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Application of Singular Perturbation Methods
for Three-Dimensional Minimum-Time Interception
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and
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In this paper, a feedback control law based on the singular perturbation method is developed for three-dimen-
sional minimum-time interception. Whereas the heading and flight-path angles are considered fast variables with
the same time scale, the relative position and the specific energy are considered slow variables. A zeroth-order
optimal control algorithm is developed, and an extension to higher-order analysis is discussed. With the demon-
strations of several numerical examples, it is shown that this time-scale separation is physically reasonable and
results in a uniformly valid control law for long-, medium-, and short-range interception.
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Nomenclature
= parameters defined in Eqs. (40), (54), (B8),

and (B12), respectively
bof= parameters defined in Eqs. (41), (55), (B9),

and (B13), respectively
= parameter defined in Eq. (52)
= zero-lift drag coefficient
= lift coefficient
= drag force
= induced drag in rectilinear level flight
= zero-lift drag force
- capture radius
= specific energy of the interceptor
= the ratio dy'/d '̂ evaluated at T = TO
= unit tangent vector, cos7 cos\l/ i + COSY

sin^/ — sinyk
= dynamic function (with subscript)
= vector of dynamic functions (with subscript)
= acceleration of gravity
= quantities defined in Eqs. (A22-A25)
= Hamiltonian
= interceptor's altitude and target's altitude,

respectively
= integral (with subscript)
= unit vectors in inertial frame OXYZ (see

Fig. 1)
= payoff function
= induced-drag parameter
= lift force
= Mach number
— aerodynamic load factor, n cos<£ and n sin$,

respectively
= L* y '* E\ T and LT ^J r» respectively
= separation distance
= universal gas constant
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interceptor's position vector in inertial frame
OXYZ (see Fig. 1)
target's position vector in inertial frame
OXYZ (see Fig. 1)
interceptor's wing area
thrust and temperature (Table 1), respectively
time
control vector, = \_rj nc ns]T

target's velocity components
interceptor's velocity and velocity vector,
respectively
d V/dE and d V/dh , respectively
target's velocity and velocity vector,
respectively
interceptor's weight
inertial frame coordinates (see Fig. 1)
components of vector R
interceptor's flight-path angle
artificial perturbation parameter
throttle control
proportional constant defined in Eq. (A32)
vector of adjoint variables (with subscript)
adjoint variable (with subscript)
constant multiplier defined in Eqs. (19-21)
air density
proportional constant defined in Eqs. (BIO)
and(Bll)
stretched time for inner expansions,

Superscripts
i
o
r
(*)

Subscripts
A
/
7
(k)
T
0

interceptor's bank angle
interceptor's azimuth (heading) angle

inner expansion
outer expansion
reduced order
differentiation with time

average
final value
interceptor
term corrected to the kth order
target
initial value, also zeroth-order term
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I. Introduction

FOR nearly two decades, the singular perturbation method
has been highlighted in solving various optimal trajectory

problems. For example, Calise1 discussed the application of
this method for variational problems in aircraft flight. Ar-
dema2 used this method with matched asymptotic expansions
to solve the minimum time-to-climb problem. Shridhar and
Gupta3 derived missile guidance laws with the assumption that
the gravity is negligible in comparison with both the missile
and target acceleration capabilities. Recently, Visser and
Shinar4 carried out an analysis of the horizontal plane inter-
ception problem based on a forced singular perturbation
method.

In the cases solved in Refs. 3 and 4, either the gravity is
neglected or the flight is assumed to be in a horizontal plane;
thus, the problems are greatly simplified. The extension of the
analysis to include the gravity effect in three-dimensional in-
terception problems is a little more involved. Successful analy-
ses for these problems, including the gravity effect, were made
by the energy formulation with suitable time-scale assump-
tions.5'12 For example, Calise11 analyzed a three-dimensional
interception problem, using the energy formulation and as-
suming the altitude to be a faster variable in comparison with
the horizontal range components. In that case, the zeroth-
order approximation leads to an essentially horizontal prob-
lem. Since the altitude rate is neglected, range matching is
adopted to arrive at the target altitude when the separation in
the horizontal plane is driven to zero. Do Khac and Huynh12

used similar approaches and compared the results with the
"exact" open-loop optimal solutions based on the gradient
method. It is shown that a better than 99% accuracy is
achieved for the performance index.

