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DYNAMIC RESPONSE OF FINITE LENGTH CYLINDRICAL SHELLS
TO NEARLY UNIFORM RADIAL IMPULSE

1, K, Mclvor®™and E, G. Lovell **
The University of Michigan
Ann Arbor, Michigan

Abstract

The response of a cylindrical shell to a uni-
form radial impulse is a simple harmonic motion
in which the cross section remains circular. In
the presence of small nonuniformities in the
impulse, this motion may be unstable, The insta-
bilily is characterized by the parametric excita-
tior of flexural modes which exchange energy with
the basic motion in a cyclic manner, The sta-
bility criterion derived here for finite length
cylinders shows this instability may occur over
a wide range of shell geometries, The flexural
modes which exhibit significant growth are
identified. With this the finite time response of
the shell is obtained by numerical integration of
the nonlinear equations, The nonlinear response
is diominated by a few flexural modes which o
initially have high growth rates, The ampilifica-
tion of these modes results in displacements and
strosses considerably in excess of those asso-~
ciared with the unperturbed response. Finally
the imperfection sensitivity of the nonlinear
motion is examined.

Introduction

When shell structures are subjected to time
dependent loadings, the dynamic response may
be wffected by parametric instabilities, A par-
ticular class of such instabilities occur in shells.
subjected to impulsive loads, The instabilities
arise from nonlinear coupling between possible
modes of free vibration, As an example, the
re-ponse of a cylindrical shell to a uniform
radial impulse is a simple harmonic motion in
which the cross section remains circular, period-
icaily expanding and contracting. But this basic
response may be unstable in the presence of small
ner.uniformities in the initial impulse. A number
of 1'redominantly filexural modes can be para-
metrically excited to rather large amplitudes,
Energy is extracted from the initial or basic
response and cyclically exchanged with the modes
exhibiting significant growth,

A response of this type was obtained for the
cylindrical shell by Goodier and Mclvor [ 1]**%,
The investigation was restricted to the case of
plane strain, i.,e, requiring generators of the
shell to remain straight and parallel to the axis.
A study of the analogous problem for the axi-
symmetric spherical shell by Mclvor and
Sonstegard [ 2] produced similar results. In the
present paper axial motion and variation along the
generators are permitted, and the effect of the
length of the shell upon the response is determined,

The related problem of a simply supported
cylindrical shell subjected to a suddenly applied
pressure has been considered by Bieniek, Fan,
and Lackman [ 3] using Galerkin's method. From
a short-term analysis, the growth of displacement
perturbations was predicted, The long-term
motion was not analyzed, For the preseat problem
of the motion of a finite length cylindrical shell
following impulsive pressure, a criterion for the
stability of the basic response is obtained and its
dependence upon the shell geometry is established.
In addition those flexural modes which may exhibit
significant growth are identified, With the critical
modes determined, the nonlinear equations are
integrated numerically to obtain the finite time
response, A number of examples are discussed
which serve to illustrate the magnification of
stresses and displacements associated with the
finite time response. The examples also serve
to delineate the perturbation sensitivity of the
response,

Method of Sclution

The cylindrical shell considered is shown in
Figure 1. The constants denoting the length,
thickness and midsurface radius are #, h, and a,
respectively, The coordinates in the longitudinal,
circumferential and radial directions are x, @, and
z, and the corresponding displacement components
of a point on the midsurface are u,v, w, The
displacements are considered as functions of the
coordinates of a point on the undeformed midsurface
{(x, 8) and time t.
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To investigate the motion following impulsive
pressure, we express the total energy of the shell
as & function of the displacements and their spatial
and time derivatives, Series representations are
chosen for the displacements which satisfy given
boundary conditions, After these representations
are introduced into the energy functional, the.time
dep--ndent coefficients can be considered as gener-
alized coordinates. Thus they are solutions of
the associated Lagrange equations,

In deriving the energy functional appropriate
for the ensuing stability analysis, it is necessary
to retain quadratic terms in the strain-displace-
ment relations. But in the motion of thin shells
following radial loading, the tangential components
of the displacement are generally small compared
to the radial component. Thus quadratic termas
involving only w and its derivatives are retained,
With this and using the usual assumptions of thin
shell theory as to conservation of normals,
unchangmg thickness coordinates, and neglecting
(h}’n) compared to unity, an appropriate energy
functional is obtained. It is derived in detail in
[4], and is given for reference in the appendix,

