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Singular arcs form a part of the extremal arc in many 
instances in optimal control theory, the most common 
one occurring when the control appears linearly in the 
Hamiltonian. Pontryagin’s maximum principle does not 
yield any information in such and we must differ- 
entiate the switching function en number of times 
with respect to time for the control to 
Lie and Poisson Brackets are very el 
nient means of expressing this contro 
ature, these solutions have been given only for the case 
of a single control appearing linearly, which is a case 
of a totally singular arc. With the help of the concept 
of the Generalized Hamiltonian, we extend the Poisson 
Bracket solution to  the case of partially singular arcs, 
where both singular and non-sin ular controls appear 
together and these are quite common in the literature. 
For some special cases, the solution can be expressed in 
terms of the Lie Brackets also. We illustrate these re- 
sults with the help of an example of optimal turn to a 
heading of a spacecraft in atmmpheric flight. We show 
that the results are identical to  thoee obtained by con- 
ventional methods and discuss the advantages of the Lie 
Bracket met hod. 

In optimal control theory, there are many instances 
where the application of Pontry ’s maximum prin- 
ciple does not yield any informa about the control 
variables. Such c e8 are termed as the ‘Singular Cases’ 
in the literature. The correspondin control is called the 
singular control and the extremal trajectory, the singu- 
lar arc. The most common example of these occurs when 
the control appears linearly in the equations of motion. 
The singular cases are of interest not only from a theo- 
retical point of view, but also from a practical one. For 
example, there has been a long debate regarding the op- 
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timality of the steady cruise flight of an aircraft which, 
if at all, must necessarily be a part of a singular 
Singular controls can also occur in various other fields 
such as chemical process control and economics. See 
Ref.(4) for an excellent introduction to the subject. 

For the case of a single control appearin 
essary conditions have been developed by Kelley et. a15 
in the late sixties which led the Kelley-Contensou 
test and the method of findin he singular control by 
successive differentiation of the switchi 
results were further extended to rnulti- 
Goh6l7 and Robbins’, the latter iving a Generalized 
Legendre-Clebsch condition. Since then, various authors 
obtained results on the junction conditions between sin- 
gular and non-sin ular arcs and necessary and sufficient 
conditions for the existence and optimality of si 
arcs4. Krener’s9 higher order maximum princip 

ple a8 a special case. 
eneral theory which includes Pontryagin’s princi- 

Concurrent to the above developments, various au- 
thors, mostly Russian, have used the ele 
erful tools of differenti 
Poisson Brackets to exp 
survey paper by Gabaso 
source of a number o f t  
paper, Poisson’s theorem 
used to show that the si 
an even order derivative 
recent articles on these su 
Andrews” and Lamnabhi- 

d the Jacobi identity can be 
lar control appears only in 

are by Bell”, F’raser- 

In most of the literature listed above, it is assumed 
that the singular arcs are totally singular (a formal def- 
inition will be given later) where all the controls are 
singular over the entire interval of interest. Especially 
the Lie and Poisson bracket solutions are given only for 
singular arcs with only one control variable, with ob- 
vious extensions to multi-variable but totally singular 
cases. Partially si 
non-singular cont 
cations, for example in the fli 

lac arcs (a mixture of 
) occur quite frequen 
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the atmosphere, where the lift and bank controls can be 
non-singular while the thrust program is singular. 

Applying the Pontryagin's maximum principle, the ad- 
joint vector satisfies the differential equation 

In what follows, we first give the results for single in- 
put case with the control appearing linearly. Definitions 
and properties of Lie and Poisson Brackets are given. 
Even though most of these results are quite standard 
in the literature, we present them in a formal theorem- 
proof format and add our own remarks and observations 
wherever appropriate. Most of the results and the out- 
lines of the proofs in this section are obtained from the 
recent paper by Bell1'. The extensions to the above 
case are presented by defining partially and totally sin- 
gular arcs and the concept of Generalized Hamiltonian 
as used by Robbins". We then verify our results using 
a standard example in the literature and conclude this 
paper with a summary. 