In this study of three-dimensional minimum-time intercep-
tion, if the vertical separation z between the interceptor and
the target and the specific energy E are scaled as fast variables
in comparison with the horizontal distances, in longitude x and
latitude y (as has been done in Refs. 11 and 12), the resulting
control laws are valid only when x and y are much larger than
z and for a speed Kin a range near to its maximum vame Fmax.
In other words, this time-scale separation is most suitable for
the case of near-horizontal interception starting with a high
initial speed. With this limitation in mind, we assume in this
paper that x, y\ z, arid E are slow variables, while only the
flight-path angle 7 and the heading angle \[/ are fast variables
with the same time scale. This assumption is physically reason-
able since z and E cannot increase very rapidly, and the turning
rates 7 and ^ should be on approximately the same time scale
in order to uniformly rotate the velocity from one direction to
another. The resulting algorithm is more involved than those
of Refs. 11 and 12, and consequently is more time consuming.
As such, an effort has been made to reduce the computation
time and to accelerate the convergence of the solution as will
be shown in the text.

The derivations of the equations of motion and the neces-
sary conditions for optimality are based on Refs. 13-15. Then
the zeroth-order singular perturbation analysis based on the
present assumption is carried out. Numerical examples, using
basic aircraft parameters from Ref. 16, are given to demon-
strate the effectiveness of the method. Closed-loop simulations
are conducted for various interception conditions. The essen-
tial features of the optimal trajectories are discussed. To eval-
uate the accuracy of the zeroth-order solution, a recursive
algorithm for higher-order analysis, briefly described is
Sec. V, is examined for one numerical case.

II. Formulation of Three-Dimensional Interception
With the assumption of a constant-mass interceptor and a

fixed flat Earth, the equations of motion for three-dimen-
sional interception are formulated as

y = fy = F COS7 sim/' - vr, y(t0) = y0 (2)

Z = fz = -Fshvy-HY, z(t0) = ZQ (3)

E = fE = [(T-D)V\/W, E(t0) = E0 (4)

7 = fy = (g/F)(«c-coS7), 7('o) = To (5)

* = U = (g/V)(ns/cosy), t(t0) = ^0 (6)

where x, y, and z are the separation distance components of
the vector R =/?/-!?r, with the z direction along the gravity
acceleration. Figure 1 shows this geometry at the initial time to.
Note that OXYZ is an inertial frame. These equations are valid
for a point mass interceptor with the thrust T directed along
the tangent to the flight path. It is commonly assumed that the
thrust T, drag £>, and lift L can be modeled as follows:

D = D0(h, V) + D,(h, F)(/z2 + n2)

V)= V2p(h)V2SCDo(M)

= K(M)W2/[V2p(h)V2S\

L=nW

(7)

(8a)

(8b)

(8c)

(9)

where the throttle control t\ and the load factor n are subject
to the following constraints:

9M) < rj

^ «max

;1 (10)

(11)
The maximum load factor «max is constrained by the maxi-

mum structural load or the maximum aerodynamic load,
whichever is smaller. The energy state E is related to h and V
by

(12)

and the heading and flight-path controls ns and nc are related
to the load factor n and the bank angle 0 by

nc = n cos</>

ns = n

(13)

(14)

where —

Target at t

Interceptor

x = fx = Fcos7 *('o) = *o (D Fig. 1 Geometry of interception at initial time.
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III. Optimal Control Formulation
The problem of interest is to find a set of controls ri(t)9

nc(t), and ns(t) that leads to successful interception and min-
imizes

/ = (15)

subject to the constraints in Eqs. (10) and (11). Successful
interception (capture) is determined by the conditions