The displacement representation used in the
present analysis is

[an] [on]

u = Z Z Umn {t} sin m;x cosnb (la)
ms=o n=o
w N

v o= E E v {t) cos =X sinne {1b)
mso n=o
@ o S
E E (t) cos ;r cosn@ {ic)
m=on=o

At cach boundary of the shell the slope dw/9x and
the axial displacement vanish, whereas the radial
and circumferential displacements do not. The
effective radial and circumferential shear per

unit length are zero at the boundar'mes. Although
interest than more common geometric constraints,
they give rise in the present problem to consider~-
able simplification of the energy expression. Thus
they permit investigation of the effect of finite
length on the stability analysis without undue
algebraic complication,

The titme dependent coefficients in (1} are
considered as generalized coordinates. The
associated Lagrange equations are listed in the
Appendix, *This highly coupled, infinite system
of differential equations govern the free noalinear
motion of the shell, Reasonable approximations
must be made before useful solutions can be
obtained,

f\

Fig. 1 Shell Geometry

Initial Motion - Stability of the Basic Response

If the impulsive pressure is of sufficiently
short duration, its effect is to impart an initial,
radial velocity to the shell, For a perfectly
uniform distribution Wy, is the only nonzero term
in the representation (1), From (A-6) the govern=-
ing equation is

W +W =0 {2)
(o] o

where the dot denotes differentiation with respect
to dimensionless time * defined as

T =ct/a |, =E fp (lavz) {3)
The associated initial conditiont are

W o {o) =0 , w o (o) =av°/c (4}

where v,
shell, For elastic motion v, ==c.
response is

is the uniform velocity imposed on the
The basic

av

w =
(s 1e]

sin T (5)

To investigate the stability of the basic response
we perturb the rnotion by considexing a small
The response is now g1ven by (1) ‘with W, being
the basic response as affected by the perturbation
and the remaining terms representing the pertur-
bational responge, The nonzero initial conditions
associated with equations (A-6) and (A-7) are

. .
woo (c) =av°/c R wmn {0} = navolc (6}
where ¢ is much less than unity for ali pairs

of m and n except {0.0).

The summations in (A-6) and {A-7) involve
products of coefficients arising from the non-
uniformity. For small values of time they are of
perturbational magnitude and may be neglected.



With this W, is the basic response {5), and
equations {A~7) reduce to

ﬁmn+clumn+czvmn+c3wmn=o (7a)
r\;mn+ C4an+ CZUmn+ C'men =0 (75)
;Gmn+c3umn+05v
W G woo[ 2 m21r '_a_-’z] =0
mn 6 a 3 1
(7c)
whe re
2 .
R I
cz - Z'n';'nn e_li (8b}
3.3 3 3
oy =1 F+3-(2) (4
2 2
A (8)
2
cyentsiml 1
rrzmzn h2 a 2
Gy =n+ 5 (2] (3] (8e)
4 4 2 4 4 2z
o=t (2 (3 + 5 (3]
2 22 2 2
e I T

in which Poisson's ratio haa been taken as 1/3.

In [4] it was shown that a good approximation
to the linear response following arbitrary radial

impulse is obtained by neglecting tangential inertia.

We extend this approximation here to the deviation
from the basic response, With this from (7a) and

(7b)
CSCZ'C3C4.
Von = TG 62 Vrnn (92)
mn 1 4— 2
¢, C.-C C
mn$'= 22 -1 2 wmn (9b)
€,CqrC;

lntroducing {9} and. woo from (5) into {7¢} then
give

W n+(ﬂ+p.sin1')wm =0 (10)
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Fig. 2 Mathieu Stability Diagram

where
GZ
Q=co &+ )
C -
4 4 (GZ Clc4)

2
(C3C4-C2C5)

(11a)

vo 2 rn;1 2 a Z
_ w
o - [n +“"'"—3 —1} ] {11b)

Equation {10) is Mathieu's equation, whose
properties and solutions are extensively recorded
such as in [51. The character of the solution is
determined by the parametersf{l and pu. Figure 2
shows the Mathieu stability diagram. ¥ a point
(f1, ) falls within a shaded region, the solution is
bounded or stable; if the point falls within an
unshaded region, the solution exhibits exponential
growth. For a fixed value of p the instability zones
become increasingly narrvow as () increases, In
the present problem the amplitude of a given mode
will remain perturbaticonal in size whenever its
corresponding parameter point falls into a stable
region, But significant growth may be expected in’
a mode whose parameter point falls in an unstable
region.