In this section we summarize all the results for the 
case of a scalar control on a singular arc. The statement 
of the optimal control problem is followed by definitions 
and properties of the Poisson Brackets. Then the opti- 
mal singular control is expressed in terms of the Poisson 
Brackets. By the simple relation between the Lie and 
the Poisson Brackets, all the results are expressed in 
terms of the former. 

Let the dynamic system be governed by the following 
first order ordinary differential equations 

f = f o ( x )  + u f l ( X )  , (1) 

where, x , f o , f i  E R" and u E R 1 ,  x is the state vector 
and u is the control. Throughout this paper, we as- 
sume that all scalar and vector functions are sufficiently 
smooth in all their arguments so that all their partial 
derivatives to the required order exist and are continu- 
ous. The control u E U ,  a compact set. 

I t  is desired to obtain the time history of the control u 
that maximizes the performance index which is a func- 
tion of the final states (thus the problem is of Mayer 
type) 

ma12 J = J ( X ( t f ) ) ,  (2) 

x ( t 0 )  = xo a n d  (3) 

while satisfying certain initial and final conditions 

We form the Hamiltonian by introducing the adjoint 
vector p E R" as 

\ 
H = pT + u p T  

= Ho(x ,  P) + u H1 ( x ,  P) * (4) 

( 5 )  
= -(a)'.-.($) T p 

and the control is given by 

u = a r g  max ( H )  
U E U  

We call (g) = H1 the switching function. If H1 = 0 
over a non-zero interval of time, the maximum princi- 
ple gives no information about u. In general, whenever 
(3) = 0, we have a singular case. We must succes- 
sively differentiate H1 with respect to time until u ap- 
pears explicitly and it can be shown that this happens, 
if at all, only in an even order derivative of H I .  We ex- 
press these derivatives in terms of Poisson Brackets as 
shown below. 

Definition 1 Ifa(x,p) and b ( x , p )  are any  t w o  scalar 
funct ions of x and  p E %", then, the Poisson Bracket of 
a and b i s  defined a d 4  

0 

Given three scalar functions a ,  b,  c of x and p, we have 

{ a , b )  = - {b ,a l  
{a,O) = 0 (8) 
{ u , a )  = 0 

and the Jacobi identity 

{ a ,  { b ,  c ) )  + { b ,  { c ,  .)I + { c ,  { a ,  b ) )  = 0 (9) 

We need the following lemma before we proceed further. 

emma 1 If a ( x ,  p) is a scalar funct ion of x and p, 
where x and p are the s tate  and the adjoint  variables 
governed by the differential equations 

X =  (g) a n d  r;= - (E) (10) 
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: Using Eqs.(lO), (7) and ( 4 ) ,  we get 

!!E dt = ( ~ ) T ( ~ ) + ( ~ ) T ( ~ )  

-(g)T(F+u--) 8H1 

= [(E)T(2) - (2)T($)] 
+26 [ - ( 2 ) T ( g ) ]  

ax 

q.e.d. 
Note that u appears linearly in the derivative. Fol- 

lowing Ref. ( 9 )  we define the notation 

$'Hi = {Ho,d'-lH1}, 

$OH1 = H i ,  i = 1,2 ,  . . .  (12) 

With this, we have the following result. 

emma 2 If, for the optimal control problem given b y  
Eqs. (1) - (J ) ,  the singular control appears in the k th 
time derivative of H I ,  then 

= diH1 = 0 ,  i = 0 , 1 , . . . , ( k - 1 )  

{ H ~ , ~ - - ~ H ~ }  z o , i =  1 , 2 , . . . , ( k - - 1 )  
dk (g) = dkH1 + u  (H1,dk-'H1} 

0 

roof : The first equality is trivial for i = 0. We prove 
the first equality by induction. For i = 1 ,  by Lemma 1, 

dt  
= { H o , H i } + u  { H 1 , H 1 } = d l H 1  

Let the first equality be true for j < k - 1 ,  Le., 

Then, using Lemma 1, 

But since the singular control appears for the first time 
in the k th derivative, we have, 

a cs' d H  
a.ll [z (a,)] 1 0 ,  i = 0 , 1 , . . . , ( k - - 1 )  (15) 

Thus, since (j + 1 )  < k, 

and 

Thus we proved the first equality for i = 0,1,  ...( E - 1) .  
At the same time, we also see from Eqs. (15) and (16), 
that the second equality is true for i = 1 ,2 ,  ...( k - 1 ) .  