R(//) = V#2+.x2 + z2 = df (16)

R(*/)<0 (17)
where dfis the "capture radius" representing the interceptor's
firing envelope.4

The Hamiltonian of the system is

H = 1 + ^xfx + V/y + \fz + ^E/E + ^7/7

+ constraints (18)

Consequently, the Euler-Lagrange equations and the transver-
sality conditions are

X* = — — = 0, X*(//) = vXf (19)

(20)

dH dH
dz " ah

\xVh cosy cos^ + \yVh COS7 sin^ - \zVh sin^

d \(T-D)V\.1 _ x F —

g «c 3
i 77; —— + 77 (constraints), Xz(f/) = ^z/ (21)Fz COS7 oh

dH

= — X*F£ cos7 cos^ — \yVE cos7 siri^ + X^F^ sin7

"(r-z>)F"|
w

g ns d? — —— — — (constraints),
F COS7 oE

= \XV shry cos^ + \yV sin7 sim/' + \ZV cosy

(22)

(23)

= XXF COS7 sin^ — X^F COS7 cos^, X^(/y) = 0 (24)

where Vh 4 dV/dh and F£ 4 dV/dE.
The optimal throttle control 7?opt can be determined by min-

imizing

= 1 +

with respect to 17 subject to the constraint of Eq. (10). From the
preceding equation, it is obvious that

(25)i?oPt = variable, if \E = 0

Similarly, the optimal controls «c(opt) and «5(opt) can be deter-
mined by minimizing //with respect to nc and ns. Accordingly,

„ ~Hns = -2\EV x+ X - n= 0

(26)

n~(27)

which are adequate in case that n% + nj < n^.
Because the target velocity can be considered a constant for

a sampled-data system the Hamiltonian H is not explicitly
dependent on the time and the necessary conditions for opti-
mality lead to H=Q, or H = const. Furthermore, because the
terminal time //is left open and the terminal condition as given
by Eq. (16) is not explicitly dependent on the time, in this
pursuit problem, it is necessary that Hf = Q. Accordingly,

H = 0 (28)

when the necessary conditions for optimality are satisfied.

IV. Zeroth-Order Singular Perturbation Analysis
In this paper, we consider the relative position and the spe-

cific energy as slow variables and the heading and flight-path
angles as fast variables. The outer-layer equations are

P°(tQ) = pQ (29)

(30)

(32)

where (')" denotes the outer-layer variable and

u

LA
X,

/, = LA

A, i [

To find the governing equations for the inner-layer vari-
ables, we use a stretched time scale T = TO + (/ — to)/e. The
inner-layer equations can be represented as

= f,(p',q',ut), g'(r0) = q0

dr

d
an'

(33)

(34)

(35)

(36)

where (•)' denotes the inner-layer variable.
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Outer-Layer Analysis
To find the zeroth-order outer-layer solution, we let e = 0

in Eqs. (30) and (32). The solution to this problem is called
the reduced-order solution and is denoted by superscript r.
The problem is to find the optimal controls rf(t), yr(t), and
\l/r(t) such that Eqs. (29-32) and the capture condition
[xr(t})]2+ [yr(tr

f)}2+[zr(tr
f)}2 = dj are satisfied and tr

f is mini-
mized. The solutions can be determined by guessing the four
quantities 7}, }̂, //, and Er

f and using the algorithm described
in Appendix A to improve.

A good approach to guess 7}, \I/r, tr
f, and Ef is from physical

consideration. As shown in Fig. 1, we assume yA to be constant
and guess the average velocity VA(VQ<VA< Kmax) to solve the
collision course equation

-dfeA = R0 + (VAcA - VT)(t}-t0)
from which we obtain

-Ro+VT(t}-tQ)

where

A =

0)87,4 cosyA sm\l/rj -

(37)

(38)

(39)

(40)

(41)

(42)

Then we let Yf = yA+dyf9 V} = 2VA-V0, h} = hT(t0)+VT(t}
- 10) sinyT-df shi7}, and Er

f - hr
f + (Vf)2/2g9 where dyf can

be chosen to be 10-15 deg for a wide range of altitude separa-
tion.