In a given problem we must locate the para-
meter points for each pair (m,n}), For larger
values of either integer the parameter points fall )
in the predominantly stable region. Thus in genera.f.“"
we may confine our attention to the first unstable
zone,
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Fig. 3 Stability Diagram for
volc = 10'3, aft=1, a/h =100

If m and n are treated as continuous variables,
egaations {1la} and (11b) may be viewed as the
parametric representation of a doubly infinite
fa:nily of curves. The intersection of a curve
associated with an integer value of m with the
curve associated with an integer value of n is the
parametric point for the pair (m,n), The set of
curves for a particular geometry (a/? =1, a/h =
1C0) and initial velocity (vo/c = 1073} iz shown in
Figqure 3. A relatively large number of points
fail in the unstable zone. The points on the m =0
curve coincide with the plane strain solution given
in [1].

Figure 4 shows the corresponding results for
aft =1/2and a/h = 100. If the shell is lengthened,
more points move into the unstable zone from the
right, which can be seen by comparing Figures 3
and 4, As the length becomes arbitrarily large,
for each n the points for all values of m coalesce
to the m = 0 point,

The examples shown are typical for a wide
range of geometries, Tt is evident that the basic
response is likely to be unstable since usually at
least one parameter point will fall in the unstable
zone. Generally a relatively large number of
modes will be associated with the instability, the
number increasing with increasing length of the
shell,

Not all of these modes, however, will have a
significant effect on the long term response, For
the modes with parameter points in the unstable
zone, the Mathieu solution is of the form ¢{t)e
expk;'r where ¢{T) is periodic. Iso-k curves are
shown dashed in Figures 3 and 4, It is expected
that the modes with the higher growth rates will
dominate the response. Thus many of the unstable
modes may be neglected based upon a comparison’
of their initial growth rates. The accuracy obtained
Y¥or a given cholce of modes is discussed in the

Fig. 4 Stability Diagram for

v lc= 10-3, aft = 1/2, a/h = 100

next section,

Long Term Response

To obtain the finite time response, the non-
linear terms in the governing equations for the
Fourier coefficients must be retained. It is
necessary, however, to consider only modes
which undergo significant growth. Modes exhibiting
initial growth were identified in the preceding
stability analysis, Of this group the modes with
the higher growth rates will dominate the long
term response,

Since not all possible "unstable" modes will
be included in the analysis, the accuracy of the
solution will be ascertained by computing the total
energy of all participating modes and comparing it
to the kinetic energy initially imparted to the shell,
Also, we require the energy of the slowest growing
of the selected modes to be small compared with
the initial energy. This assures that the excluded
moedes have negligible effect upon the solution,

The nonlinear equations have been integrated
numerically for a number of geometries and
different initial imperfections, Some typical
results are given here,

Example 1

In this case a/f = 1.0 and a/h = 100. The
stability diagram in the vicinity of {2 = 1/4 is
shown in Figure 3. Although ten modes are sus-
ceptible to excitation, only the four fastest growing
modes, (0,13), {1,13), {0, 14), and {2,11) are
included in the analysis.

The initial conditions used are
w (0}

o0

a

VO
re {12a)
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Fig. 5 Displacement Coefficients vs,
Time for Example 1

w_ o
mn _ A (12b)
a . C (mz+n2)
in which A << 1.
-3

The numerical results obtained for v _/fc = 10
arc shown in Figure 5. The response is character-
ized by cyclic exchange of energy between the
various modes, The largest amplitude is attained
by mode (1, 13); this is also the firat mode to reach
its maximum value. Clearly the displacements
associated with the finite time xesponse are con=-
siderably in excess of those associated with the
unperturbed motion,

The ratio of the total energy in each mode to
the initial kinetic energy of the shell is shown in
Figure 6. The mode with the slowest growth rate,
(2,11), participates with almost negligible energy
durink the early exchanges and never contains
mcre than 15% of the total energy for the range of
time considered., The maximum difference
between the total energy of the modes considered
and the original kinetic energy never exceeded

1/2%.

Fig. 6 Energy Ratios vs. Time for Example |

Example 2

A second perturbation is considered with the
same geometry as in Example 1. The initial radial
velocity distribution is taken as a constant perturbed
by a parabolic variation. Thus

' 2
w(x,G 0) _
- ——CE-[HA()(I-—-Z-] ‘;<e<1

z
v {13)
[+] w 3w
=T 7 <e<3

The numerical results, again computed for
v _Jjc = 1073, are shown in Figure 7. Although
the mode (0, 14) now reaches its maximum magni=-
tude first, the largest amplitude is attained by
(1, 13) a few cycles later when essentially all of
the energy in the basic motion has been extracted.’

