.68e5 5.87e5 5.75e5 5.73e5 5.82e5 

 

Appendix: Generalized Mean Square Cross-validation Error 

In general, the data is divided into k subsets (k-fold cross-validation) of approximately equal size. A 

surrogate model is constructed k times, each time leaving out one of the subsets from training, and using the 

omitted subset to compute the error measure of interest. The generalization error estimate is computed using the 

k error measures obtained (e.g., average). If k equals the sample size, this approach is called leave-one-out cross-

validation (also known as PRESS in the polynomial response surface approximation terminology). Equation 

(A1) represents a leave-one-out calculation when the generalization error is described by the mean square error 

(GMSE). 

( ) 2

1

1 ˆ( )
k

i

i i
i

GMSE f f
k

−

=

= −∑         (A1) 

where 
( )ˆ i

if
−

 represents the prediction at 
( )

x
i
 using the surrogate constructed using all sample points except 

(
( )

x
i
, if ). Analytical expressions are available for that case for the GMSE without actually performing the 

repeated construction of the surrogates for both polynomial response surface approximation (Myers and 

Montgomery
23
, 1995, Section 2.7) and Kriging (Martin and Simpson

24
, 2005) however here we used brute-force. 

The advantage of cross-validation is that it provides nearly unbiased estimate of the generalization error and the 

corresponding variance is reduced (when compared to split-sample) considering that every point gets to be in a 

test set once, and in a training set k-1 times (regardless of how the data is divided). 

 