Because all the variables vary slowly, the time increment for
numerical integration of the slow modes alone can be much
larger than that for simulation including both the slow and the
fast modes. Following the procedure in Appendix A, we find
that all the necessary conditions for optimality are satisfied
except that the initial conditions are not matched. By assuming
that the increments AT^, A^r, A/^, and A.E/ are certain linear
functions of the differences between the specified and the com-
puted initial conditions, we can improve 7}, \l/r, tf, and Ef,
correspondingly. Typically, four to six iterations are adequate.

Inner-Layer Analysis
Having obtained the reduced-order solution, we are in a

position to find the inner-layer solution. By setting e = 0 in Eqs.
(33) and (35), the problem is then to find the optimal controls
HC and nl

s such that Eqs. (33-36) and the final conditions
7r(T/) = 7r(f0) and i^(T/) = ̂ r are satisfied and the stretched fi-
nal time Tf is minimized. In this problem, the initial conditions
X^(TO) and X^(TO) are unknown. Instead of guessing both of
them directly, it is better to guess the initial ratio dy'/d^' at
T=TO as described in Eq. (53). Then from Eqs. (26-28) and
(53), we can solve for nl

c, nl
s, X^, and X^ simultaneously.

Recall from Appendix A the reduced-order solution that
satisfies

(43)

and the optimal control conditions

de0 Df
- W =0 (44)

(45)

where

Since e^, de^/dYQ, and de'^/d^ are three mutually orthogonal
unit vectors, we can define

(46)

By substituting Eq. (46) into Eqs. (43-45) and solving for Xi,
X2, and X3, we obtain

^r Df sm2yrp
>--*«> w

(47)

(48)

(49)

Theoretically, VQ should be equal to VQ. However, since yr
Q9 \l/r,

and X^0 are computed numerically, it is consistent to adopt the
integrated value VQ instead of the specified value VQ in Eqs.
(48) and (49).

From Eqs. (33) and (35), we find that P/(T)=P/(TO) and
Ap(7) = AJ,(7o) in the case that e = 0. Then from the matching
conditions p'(TO) =pr(t0) and Aj,(TO) = A£(t0), we obtain
pl(T)=pr(to) and Aj,(r) = Ap(^0). Therefore, the Hamiltonian
of the inner layer can be expressed as

W

VQ COS7''
(50)

By eliminating X^ and X^ in Eq. (50) using Eqs. (26) and (27)
and then subtracting Eq. (43) from it, we obtain with the aid
of Eqs. (46-49)

(51)

where

X! W

— Cos27o (52)

In Eq. (52), the first term always predominates. Therefore,
BR>Q is certain.

By assuming that the increment of velocity d Fis in the plane
formed by V0 and FJ, we obtain

COS7Q

where

a = r
0 cosyQ - cosyr

0 siny0 cos(^r- \

b = cosyr
0 sin(^ - ^0)

(53)

(54)

(55)
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Considering r=r0 in Eqs. (51) and (52), we let 7'= 70,
\l/' = fa, and BR =BRo. Then Eqs. (51) and (53) can be solved to
yield

= COS7Q + (56)

(57)

From Eqs. (26) and (27), we obtain the initial values of X^0 and
X^Q. The iteration procedure is described in Appendix B.

