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Artificial Surface Tension to Stabilize Captured
Shockwaves

Philip. L. Roe *and Keiichi Kitamura

This paper proposes (yet another) method for ameliorating the tendency of many Euler
and Navier-Stokes codes to produces anomalous captured shockwaves at very high Mach
numbers. The proposal is at the PDE level, and therefore in principle applicable to any
type of grid. It is based on an analogy with surface tension.

I. Introduction

Computationally captured shockwaves, especially at very high Mach number, often display anomalous
behavior not encountered in nature. Figure 1 shows three of the most notorious examples. The passage
of a normal shock over a slightly perturbed mesh was observed to be unstable by Quirk.!! However, it
was subsequently discovered that neither the mesh perturbation nor the shock motion was always needed.*
Diffraction of a plane shock wave by a wedge often causes a kink in the Mach stem, which does not properly
intersect the wedge surface.'? Perhaps most notorious is the so-called carbuncle phenomenon, first reported
by Peery and Imlay.'°

These anomalies are perplexing, not least because they are strongly related to genuine physical solutions
of the Euler equations. When they appear in steady solutions, the residuals are frequently very small,®?
indicating that a weak solution has been achieved, and moreover the shockwaves are compressive and entropy-
satisfying. Versions of the carbuncle have been demonstrated experimentally at high Reynolds number,” and
even proposed as practical devices to reduce drag and heat transfer.®

There are even anomalies in one dimension.?® Astonishingly, Godunov’s method has no solution for a
steady one-dimensional shock at Mach numbers greater than 6.0 (if v = 7/5) unless the shock resides within
a certain range of locations relative to the mesh.

It has been hypothesized that the failure is in part thermodynamic, associated with the fact that even
the ”exact” solution of the Riemann problem does not strictly enforce the Second Law locally. However,
Kitamura et al®demonstrated that while flux functions free of this defect may be satisfactory in one dimension,
the carbuncle can return in higher dimensions. It seems that some intrinsically multidimensional approach
needs to be taken, in addition to correcting the thermodynamics.

II. A New Proposal

One seemingly universal observation about the anomalous shocks is that their shapes are less smooth
than those in the ”true” solutions. They may develop spurious kinks, or they may tend to track irregularities
in the computational grid. This prompted the search for a form of dissipation that would have the effect of
smoothing captured shocks while leaving other features of the flow unaffected. The smoothing is of course
along the shock The object is to bestow additional stability on captured shocks, so that they behave more
like real ones. For example, an initially corrugated ideal shock returns to a planar state like t=1,'3 but an
initially corrugated captured shock may diverge.® This is apparently because on any grid, however fine, a
captured shock has internal structure in the form of intermediate states. These are artificial, but serve to
locate the shock in space. They are a necessary consequence of the shock-capturing philosophy, but may
have a destabilizing effect.

If this were so, it would be reasonable to counteract it by introducing another artificial effect that enhances
stability. The proposal developed here is inspired by the idea of surface tension. There is a pressure difference,
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Figure 1. Regular(left) and anomalous(right) versions of three notorious problems posed for the Euler equations. Top
left, a stationary shock wave in a channel; top right, diffraction of a shock by a wedge, bottom, flow past a circular
cylinder.

across any interface between dissimilar fluids, given by the Young-Laplace formula
[p]| = 20H

where ¢ is a constant for a given pair of fluids, and H is the local mean curvature of the interface. The
shape of the interface will adjust itself to meet this condition, and the outcome is a surface having minimal
area consistent with the constraints; this is, in a sense, the smoothest such surface. We attempt to endow
captured shocks with a property similar to this, which will reduce unnecessary area. This will involve first
detecting the shocks, and then applying an artificial pressure difference across them.

II.A. Recognizing shocks

As a means of recognizing captured shocks, we examine the isobaric surfaces. In a mathematically ideal
shockwave, the pressure gradient normal to the shock is infinite, and the tangential component is finite. The
direction of the gradient is therefore normal to the shock, and this will be approximately true for captured
shocks. There are no pressure gradients associated with other flow discontinuities such as shear surfaces or
entropy discontinuities. Across these features the pressure is actually continuous. The proposed mechanism
therefore uses closely spaced isobaric surfaces to indicate the presence of a shock, and the normals to the
isobars to indicate its orientation. The proposal is to generate an artificial force in the direction of the
pressure gradient, and having a magnitude proportional to the curvature of the isobaric surfaces. This
strategy imitates the behavior of surface tension, which we now briefly recall.

II.B. Surface Tension

Consider a point P located in a curved surface. Erect the normal at P. Every plane II that contains P will
intersect the surface in a curve, whose curvature is 7i7. The average value of 717 (which is also the average of
the two principle curvatures, (711)maz, (711 )min Which lie in perpendicular planes) is called the mean curvature

7 of the surface ) ) )
H=—-|—+—
> (PO * PQ)

and this is the quantity that appears in the Young-Laplace formula.
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Figure 2. Illustrating the two principle curvatures of a saddle-shaped surface.

There is a very nice expression that gives the mean curvature of any family of surfaces that can be defined
by giving their unit normal 77 as a function of position. This is

H = divid

Balabel et al' have used this formula to calculate surface tension effects on droplets where 7 is the normal
to a level set function. In our context the mean curvature of isobaric surfaces is

H — div- &2

v
|gradp|

The proposal is to apply an artifical force to the fluid equal to
F = hgradpH

where h is a small quantity with the dimensions of length. An obvious candidate is some measure of the
local mesh size. To maintain the correct capturing of shocks, this force must be conservative, that is, it must
be the divergence of some artificial flux tensor in the momentum equations. The following mathematical
identity (whose proof is omitted) shows that the momentum flux tensor can be modified to give the desired
correction.

div [|gradp|I —n® gradp] = divrigradp (1)

This produces a first-order scheme that is consistent in the sense of Lax and Wendroff. It also concentrates
the force in the shock regions where gradp is large. Choosing k to be some nonlinear function of the gradient
would give a higher-order scheme.