Finally, to  prove the last result, using j = (k - 1 )  in 
Eq.(14), we have 

dk 8H = dkH1 + u {H1,dk-- 'H1} (18) 2 (au) 
q.e.d. 

Lemma 3 Given { H I ,  $ 'Hi}  E 0,  i = 0 , 1 , .  . . , (k - 2), 
then, V i  = 0 , 1 , .  . . , ( I  - 1) and VI  = 1 , 2 , .  . . , ( E  - I ) ,  

{ $ H ~ ,  d'-'H1} = -{d('+')Hl,  d'-(i+l)Hl} (19) 

n 

roof : We prove this by principle of complete 
induction16. For i = 0, we have using the Jacobi iden- 
tity, 

{ H i ,  d'Hi 1 
= { H l ,  {Ho, d ' - l H l } l  (de f . )  
= -{Ho,  { d ' - ' H i , H i } }  

-{d'- 'H1, {Hi, Ho}} (Jucobi) 
= -{{Ho,  H i } , d ' - l H i } ( { H ~ , d ' - l H 1 }  Z 0 )  
= -{diH1,d'-'H1} (def . )  

Let Eq.(19) be true for i = 0, 1, . . . , (j - 1) ,  j < 1. Then 
we need to show that 

{ d j H l , d ' - j H i )  = - {d ( j+l)  H i ,  dl-(j+l)H 1) (20) 
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Let us consider the first term on the right hand side. 
Applying Eq. (19)  backwards with ( I  - 1 )  instead of I ,  
we get 

-{ d('-')-j H1, djH1) 

1)  (8) - - 

- - -{d~-lHl,d('-l)-(j-l)Hl} ( ( l g ) ,  i = ( j  - 1 ) )  
= +{dj-zH1,d( ' - l ) - ( j -z )H1)  ( (19) ,  i = ( j  - 2 ) )  

{ d j  H 1 ,  d('-l)-j H 

q.e.d. 

Corollary 1 For the same Hypothesis as in Lemma 3, 
we have 

{&H1,dr-'H1} = - ( l ) i+l{H1,d 'H1} (22)  

V i  = 0 , 1 , .  . . , ( I  - 1 )  and VI  = 1 , 2 , .  . . , ( k  - 1 ) .  

(21).  00 

{diH1,d'-'H1) 0 (23) 

0 

roof : Apply Lemma 3 backwards i times as in Eq. 

For the same Hypothesis as in Lemma 3, 

V i  = 0 , 1 , .  . . , ( I  - 1)  and V1= 1 , 2 , .  . . , (k - 2). 0 

00 roof:  Corollary 1 and hypothesis of Lemma 3. 

Corollary 3 For the same Hypothesis as in Lemma 3, 

roof : Use Corollary 1 with 1 = ( k  - 1).  00 

heorem 1 If, for  the problem stated in (1) - (3) u ap-  
pears in the k th  derivative of Hl(linearly) on a singular 

0 arc, then k is even. 

roof : We prove that if k is odd, then the coefficient 
of u in the k th  derivative is identically zero. Let k = 
(2q + l ) ,  where q 2 0 .  Then from Lemma 2, we have 

{H1,diH1) z 0 , i  = 0 , 1 , .  . . , (2q - 1)  
dk  ~(E) d t k  = d2q+1H1+u{H1,d2qH1} 

Using Corollary 3, with k = (2q + 1 )  and i = q and Eq. 
($1, 

( - l )q+'{Hl ,  dZqH1) = {$'HI,  dqH1} E 0 (25) 

q.e.d. 

