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Periodic Control and the Optimality
of Aircraft Cruise
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Introduction

IN a recent series of papersl'6 the form of minimum-fuel,
fixed-range trajectories has been discussed. Depending on

the model of aircraft dynamics and the method of analysis, it
is possible to come to different conclusions. If the energy-
state approximation! is used to represent aircraft dynamics,
the optimization problem may not have a solution.2'3 In this
case the infimum of fuel consumption is obtained by a trajec-
tory which consists of three segments: a powered climb, a
relaxed-control cruise at constant specific energy (which can
be approximated by a rapid cycling of thrust, altitude, and
velocity at essentially constant specific energy), and a
maximum-range glide.2 If a more elaborate model of aircraft
dynamics is used (point mass, equilibrium of vertical forces,
small flight-path angle), the maximum principle indicates that
the cruise segment is a classical steady-state cruise.3 However,
the classical cruise is a singular arc which does not satisfy the
generalized Legendre-Clebsch condition and, thus, cannot be
minimizing.4 With an even more elaborate model (point
mass, small angle of attack) the classical cruise segment
satisfies the generalized Legendre-Clebsch condition.5

Speyer6 shows this analysis to be insufficient in that the
steady-state cruise does not satisfy the Jacobi condition.
Thus, the existence of an optimal, steady-state cruise is still
subject to question, at least for certain types of aircraft and
aircraft models.

Similar questions about the optimality of steady-state
solutions appeared in the chemical engineering literature of
the early 1960s. This led to the examination of time-dependent
periodic controls and the development of an extensive theory
of optimal periodic control.7'8 Gilbert9 has applied this
theory to a simple model of vehicle cruise and found that
time-dependent control may increase specific range. This note
shows that the periodic control formulation extends to air-
craft cruise problems. Thus, the theory of optimal periodic
control can be applied to the analysis of the cruise segment.
For instance, some of Speyer's results6 can be obtained from
the TT criterion.I0

In .what follows the main emphasis is on the energy-state
model. It is shown that the relaxed cruise mentioned by
Zagalsky et al.2 is a relaxed steady-state (RSS) optimum of
the type described in the literature of periodic control.7'8'11

Two examples ar£ considered: the F-4 aircraft and an
idealized model of an aircraft. When the maximum altitude is
suitably constrained, it is seen in both examples that
oscillatory. aircraft motion is likely to reduce fuel con-
sumption in cruise.
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Formulation of the Optimal Periodic Control Problem
The model of aircraft motion used here is the same con-

sidered in previous papers.3'5'6 However, it is convenient to
measure the specific energy in terms of equivalent altitude,
E= V2 /2g + h, and use range x as the independent variable. v
This gives the equations:

dE/dx= ( Wcosy) ~l ( T-D(h, V,a) ); E(0) =

h, V,a) -

dh/dx=tany; h(0)=h(xl) (1)

where Vis speed, y is the flight-path angle, h is the altitude, T
is the thrust without afterburner, ex is the angle of attack, D is
the drag, L is the lift, and W is the weight. The equality of
initial and terminal values of E, 7, and h requires the aircraft
motion to be periodic with period jc/. It is desired to minimize
the fuel consumed per unit of x. Thus, the cost to be
minimized is,

/= — a(/z,K,r)r(Fcos7) ~]dx (2)
X] JO

where a is the thrust specific fuel consumption. In general,
there will be additional constraints of the form,

a<o: (/z,K) (3)

The minimization of/with respect to a, T, andxj is a stan-
dard optimal periodic control (OPC) problem.7'8 When E, 7,
h, a, and T are assumed to be constant an optimal steady-
state (OSS) problem is obtained: Eq. (1) is satisfied with
derivatives zero, Eq. (3) holds, xt disappears, and J=Jss — °
(h, V, T) TV'1. This solution of the OSS problem is the
classical optimum cruise. A variety of techniques exist for
determining if the OPC problem is proper, i.e., OPC has a
lower cost than OSS.7"11 Here only the relaxed steady-state
approach is considered. Because of the form of the velocity
set (see Schuitz and Zagalsky,3 App. A, Sec. 3) this approach
proves to be ineffective for the model previously given in Eq.
(1).

Energy-State Approximation and
Relaxed Steady-State Analysis

Relaxed steady-state analysis does lead to interesting results
when applied to the energy-state model. The periodic control
problem corresponding to the energy-state approximation1

can be obtained from Eqs. (1-3) by assuming y ( x ) =0. This
yields

dE/dx=f-D(h,E), E(0)=E(xI)

= j_
X]

(4)

(5)

where

V=(2g(E-h))V2; T=W~1T;D(h,E)

= W-lD(h,V,a(h,V));a(h,V)

is obtained from

L(h, V,ct) = W, andf(h,E,T) = Wa(h, V, Wf) T V~l
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The controls h and fare constrained by

(6)

where Tmax(h,E) = W-ITmax(h,Y) and, d ( h,E) <0 corre-
sponds to a ( h, V) oi max ( h, V) .