In fact, Eq. (53) represents the differential equation of a
great circle, which is the optimal trajectory for minimum dis-
tance from (^0,7o) to (^r,7o) on a sphere surface. It can be
shown that if BR in Eqs. (51) and (52) is independent of ̂  and
7', then the great circle is also the optimal trajectory for min-
imum time. Since BR is a function of \I/' and 7', the minimum-
time trajectory is different from the minimum-distance trajec-
tory. However, numerical experience shows that the initial
guess of a and b by using Eqs. (54) and (55) is so good that the
error is less than 1%. Therefore, we justify Eqs. (56) and (57)
and formally let the optimal controls for simulation be

nc =

(58)

(59)

In the preceding, we assumed that n^ +«5
2 <«max- If from

Eqs. (58) and (59) we find that «2 + «2 ̂ «max»tnen we let

= n (60)

X(Kft)

- h(0)= 8k,V(0)= 900 fps
+ h(0) = 8k, V(0) = 1100 fps
* h(0) = 10k, V(0)= 900 fps
o h(0) = 15k, V(0)= 900 fps
x h(0) - 20k, V(0) - 900 fps

5-

TARGET

-20 -15 -10 -5 5 10 15 20

Y (K ft)
Fig. 2 Horizontal projections of trajectories.

• V(0)= 900 fps
+ V(0) = 1100 fps
* V(0) = 900 fps
oV(0)= 900 fps
x V(0)= 900 fps

TARGET

20
Time, sec

Fig. 3 Altitude profiles.

Equations (53) and (60) are used in solving for nc and ns.
However, Eqs. (26) and (27) can no longer be used in solving
for X!y and X^. They should be modified to include a Lagrange
multiplier /*.

Y. Higher-Order Singular Perturbation Analysis
In the last section, we presented the zeroth-order analysis. A

natural question to ask is if we can extend the analysis to a
higher order with a recursive algorithm, which can be easily
implemented. The answer is yes. To achieve this, we smooth
out the two conflicting results in the zeroth-order approxima-
tion. They are as follows:

1) The changing rate of flight-path angle y° does not vanish
identically as assumed in the zeroth-order out layer solution.

2) The flight-path and azimuth angles cannot jump in-
stantly from their initial values to those values obtained from
the outer-layer analysis without a finite time interval. This
means 7/5*0 in the inner-layer solution.

To improve on such an approximation, we may let
ey°Q = y°k_i) in the ^til-order (k>\) outer-layer solution and
match x, y, z, E and their adjoint variables at the time rf(k_ 1}
instead of TO in the &th-order inner-layer solution. Then we
may solve the problem recursively following the procedure
described in the Sec. IV with little modification.

VI. Numerical Results
The parameters of the interceptor and atmospheric data for

demonstration are taken from Ref. 16. For convenience of
reference, they are listed in Table 1.

Several cases are studied and the results are shown in Figs.
2-5. For all these cases, it is assumed that initially the intercep-
tor flies with 70 = 0 deg and \l/0 = 90 deg, and the target flies
with Fro = 500 fps, 7™= 0 deg, \I/TO= -75 deg, Fr = 4 ft/s2,
7r = 0.5 deg/s, and \j/T = g/(VT cos7r). Since the interceptor
does not previously know how the target will fly in the next
second, the target's future velocity is assumed to be frozen at
the instant of time when the optimal controls are computed.
The throttle control rf=l is employed for simulation since
\r

E < 0 is not violated throughout the whole period of intercep-
tion. The horizontal projections and the altitude profiles of the
trajectories are shown in Figs. 2 and 3, respectively. The differ-
ence among the cases studied concerns the initial speed and
altitude of the interceptor.

An interesting result found from Fig. 3 is that the intercep-
tor must first dive downward and then pull up to intercept an
upward flight target. This result is consistent with those shown
by Do Khac and Huynh.12 An explanation is that the maxi-
mum thrust and the drag are modeled as functions of the Mach
number and the altitude. The higher the Mach number and the
lower the altitude, the higher are the maximum thrust and the
drag. When the interceptor first dives downward, it gains its
speed and increases the thrust and the drag. Since the incre-
ment of the thrust is larger than that of the drag, the net gain
of speed is positive. However, the interceptor cannot always
dive downward and intercept an upward flight target. There-

Table 1 Parameters of interceptor
___and aerodynamic data____

S = 220 ft2

M<0.93
0.93 <M< 1.03
1.03<M<1.10

^ = 18,000 Ib

0.02,
0.02+ 0.2(M-0.93),
0.04 + 0.06(M-1.03),
0.0442-0.007(M-1.10),

fo.2,
|o.2 + 0.246(M-1.15)