If u appears ezpcplicitly in the 2q th deriva- 
tive of the switching function, then, q is called the order 

0 of the singular arc. 

The Generalized Legendre-Clebsch neces- 
sary condition for the optimality of the singular arc as 
given b y  

(-l)Q+l.--.-- d ~ d2q 
du  [dt2q (E)] 

00 roof : See Ref. (5). 
We can express all the above results in terms of Lie 

Brackets which are defined as given below. 

efinition 3 Let f and g E R" be vector functions of 
x. Then the Lie Bracket of E and g i s  defined as: 

) = ( @ ) f - ( a f ) g  d X  d X  

where, (g) and ( ) are  the ( n  x n) Jacobian matri- 
0 ces. 

11 

emma 4 Given the vector functions f , g  of x and p, 
the latter being governed b y  the ( IO) ,  we have: 

roof: 

q.e.d. 
The following properties of Lie Brackets can be eas- 

ily verified from the corresponding ones for the Poisson 
Brackets. 

Properties of Lie Brackets 

vector 8, we have 11, 

Given three vector functions E, g, h of x and the null 

(g,f)  = -(f ,g)  
( f , q  = e 
( f , f )  = 8 

3 3 0  



and the Jacobi Identity and the state and the adjoint vectors satisfy the canon- 
ical system given by (10) The second order necessary 
conditions are that the (rn + 1) x (rn + 1) Jacobian ma- 
trix (Z) 5 0  

If x,p are governed by the canonical equations ( lo) ,  
then, 

d 
dt - ( P T g )  = PT(fo,g> + 21 P T ( f l d )  

(37) 

The extremal trajectory is called totally 
singular 4 p 1 3  on [ t o , t j ]  if and only if All the results of the previous lemmas, theorem and 

corollaries can be translated in terms of the Lie Brackets 
using Eq.(28) (S) = 0 vt E [tO,tf] 

1 For a singular arc of order one, the 2nd 
derivative of the switching function has the following 
form for  the problem deJined b y  Eqs. (1) - (9). 

0 

efinition 5 The extrema1 trajectory is called partially 
singular 4 ~ 1 3  on [ t o , t j ]  if and only if 

det (g) = 0 vt E [ to&]  

(39) und 
d 2 H  
(G) O 

Extension of the above results to the case of 
multiple inputs appearing linearly, where the arc is still 
totally singular, is quite straight forward. 

0 

A Special Case 

For the sake of simplicity let us assume that the equa- 
tions of motion are of the form Now we try to extend the above results to the case of 

partially singular arcs. First we state the problem and 
give some definitions, introducing the important concept 
of the Generalized Hamiltonian. 

where x , f , g  E R", vo E Rmo, v1 E Rml and u E R1. 
This form occurs quite frequently, for example, in the 
flight of a lifting vehicle in atmosphere where vo repre- 
sents the lift and the bank controls, VI represents the 
thrust direction and u represents the thrust magnitude. 

Given a system whose states are governed by a set of 
first order ordinary differential equations, 

i = f (x ,w) , 

where x E R" is the state vector E fl c Rmtl is the 
control vector and $2 is a compact set, i t  is desired to 
maximize the performance index 

The Hamiltonian is given by 

(33) mu2 J = J ( X ( t f ) )  , 

of the final states subject to the end conditions, 

x(t0) = xo and 
Let vo and vi be interior optimal controls. Thus, 

(34) 

(43) Thus, once again, the problem is of Mayer type. I n t r e  
ducing the adjoint vector p, we form the Hamiltonian 

(35) T H = g  (44) 
By the Pontryagin's maximum principle, the first or- 

der necessary conditions for an interior control are Writing 

- = [  ;;I7 (45) (E)=O (36) 
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we get 

where B is the null vector and 0 is the null matrix of 
appropriate dimensions. Clearly the Hessian matrix has 
a rank deficiency of 1 and this is a case of a partially 
singular arc. 