The velocity set for the OPC problem [Eqs. (4-6)] is

(7)Z2 = f-D(h,E), h and f satisfying Eq. (6))

Using Eq. (7) it is easy to see that the OSS problem correspon-
ding to Eqs. (4-6) is to minimize Jss subject to

= Zi;z2 = 0, (Zi,z2)ey(E), E>0 (8)

The optimum solution of Eq. (8) is the same as the solution of
the OSS problem for Eqs. (1-3); i.e., it is the classical op-
timum cruise. The optimum RSS solution of Eqs. (4-6) is ob-
tained7'8'11 by minimizing JRSS subject to

jRss=Zi;z2 = 0, (z,;z2)'ecoy(E), E>0 (9)

where coy(E) is the convex hull of y(E). If the optimal cost
associated with Eq. (9), JRSS*, is less than the optimal cost
associated with Eq. (8), Jss*9 the OPC problem of Eqs: (4-6)
is proper. 7,8,11

The F-4 Example
For the F-4 aircraft it has been noted2 that y ( E ) is not con-

vex. This means JRss*' <Jss* is a possibility. To examine this
possibility more closely, let Jsg (E) and JRSs (E) denote,
respectively, the minimum of Jss and JRSS in Eqs. (8) and (9)
for fixed E. Figure 1 shows the results of numerical com-
putations for the F-4 using the aerodynamic characteristics
for airplane 1 in Bryson, Desai, and Hoffman. l Military
thrust (without afterburner) data are taken from Stephen and
Chandler.12 The specific fuel rate is taken as 0.6 (1 +M) hr ~ l

with dependency on Mach number M.
The point labeled 1 is the optimal classical cruise giving Js$

= 7.505 Ib/mile. The point labeled 2 is the optimal relaxed
cruise giving JRSg = 1.319 Ib/mile, which is 1.1% less. If the
same specific fuel rate is used with full afterburner thrust, this
calculated improvement is larger. The relaxed cruise
corresponds to infinitely rapid switching of h and V at con-
stant E between a zero-thrust, maximum-range glide con-
dition1 (/z = 25.0 kft and K=719 ft/s) and essentially the
maximum-thrust, minimum-fuel climb condition1 (/z = 21.1
kft and K=876 ft/s). In practice this cannot be achieved, sin-
ce it is impossible to interchange potential energy (h) and
kinetic energy (V2/2g) instantaneously as assumed by the
energy-state approximation. A reasonable approximation to
the optimum RSS cruise is a four-segment cycle where E is
allowed to vary slightly (say £"=33 ±2 kft) and the transitions
between the zero-thrust condition and the maximum-thrust
condition take place at a flight path angle of ±45 deg. Ap-
proximate calculations show one cycle would consist of 1) a 61
sec zero-thrust glide from h = 26.5 kft to // = 23.3kft, 2) an 8
sec dive to h—19.0 kft, 3) a 29 sec maximum-thrust climb to
h = 23.3 kft, and 4) a 6 sec climb back to /z = 26.5 kft. In view
of the fairly small difference between JRSg and .J Ss , it is not
clear whether or not the improvements suggested for this
four-segment trajectory would be maintained in a more ac-
curate aircraft model, e.g., Eqs. (1-3). This conclusion agrees
with the position taken by Zagalsky, et al.2

If a constraint on maximum h is imposed, the potential im-
provement is much greater. For instance, a constraint /*<10
kft gives optimum points 3 and 4 in Fig. 1. The improvement
between Jsg =8.611 Ib/mile and JRS§ =7.979 Ib/mile is then
7.3%. Under the same assumptions as above (£=13 ±2 kft

with transitions at 7 ±45 deg), the four-segment trajectory
corresponding to point 4 would consist of 1) an 81 sec zero-
t h r u s t g l ide f r o m ) h = 10 kft to 6.6 kft, 2) a 12 sec dive
to /z = 0.85 kft, 3) a 17 sec maximum-thrust climb to 4.6 kft,
and 4) an 1 1 sec climb back to h = 10 kft.