TWx = 12888(1 +0.6A/2) exp(-gh/RT) Ib



MARCH-APRIL 1991 THREE-DIMENSIONAL MINIMUM-TIME INTERCEPTION 365

10
9

• h(0)= 8k, V(0)= 900 fts
+ h(0) = 8k, V(0) = 1100 fts
* h(0) = 10k, V(0) = 900 fts
o h(0) = 15k, V(0)= 900 fts
x h(0) = 20k, V(0) - 900 fts

10

Fig. 4

3020
Time, sec

Load-factor profiles.

40

• h(0)= 8k,V(0)= 900 fts
+ h(0)= 8k, V(0) = 1100 fts
* h(0) = 10k, V(0) = 900 fts
o h(0) = 15k, V(0)= 900 fts

h(0) = 20k, V(0) = 900 fts

Fig. 5 Bank-angle profiles.

fore, it must pull up at a certain point and the resulting altitude
profiles look like those shown in Fig. 3.

To understand the characteristics of the altitude profiles bet-
ter, various combinations of the interceptor's initial altitudes
and velocities are examined. Consider that in Fig. 3 the initial
altitude of the interceptor is fixed at 8000 ft. Using the case
with the initial speed of 900 fps as a baseline, we find that if
the initial speed is larger, say 1100 fps, the interceptor is not
required to dive downward so much to intercept the target. It
can be inferred that if the initial speed of the interceptor is at
its maximum, then it is not necessary for the interceptor to
initially dive downward to increase speed. Having this idea in
mind, we examine several cases with different initial altitudes.
As shown in Fig. 3, we find that if the initial velocity of an
interceptor is fixed, then the interception time changes only
very little with the variation of its initial altitude. For the case
of high initial speed the interception time is 32.5 s, and for all
of the other cases it is about 38 s.

Basically, to intercept a target as quickly as possible, the
interceptor should turn and accelerate quickly. However, to
turn quickly, the interceptor has to bank a large angle. To
maintain its altitude, the interceptor has to fly with a high
angle of attack, which induces a large drag. Since a large drag
decelerates the interceptor, we have to compromise the bank
angle with the drag. For all the cases studied in Figs. 2 and 3,
their corresponding load-factor and bank-angle profiles are
shown in Figs. 4 and 5, respectively. From Fig. 4, we find that
if the initial speed is larger, the initial load factor can also be
larger. All load-factor profiles begin with some large values
and decrease to certain values, which are nearly equal to
COS7 + Vy/g. To maintain high speed, the interceptor resists
an early pull up, preferring to wait until near the final time to
satisfy the condition df = 5QQ ft. Therefore, the load-factor
profiles remain nearly constant for a finite period and increase
suddenly when the interceptor approaches the target. In the
horizontal plane, we find from Figs. 2 and 5 that the intercep-
tor initially has negative bank angle and turns to the left.
Later, the bank angle becomes positive and the interceptor
turns to the right. The horizontal projections of the trajecto-

ries do not change very much with the variation of the velocity
or altitude. Since a large part of the lift has been used to pull
the interceptor up, there remains not much to follow the turn-
ing target. Therefore, the bank angle cannot vanish at the final
time as in the case of intercepting a rectilinear flight target.

To understand the singular perturbation method further, an
extension to higher-order analysis has been conducted. To
perform a first-order analysis, the computation time doubles.
Since more computations are involved in the first-order anal-
ysis, the load-factor profiles obtained are further corrupted
by noise. For the case of intercepting a rectilinear flight tar-
get with an initial speed of 900 fps, the interception time is
26.05 s as computed with the first-order analysis in contrast to
26.35 s as computed with the zeroth-order analysis. There is a
1% improvement in this case. Due to the noisy feature of its
load-factor profile and a large amount of computations, the
higher-order analysis is not very promising for practical imple-
mentation. However, it does serve to justify the zeroth-order
analysis on a theoretical basis.