Since we assumed that are non-singular, 
we can express vo and v s of xandp  using 
the first order necessary conditions given in (43) and 
(44) and the implicit functions theorem. 

efinition 6 We define the Generalized Variational 
Hamiltonian or simply the Generalized Hamiltonian8 as 

7-l(x, PlU) = H(X,Pl vo(x,  P)l vdx, P), (47) 

Note that the Generalized Hamiltonian is no longer lin- 
ear in the adjoint variables. 

Lemma 5 The canonical equations generated b y  H and 
7-l are identical. In  other words, 

(g)=(g) and (g)=(g) (48) 

roof: Using Eq.(47) and the first order necessary con- 
ditions in (43) and (44), we get 

q.e.d. 
Clearly, we can write the Generalized Hamiltonian in 

the form, 

7-l = X o ( x ,  P) + %1(x1 P) (49) 
= Ho(x,p,vo(x,p))  + '1L Hl(x ,Plvl (x ,P))  

i.e., 
satisfy the canonical system, 

appears linearly. The state and the adjoint vectors 

emark 3 The form ofthe above two equations is iden- 
tical to  that of the single input case considered earlier. 
Thus all the results for the singular control u are equally 
well applicable here with ?do and 7 1 1  taking the place OJ 

Ho and HI in the Poisson Brackets. 

emark 4 Since 7-lo and 7-l1 are not linear in p, we 
cannot, in general, express u in terms of Lie Brackets 
except in the special case we considered in (40). 

emma 6 For the problem defined in (do), 

where we d e j n e  { a ,  (e)} as a (moxl)  column vector 
such that 

13 

roof : The implicit equation (E) = 0 expresses vo 
as a function of x and p. Differentiating by chain rule 
we get 

3 dt = (2) ($) + (2) ( z )  ( 5 2 )  

Since we assumed that the Jacobian matrix Do is 
non-singular, we can evaluate the partials (2) and 

(3) using the implicit functions theorem (see Ap- 
pendix). 

a aHo (2) = - D o - ' [ z  (av,)] (53) 

Combining Eqs. (52) and (53), and using the canonical 
equations along with Eq. (41), we have 

- dVO 

In a similar fashion we have 

11 
g.e.d. 
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emma 7 For the problem defined in (do), 

0 

With these results, we can prove the following result 

Lemma 8 If a as any scalar function of x , p , v o , v 1 ,  
the latter being defined in (do), then, 

du 
dt 
- 

= { H o , a ) + u  {Hl,UI 

(54) 

0 

roof: Note that 

dt = ( ~ ) T ( ~ ) + ( ~ ) T ( ~ )  

+ + (")T(!?&?&) 
avo av1 

Similar to Lemma 1, the first two terms on the right 
hand side in the above equation lead to  the first two 
Poisson Brackets on the right hand side of Eq. (54). 
The next two terms result from Lemmas 6 and 7. q.e.d. 

We need two more results before we prove the final 
theorem. 

Lemma 9 For the problem defined in (do), 

(55) 

0 

roof : Due to the fact that Ho and H1 are not func- 
tions of v i  and vo respectively, we have (2) = 0 ,  and (6) a H i  = O  

Using the above results along with the first order neces- 
sary conditions given in (43) and (44), we get 

(57) 

= - { H 1 , ( g - $ }  

q.e.d. 
Similarly we can show that 

emma 10 For the problem defined in (do), 

Combining all the above results, we have 

Theorem 3 If u is a singular optimal control of order 
one for the problem described b y  Eq. (do), then u is  
given by 

A + u B = O  (59) 

where, 

and 

+ { H I ,  (z)}T (%)-l { H ' ,  (Z)} 

The Legendre-Clebsch condition implies thai B > 0. 0 

roof : To obtain u, we differentiate (g) = H1 twice 
(since the singular arc is of degree one). Using Lemma 
8 with u = H1 for the first derivative and using (43), 
(44) and (56), we get 