Modified in this way, the Euler equations still have the conservative form

ou
N +V-F=0
but where now
pv
F=| pv@v+(p— kh|gradp|)I + khn ® gradp (2)
v(E +p)

Evaluating the flux on an interface requires the values of the derivatives, and therefore the same stencil as
a Navier-Stokes code. There is no tendency for this flux to broaden the shock.

It would be possible to use the modified pressure terms in the energy equation also. Experiments would
be needed to see if this is worth doing.
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II.C. A Model Situation

Some insight into the proposed mechanism can be gained by appying it to a simple model pressure field.
Consider a two-dimensional shock wave aligned with the y-axis, but subject to a sinusoidal perturbation.
Near to the shock there is a pressure field defined by

p=ax+bcosy

which represents a linearly increasing pressure with a sinusoidal perturbation in the transverse direction.
For this case we would have
gradp = (a, —bsiny)
and )
n=——/(a,—bsiny)
a2 + b2 sin’y

The artificial flux tensor is this case is given by

2 .2 .
T — kh ( b*sin“y absiny )

Va2 +b2sin’y \ absiny a?

This leads to an artificial force given by

kh bcosy —kh b2 siny cosy )

(Fen ) = ((1 T (bfa)?sin® )72 a(1 + (b/a)? sin® y)?/2

There are several instructive points to be noted about this example.
1. If the perturbations to the shock are small, so that b/a << 1 then F,/F, << 1 also.

2. Note that 9, T = 0 so that the force is due entirely to gradients in the y-direction. That is to say,
on a Cartesisn grid, these forces would be produced by stresses on horizontal interfaces. There are
tangential forces leading to F, and normal forces leading to F.

3. There will be some production of vorticity, which is frequently a concomitant of shock instability. This
vorticity is in a helpful sense of rotation.

4. There is no force that tends to broaden the shock.

III. Results and Speculations

Preliminary results are shown in Figures 3 through 6.

In Figures 3 and 4 the problem is a stationary shock in a parallel flow at M = 20. The flux employed is
the Roe flux with no entropy fix. This flux almost invariably fails all versions of this test. Here we incorporate
AST with various values of the coefficient k. Only one accurate solution is obtained, with & = 0.01 after 500
time steps, but even this solution breaks up at later times.

The base flux in Figure 4 is a flux devised to be entropy consistent on all occasions. It has the form

F* =Fc — {R(IA] + o|[A]RT[V]

where F¢ is a flux depending symmetrically on the left and right states, and constructed to conserve entropy.
The vector of right eigenvectors is R and the diagonal matrix of eigenvectors is A. With a = 0 this flux gives
a scheme that always produces positive entropy at each interface, but not quite enough. The term containing
« generates additional entropy wherever the wavespeed changes rapidly, that is to say at shocks and under-
resolved rarefactions. A value of 0.8 is larger than the theory would indicate.’ Although it succeeded in
one dimensional tests,® it failed totally in the ”one-and-a half-dimensional” tests where one-dimensional
problems were solved on two-dimensional grids. Here the combination of proper entropy production and
AST is successful if k is chosen as either 0.5 or 1.0.

The flow in Figures 5 and 6 is (once again) that over a circular cylinder at a Mach number of 6.0
with v = 1.4. The grid is one that proved particularly troublesome in.® It was formed by taking one
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circumferential grid line to coincide with the body and another to follow an accurately fitted shock. THe
remaining circumferential lines were interpolated or extrapolated from these two. Paradoxically, aligning the
grid with the shock in this way seems specially likely to induce instabilities, although many other details play
a role. In Kitamura et al® neither the original Roe flux nor the entropy consistent modification succeeded
with this flow on this grid.

In Figure 5 a fairly good result is achieved with both fluxes. The exception is the oscillation near the
top of the left figure. Quite possibly this is a bug in the code; certainly the AST terms can be satisfied with
a symmetric solution.

It can definitely be concluded that Artificial Surface Tension succeeds in its objective of stabilising shock
curvature. It is not surprising that this can only be achieved with a limited range of k. Certainly taking k
to be too small must be ineffective. On the other hand taking k& to be too big corresponds to an aggressive
overcorrection that is also likely to fail. It is, however, a little disconcerting that the best values of k are
rather different for the two experiments. For the shock in parallel flow the best value seems to be about 0.5,
whereas for the cylinder it is about 0.1.

However, the two flows are at different Mach numbers, and it is possible that this is more important than
the geometry. More research is required to find reliable values of k. Meanwhile, Artificial Surface Tension is
offered as another weapon to those who find themselves battling with strange results from their Euler codes.
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Figure 3. Results for a stationary shockwave in a parallel flow. The base scheme is the original Roe scheme. A solid
red image indicates that the shock has left the domain.
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Figure 4. Results for a stationary shockwave in a parallel flow. The base scheme is the entropy-consistent Roe scheme.
A solid red image indicates that the shock has left the domain.

Figure 5. Flow at M=6 past a circular cylinder; left, original Roe flux; right, entropy-consistent flux. No Ast
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Figure 6. Flow at M=6.0 past a circular cylinder. left, original Roe flux; right, entropy-consistent flux. AST added
with k£ = 0.1
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