VII. Conclusions
It has been shown that it is possible to consider only the

flight-path angle and the azimuth angle as fast variables in
contrast to other time-scale separations proposed in the pub-
lished literatures. Physically, this time-scale separation is rea-
sonable and its validity is not limited to the case in which the
flight speed of the interceptor is near its maximum and the
range of interception is very long. The performance of the
controls obtained from the zeroth-order approximation ap-
pears to be very satisfactory since the higher-order analysis
conducted provides little improvement.

The approach presented in this paper significantly reduces
the computations involved in solving the optimal trajectory
problems considered. It is observed that optimal trajectory
problems of sampled-data type, such as the one presented in
this paper, can always be solved with satisfactory results by
using only the zeroth-order singular perturbation approach.
However, special care should be made for extensions to other
performance indices and other forms of terminal constraints.
For the problems in which the performance indices are design
parameters of vehicles and the terminal constraints are explic-
itly prescribed, the sampled-data type of approach may not be
very efficient and sometimes not meaningful. The approach
presented in this paper should then be modified to include
higher-order analysis in order to obtain a satisfactory match-
ing between the outer- and the inner-layer solutions.

Appendix A: Reduced-Order Solution
In Eq. (30), we let e = 0 and obtain

(Al)

(A2)

Similarly, by setting e = 0 in Eq. (32), we obtain

sin^ - X' cosf = 0

(A3)

(A4)

where we have eliminated X!̂  by using Eq. (26). From Eqs. (19)
and (20), we know that XJ and X£ are constant. Therefore, \l/r

must be constant from Eq. (A4). Also, from Eqs. (27) and
(A2), we conclude that

X',=0 (A5)
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To simplify the computation, let us define two integrals Ic and
Is as

P'o
Ic= Vcosy'dt (A6)

J/;
n f

75= F'shvy'df (A7)
J,;

From Eqs. (29) and (31), three more differential equations are

(A8)JF

V^J
(A9)

\r
zVr

E sinyr

where
r + X; sin^r

(A10)

(All)

From Eq. (A4), we find d\H/d\l/r-09 i.e., \His independent
of f. It seems that we can use the condition Hr=Q to eliminate
one adjoint variable X£ or \r

E. This, however, entails more
complicated algebraic manipulations and makes numerical er-
rors bias.

Let yr
f, \l/r, tf, and Er

f be estimated from Eqs. (38-42) and
then note that at t = tf, the reduced-order solution satisfies

(A12)

By letting X£/ = 0, we obtain from Eqs. (A3) and (A4),

der
f

where

(A13a)

(A13b)

A, ̂  \r
xi + Xy + X^A: (A14)

ef = cos7y- cosfi + cos7y- sm\l/rj — smyfk (A 15)

Since */, def/dyf, and def/3\l/r are three mutually orthogo-
nal unit vectors, from Eqs. (A13a) and (A13b), we know that
A/is orthogonal to both def/dyr

f and def/d\l/r. Therefore, we
conclude that

A, = \ref (A16)

Substituting Eq. (A16) into Eq. (A12), we obtain

v=—pn^p <A17>
Therefore, from Eqs. (A14) and (A16), we obtain

X£ = X/cos7}cos^r (A18)

\r
y = \fcosyr

fsm\l/r (A19)

\r
zf = -X/sinT} (A20)

Also, from Eq. (All) we obtain

\H = X/COS7} (A21)

Using the guessed quantities 7} and \l/r, we determine the
final values of the adjoint variables from Eqs. (A18-A21). In
this problem, tf and yr are the control variables. Assuming
r? r=l, we find from the backward integration X£<0 for
t} > t > t0. Therefore, from Eq. (25) it is certain that if = 1 . The
flight-path angle yr can be evaluated by the Newton-Raph-
son's method from the optimality condition in Eq. (A3). Typ-
ically, two to four integrations are adequate. Having estimated
the final values and control variables, we integrate Eqs.
(A6-A10) backward from tf to t0. Then we obtain 7C, Ist ££,
X£0, and X^0. To match the initial conditions, we define four
quantities gk(k = 1 ,2,3,4) by