An Idealized Aircraft Model
Is the RSS improvement observed in the F-4 unusual? The

discussion of Schultz and Zagalsky3 (Appendix A, Sec. 5)
hints that it is not. The question will now be explored more
fully by considering an idealized aircraft model in which the
aerodynamic and engine data have the following form:

D = V2PSV2(CD()

const; Tmax = T0 (10)

The nomenclature for CLa , CDfl , 77, S, and p is standard; hs is
the scale height of the exponential atmosphere; p0 and T0 are
the density and thrust limit at h = 0; CL^ CD , and 77 are con-
stant. While Eq. (10) is not claimed to be highly accurate it
reflects in a simple analytic way the essential dependencies of
L, D, and Tmax in the subsonic case. By making the following
definitions

J=oW(2gt)

(11)

Eqs. (4) and (5) can be written:

Xj

(12)

(13)

The classical cruise for fixed h can be obtained from Eq.
(12) and (13) by assuming dE/dx is zero and minimizing /
with respect to E. Assuming that constraints on T and a. are
not active, this yields

Jss(h)=4(3) -H 2; f =4(3) ~ *b;E=K+ (3) v*
(14)

where J$s(h) is the optimum cost at altitude h. Thus, steady-
state cruise performance is optimized by maximizing h. In the
model [Eq. (10)] there is a limit placed on h by the ex-
ponential decrease of Tmax. Thus, hmax is that altitude_ at
which the optimum thrust is the maximum possible; i.e., hmax
is determined by 4(3) ~ l/26= T0e ~0h\

It is not difficult to show that, for this problem, RSS con-
control cannot improve performance, i.e., /5| = JSs ( ^ m a \ ) =
JR si .However, if the altitude is constrained to be less than
^max* K<ih0<fimaX9 an improvement does result. In what
follows, it is assumed that h0 = 0. With the exponential at-
mosphere this choice of constraint altitude does not limit the
generality. Thus h0 becomes a zero reference altitude and p0
and TO are the density and thrust limit at the constraint
altitude. It is assumed further that constraints on minimum h
and maximum a. are not active, which is usually the case.
Thus, the effective constraints on Eqs. (12) and (13) are:

-th (15)
For the system [Eqs. (12, 13, and 15)] , it is clear from Eq.

(14) that /s£=:4(3)-3/46. An expression for JRSg can be
derived without great difficulty because the linearity of Eqs.
(12) and (13) in f imply that the relaxed control "chatters"
between f=0 and T=T0e~^h. This turns out to be a chat-
tering between a zero-thrust glide at /f=0 and a maximum-
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Fig. 1 Fuel consumption for F-4 in steady-state and relaxed steady-
state cruise.
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Fig. 2 Ratio of steady-state and relaxed steady-state cruise fuel rates.

thrust powered climb at h = hp. For fixed E and hp this leads
to

\[2B-(E-lip)

- (E-hp) -! -](E-hp) * (16)
where

and0=f0(26)

Minimizing JRSS with respect to E and hp determines JRSs.
This has been carried out numerically for different values of
the nondimensional parameters 0 and ]3 and the results are
shown in Fig. 2.

For all 0>2(3)-' /2 = 1.155 the RSS produces an im-
provement. For 0 = 2(3)~' /2 there is only enough thrusjt to
produce the classical cruise, Eq. (14), at h = 0, and /s| =JRSs-
For 0=0, the optimum E= 1 for all 6 and approximate for-
mulas can be derived to give Kp =-(26- l)/3 and,

3 / 2 -[l-9(l+6) ~2/8] (17)

The errors in this Kp and Eq. (17) are very small for 0>5; the
worst errors are for 0<2 and are about 0.2 for h_p and 0.001
for Eq. (17). For 0>0, hp decreases slightly and E depends on
0(£<1.2for0>2andO</3<0.3).

Figure 2 indicates the range of parameters where oscillatory
aircraft motion is most likely to reduce fuel consumption. The
most critical parameter is 0, which can be interpreted as the
ratio of maximum engine thrust to minimum drag, both
evaluated at the constraint altitude. Thus low-drag, high-
thrust aircraft are favored. The parameter $ is affected most
strongly by wing loading, and aircraft with low wing loading
are favored.

Conclusions
It has been shown that the methodology of optimal periodic

control is useful in analyzing the dynamics of aircraft cruise.
Relaxed steady-state analysis suggests that oscillatory aircraft
motion may reduce fuel consumption, particularly when
altitude constraints are imposed. Aircraft with high thrust to
drag ratios and low wing loading are favored.

Proving conclusively that substantial improvements can be
attained requires additional analysis and computations with
more elaborate aircraft models. This work is under way and
will be reported in the future.
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Monitoring Wake Vortex Strength
Decay Near the Ground
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part of an extensive program1'2 to monitor the
ehavior of wake vortices in the terminal environment,

the strength or circulation of vortices is being determined for
aircraft landing on runway 31R at the John F. Kennedy In-
ternational Airport in New York. An array of monostatic
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