- - - {Ho,  H i )  
dHi 

dt 
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To obtain the second derivative, we use Lemma 8 again 
but this time with a = {Ho, HI} and use Lemmas 9 and 
10 t o  get 

Q2 (g) 
dt2  

+ { H1, (z)}T 0-1 [{ Ho, (Z)}  
+ 

= o  
Upon collecting terms that contain the singular control 
u ,  we get Eqs. (59) - (61). q.e.d. 

emark 5 The above results can be obtained directly 
from those of the previous section b y  direct substitution 
f o r  and XI. Thus  we can verify that 

zo = Ho(x,p,vo) 
z1 = H 1 ( x , p , q )  

{xo,zl) = {Ho,Hl}(x,P,VO,V1) (64) 
{zo, {xo,Xi}} = A 
{zl,{~o,xll} = 

emark 6 Using the relation between the Poisson and 
the Lie Brackets, we can express all of the above results 
in terms of the Lie Brackets. Note in  particular that 

where we define pT as a (rno x 1) column vector 
such that 

And the other Poisson Brackets can be converted simi- 
larly. Thus ,  

iscussion 

From the expressions for A and B we note that the first 
terms are similar to the case of a single input. The 
only difference is that they are functions of vo and vi 
and we must substitute their optimal values in terms of 
x and p while evaluating those terms. The next two 
terms are due to the time derivatives of vo and vi. 
Thus we can use the above formula even when vo and 
v 1  are constants or more general functions of x and p 
with the appropriate modifications. Even though the 
Lie Bracket solutions are given only for a first order 
singular arc, the Poisson Bracket solutions along with 
the Generalized Hamiltonians can be used for arcs of 
any order. Lemma 8 is also useful to obtain higher order 
derivatives recursively. 

We have excluded the case where f and g are func- 
tions of time from our discussion. But by the standard 
procedure of introducing an extra state to represent the 
time, we can apply all our results to that case also. 

We can also extend our results to  the case of multiple 
linear controls occurring in the form 

a 

i = l  

But there is a restriction on the product of the order 
of the singular arc corresponding to each ui and the 
number of u i ,  in this case s, since x and p can satisfy 
2n independent relations at the most. 

We excluded bang-bang type (linear-saturating) and 
chattering type (non-linear , singular) controls from con- 
sideration due to the complex nature of the solution in 
those cases. 

By a careful choice of the controls vo and v i  (by 
using a transformation if necessary), one can make the 
Hessian matrices diagonal so that their inverses can be 
evaluated quite easily. 
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emark 7 For the special case where VI E 0 ,  i e . ,  the 
only controls a n  VQ and u, the Legendre-Clebsch nec- 
essary condition fo r  the problem considered in  Eq.(40) 
reduces t o  

- 
0 
0 

(t) 
0 
-1 - 

Since we assumed that the Hessian matrix (w) is 
negative definite, the second term in the above expres- 
sion is always negative. Thus we have the following re- 
sult. 

(77) 

A necessary condition fo r  the singular 
control f o r  the above special case to be optimal is that 

where we substitute the optimal value of  VQ an terms of 
0 x and p i n  the above expression. 

xample 
We illustrate the above results with the help of an 

example of optimal turn to a heading of a spacecraft in 
atmospheric flight at constant altitude. The equations 
of motion and the complete solution are given in Ref. 
(15) and we show that our results are identical to those 
given in that reference. 

The equations of motion, in non-dimensional form, 
are given by 

= ucos$ @ 
~ 

$0 

where, 

(71)' 

where, [ and g correspond to the x and y position coor- 
dinates, u is the velocity, 1c, is the heading angle, p is the 
mass and I9 is the time in normalized form. The controls 
are A, the lift coefficient, u, the bank angle and I- the 
thrust. Since the flight is restricted to the horizontal 
plane, the flight-path angle is always zero and this gives 
a relation between the lift and the bank controls as 

Selecting (T as the independent control, eliminating A 
and using the transformation 

rr = t anu  

the equations for u and 4 can be re-written as 

(73) 

(74) 
d 4  CY 

dB U 

It is desired to maximize the final heading $ ( t J )  for 
specified [ J , V J  , u J and p J . 