- uT(tr
f - tQ) (A22)

= to - (-Is+df sin7/) - wT(tf -/o)

82 = yo + (-Ic+df cos7}) sin^r- vr(//-/0) (A23)

(A24)

g4 = E0-E0 (A25)
Indeed, if these four quantities vanish, then we have already
obtained the solution for the reduced-order problem. How-
ever, they do not vanish in general. Although rigorous ap-
proaches such as the gradient method exist, they generally
require analysis to first order. This entails much more alge-
braic and numerical work. Instead, we choose to approx-
imately estimate the increments AT£, A^r, Atf, and AJSf to
improve the solutions.

Using Taylor series expansion up to the second order for Ic
and Is and up to the first order for EQ , we can approximately
evaluate the variations of g* by

(A26)

(A27)

(A28)

(A29)

Agi = ~(A/C

+ (/c"

Ag2= — (A/c + flf/si:

-</c-

Ag3 = A/s — cf/ cos7}A7y- — wTAtf

(Tr-Do-D[cos2yr
f)Vr

W
Atf - AEf

where AIC and AIS are approximately evaluated by

- A/c = A[Vr
f(tr

f -10) - V2 Vr
f(tr

f - to)2] cosyr
f

- [Vf(tf - W - KVW - to)2} AT/ sin7}

-A/5 = A[V}(tf-t0)-y2Vrf(t;-to)2] siny'f

+ [Vf(tf - ^o) - >/2 Vr
f(tr

f - to)2] Ayr
f COST}

(A30)

(A31)

The variation Ag* (k = 1, • • • , 4) can be chosen as propor-
tional to -gk, i.e.,

(k = ! , - • • , 4) (A32)

where ̂  are constant and can be chosen as 0<rjk< 1. Typi-
cally, rjk = 0.5 or 0.6 works very well. Relating AVfto AEf, we
can solve Eqs. (A26-A29) simultaneously for Atj-, Ayr

f, AEf,
and A\l/r. Then we renew the guessed quantities by

'/(new)

7/((new)

(A33)

(A34)
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(A35)

(A36)

and a new cycle of iteration can be started. Typically, the
solution will converge with better than 95% accuracy in four
to six iterations.

Appendix B: Zeroth-Order Inner-Layer Solution
Setting € = 0 in Eq. (33), we find that *', y*9 z*9 and El are

constant and equal to their initial values, respectively. Simi-
larly, setting e = 0 in Eq. (35), we find that \i, Xj,, Xj, and \1

E
are constant. From the matching conditions, \l

x = X£, \l
y — \r

y9
X^ = X£0, and Xk = X£0. The four differential equations that
need to be integrated are

where

dr ~ V'o COS71''

= 70

= to

(Bl)

(B2)

(B4)

Following the description in Sec. IV, we can guess the initial
values X^(TQ) and X^(TO). The control variables n[ and nl

s can be
evaluated by

(B5)

v *

(B6)

if (n'c)2 + (wj)2 < «max- Otherwise, some modification should be
made. Having obtained the initial conditions and control vari-
ables, we can then integrate Eqs. (B1-B4) until

where

airair + bfrbfr = 0 (B7)

air = shryo COS77 — cos7o sin7f' cos(\l/r — \l/1) (B8)

bir = cos7o sin(^r—^') (B9)

Indeed, if 0/r = 0 and &/r = 0, then we already have the correct
solution. But in general it is not so. We then modify the
guessed values a and b by

ff(new) = fl(old) +

&(new) =Aold) +

(BIO)

(Bll)

aof = (B12)

(B13)

and <JE can be chosen so that 0< aE < 1. A typical value for aE
is 0.25.

After obtaining the modified ratio a and b, we can start
a new cycle of iteration. Certainly this is not necessary, since
the error in the initial guess using Eq. (53) is generally less
than 1%.
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