Comparison of the two examples shows that
the maximum amplitude attained by a given mode
is rather insensitive to changes in the perturbation,
Thus the nature of initial imperfections will not
alter the dominant modes in the long term response,
They may, however, alter the relative phasing ef
the dominant modes. In the present example the
fact that the mode {0, 14) reaches its maximum
first can be attributed to the relative size of the
perturbations, In Example | the perturbations
received by each mode were of comparable magni-
tude, while in Example 2 the initial value for
{0, 14} was approximately 15 times as strong as
that for {1, 13}). Since the displacement at any
instant depends upon the relative phase of the
various modes, the actual motion isquantatatively
sensitive to the initial values of the dominant modes,

Example 3

If the shell is lengthened, more modes are
susceptible to excitation, For example, the sta-
bility diagram in the vicinity of{1= 1/4 fora/ft=1/2
is shown in Figure 4, Using the parabolic
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Fig. 7 Displacement Coefficients vs.
Time for Example 2

perturbation of Example 2, the nonlinear equations
for -the six fastest growing modes were integrated
with v _/c = 10"3, The results are qualatatively
similar to the previous example with the long term
motion being dominated by the same three modes,
This confirms the expectation that the character
of the finite time response is determined more by
the initial growth rates than by the number of
modes susceptible to excitation.

Axial and Circumferential Normal Stress

The large displacements which develop in the
finite time response of the shell are accompanied
by comparably magnified stresses, In many
applications the stress level would be of prime
importance,

For a state of plane stress the normal stress
in the circumferential direction is

oi czo Wi z 2.2 1r23.2)
, 2 (toa Umimivage

E
T (v {
i=o j=o
v

y U,
pimgh 4 ivm (%‘]f”- (14a)

-5,

i

Fig. 8 Stress Ratios ve., Time for Example 2

The axial stress is

0 (0]
. W,
" _if _z B 2_ T a
Tx " TV 1Z>j=Z> a [v {v vio-t 12)]
U v
+iw|%] -—;li +jv;—{L (14b)

The stress components at a typical point, x=0,
=0, z =h/2, are computed for Example 2, For
the unperturbed or basic motion of the shell, the
maximum circumferential stress is

I (15a)
L = —— 15a
@ {1-v2) ¢
"The amplitude of the axial stress for the
fundamental motion is
* vEv,
T

5 — (15b)
X {1-vd) ¢ ‘

Equations (14) are written as finite sums for
the fundamental and excited modes, The ratios of
these stresses to the maximum values of the basic
motion are shown in Figure 8. In this example the
circumferential and longitudinal stress ratios reach-
extreme values of 5 and 10 respectively. Maximum
stress does not necessarily occur with the first
significant energy exchange, but rather at a later
time when the modes dominating the finite time
response tend to be in phase.

Conclusions

The stability of the motion resulting from the
application of a uniform radial impulse to a finite~
length cylindrical shell has been analyzed, It has
been shown that an unstable response is character-
ized by the exitation of flexural modes which ex-
change energy with the basic motion in a eycelic



manner. The possibility for such a response is where
increased both by lengthening the shell and de-

creasing its thickness. A criterion has been K 2 ¢ 2 vez' ) w 2
extablished for the identification of the excited U == S i g [ {au } — o —
m ¢ x a a
modes.
o o

The growth rates of the perturbed modes can w v wZ wa
be determined from a short term analysis, Gen- +2 Ve +au w F] N 6 8 ; ] }
erally the long term behavior ia dominated by the a X x 3 a
flexural modes with the higher growth rates. The u wZ
long term response i3 sensitive to changes in the b W2u v, + 20 w4 X rv w4 wa)
initial perturbations received by these high growth x 0 x 8 x

rate modes, but is insensitive to changes in the 2 2

initial values of the slow growth modes. ug av_
+ “'"’{ Za vt T ot ougYy
Finally it has been shown that if flexural
motion is excited, it gives rise to stresses that .
. . wowW oW
are far in excess of those associated with the basic , o= v oww ) ] dxde (A-2)
motion of the shell, a X x B
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Appendix {A-5)
The material of the shell is assumed to be When the displacement representation (1) is
isotropic and linearly elastic with modulus of introduced into (A-1) and (A-5}, the coefficients
elisticity E and Poisson's ratio v, The strain ‘can be considered as generalized coordinates. The
encrgy in a form appropriate for the nonlinear corresponding Lagrange equation for the basic
problem considered here has been derived in response woo is
[4]. Itis
U= +U (A-1)
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in which the dot denotes differentiation with respect
to the dimensionless time v defined by equation (3).
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4 2 2 2 2 2
+ B2 (F (B umedmea + L (2] (3] (eimed -2

+ mj (n=j) {m-2i) ] =0

The equations for the other coefficients are
structurally similar to (A-7) and for brevity will
not be reproduced hers,