-=.-.. .  

Before we proceed, it is easy to recognize that S,[ and 
g are ignorable. Thus, we have the following integrals 
of motion 

H = C o ,  p t  =Cl and p ,  = C Z  (75) 
We can also verify, by direct differentiation and substi- 
tution that there exists one more integral 

P$ = Clg-  C2t + c3 (76) 

which is a result of the assumed spherical symmetry of 
the problem. 

Since I- appears linearly, a singular arc is a possible 
sub-arc of the extremal. We would like to compute the 
value of I- along the singular arc using the results devel- 
oped in the previous section. Comparing the equations 
of motion given above to Eq. (40), we see that vi 0. 
Thus we have the special case discussed in Remark 8. 
Identifying the corresponding quantities, we get 

(78) 2E*u2 

The Lie Brackets can be calculated from the above as 

P xcosu = ___. 
U2 
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a) = P u ( $ ) - P i J  = o  

0 
0 * (2 + 

E' (kJ 
0 

These are four equations in the four unknowns 
a , p , , p +  and p , .  Eliminating them, we get the switch- 
ing curve in the ( u , ~ )  space as 

U 2  

(f,af) d a  = and the control is given as 

(83) a =  0 
Finally, the singular value of the thrust 7 appears in the 
second derivative of the switching function (n as 

di,=A+.rB=O 

where, after using all the above relations and simplify- 
ing, we get, 

a (3214-4) 

1 ( 4 +  5u+2u2) 

A = - p * -  

u = p , -  

E * p Z u  (1 + u )  

E*p3 ( 1 + u )  
where, 

Thus, eliminating a , p u  and p $ ,  we get 

4 2  + u)(4 + 3u) - A 
B 

7 = - - -  
E*( l  + u ) ( 4  + 5u + 2u2) 

All of the above results are identical to  those obtained 
in Ref. (15), thus confirming the validity of our method. 

2a sin 1c1 
PU 

a2 cos 4 -_ a4 = (79) 

2a cos 
PU 

da2 dal 
a1 - ---a2 

du d u  

a2 sin 4 --- a5 = 

- a6 = 

The method presented here is an alternate way to 
obtain the singular control using the Lie and Poisson 
Brackets. The more direct method involves expressing 
all the non-singular optimal controls in terms of the state 
and the adjoint variables, substituting in the Hamilto- 
nian and then finding the time derivatives of the switch- 
ing function. This is a laborious process which often 
requires very clever algebraic manipulations. One more 
advantage of the present method is that it can be au- 
tomated through symbolic manipulation. The contri- 
bution of the non-singular controls can be clearly iden- 
tified through this solution and the coefficient of the 
singular control in the second derivative is explicitly 
given so that if one wants to check only the general- 
ized Legendre-Clebsch condition, one can do so vary 

We consider a special case where Oj,tf and qf are 
free. Then, 

We have the following integrals of motion 
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easily without evaluating the complete second deriva- 
tive. There is scope for extending the method to more 
general cases, for example for problems with state and 
control equality constraints and we are currently work- 
ing on that problem. Though Poisson Brackets, together 
with the Generalized Hamiltonian can be used in most 
cases for singular controls of any order, the solution can 
be expressed in terms of the original Hamiltonian and 
Lie Brackets only in some special cases as illustrated 
above. 

17 

Let I’ E RP be a vector valued function defined on an 
open set 0 E RP+q. Suppose I’ E C’ on 0. Let (a0,po) 
be a point in 0 for which I’(ao,&) = 0 and for which 
the p x p Jacobian ) is non-singular. Then, there 
exists an open set S E Rq containing Po and one, and 
only one, vector valued function 8 defined on S and 
having values in RP such that 

and the partial derivative of Q with respect to p is given 
by 

($) = - ( f ) - l ($ )  
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