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Abstract 

A method for adaptive refinement of a Cartesian mesh for 
the solution of the steady Euler equations is presented. 
The algorithm creates an initial uniform mesh and cuts 
the body out of that mesh. The mesh is then refined based 
on body curvature. Next, the solution is converged to a 
steady state using a linear reconstruction and Roe's a p  
proximate Riemann solver. Solution-adaptive refinement 
of the mesh is then applied to resolve high-gradient re- 
gions of the flow. The numerical results presented show 
the flexibility of this approach and the accuracy attainable 
by solution-based refinement. 

1 Introduction 

In the past several years, unstructured mesh methods for 
fluid dynamics have become more and more prevalent, as 
a way of surmounting some of the difficulties of generat- 
ing body-fitted meshes about arbitrary bodies[l, 2, 3, 41. 
Flow-fields with multiple bodies are particularly difficult 
to generate structured meshes for, and multi-block meth- 
ods [5] or patched-mesh methods [6] must be implemented 
in these cases if structured meshes are to be used. 

Even unstructured mesh generation is not simple for 
complex configurations, however. Advancing front meth- 
ods [2] must be carefully implemeted to avoid high aspect- 
ratio or highly skewed cells; Delaunay methods [3, 41 typ- 
ically require the generation of a cloud of points to tri- 
angulate, and special steps must be taken to avoid the 
breaking of boundary faces. 
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A very simple mesh generation technique is to "cut" 
the bodies in the flow out of a Cartesian mesh. Indeed, 
this technique is commonly used for potential flow calcula- 
tions [7]. Advantages of using Cartesian meshes for Euler 
solvers, besides increased ease of mesh generation, include 
simpler flux formulations and simplifications in the data 
structure. In addition, Cartesian cells lead to fortuitous 
cancellation of truncation errors not occuring on less reg- 
ular meshes. Two difficulties that arise in developing an 
Euler solver for a Cartesian mesh are: 

1. poor resolution of leading and trailing edges, and 

2. the introduction of cut cells that are a small fraction 
of the size of uncut cells. 

Euler solvers based on central-differencing on Cartesian 
meshes have been developed by Clarke et a1 [8] and Ep- 
stein et a1 [9]. In the work of Clarke et al, resolution of 
leading and trailing edges was achieved simply by clus- 
tering the mesh lines near the points of interest; cut cells 
were handled by merging them with neighboring uncut 
cells. In the work of Epstein et al, resolution was achieved 
by local mesh refinement; cut cells were handled by a 
non-conservative extrapolation procedure. An upwind- 
differencing method on an adaptively refined Cartesian 
mesh has been developed by Berger and LeVeque [lo], for 
unsteady flows. In their work, the large time-step method 
of Leveque [ l l]  was used to help remove the numerical 
stiffness due to small cut cells. 

In the work presented in this paper, resolution is 
achieved by use of adaptive refinement; cut cells are han- 
dled by a reconstruction method for general unstructured 
meshes coupled with local time-stepping. The work con- 
sists of a mesh generation based on a Cartesian mesh 
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with geometry-based refinement [12], and a flow solver 
based on the MUSCL concept [13], with a linear recon- 
struction technique [14] and Roe's approximate Riemann 
solver [Is]. In addition, solution-adaptive refinement of 
the mesh is used to gain resolution in high-gradient regions 
of the flow [16, 171. Each element of the mesh generation 
technique and the flow solver is described in the following 
text, along with the data structure used. Results for a 
collection of test cases are presented and discussed. 

2 Generation of the Mesh and 
Data Structure 

2.1 Datastructure 

The basic data structure used is a hierarchical cell-based 
quadtree structure - "parent" cells are refined by division 
into four "children" cells. This concept is illustrated in 
Figure 1. Each cell has a pointer to its parent cell (if one 
exists) and to its four children cells (if they exist). The 
cells farthest down the hierarchy, that is, the ones with 
no children, are the cells on which the calculation takes 
place. 

In addition to this basic structure, a list of cell-faces is 
made, and a structure containing the cell-to-face connec- 
tivity, and the face-ta-cell connectivity, is stored. Simi- 
larly, a list of nodes and the cell-to-node connectivity of 
the mesh is stored. The face structure is not strictly nec- 
essary; however it does reduce the time spent in traversing 
the quadtree structure. The node structure is necessary 
only for the post-processing step; it is not utilized in the 
solution process. 

Other data structure issues include the need to mark 
cells, nodes and faces as to whether they are inside the 
flow domain, inside the body, or crossing the body sur- 
face. Also included in the mesh data structure are the 
coordinates of the nodes, the face midpoints, and the cell 
centroids. Again, these need not necessarily be stored; 

they could be computed relatively inexpensively from the 
basic quadtree structure. 

With this data structure in place, refining a cell (i.e. 
spawning four children cells) reduces primarily to a triv- 
ial change of the cell-based quadtree structure. Resulting 
changes in the list of nodes and faces, and the pointers, 
can be derived from the quadtree structure. 

2.2 Generation of an Initial Mesh 

To generate the initial mesh, a coarse Cartesian mesh of 
equal-sized cells is generated that covers the entire area 
of interest. The body is then "cut" out of this mesh. 
The procedure for computing the intersections of the body 
with the mesh depends upon how the body has been de- 
fined. 

For a body defined by a piecewise analytic function 
y(x), with the inverse function x(y) also known, a node 
of the Cartesian mesh can be classified as inside or out- 
side the body immediately, by determining whether the 
x = constant and y = constant lines through the node in- 
teresect the body an even or odd number of times between 
the node and the outer boundary. For a body defined by 
a piecewise analytic function y(x), with the inverse func- 
tion not known, the intersections of the line x = constant 
with the body are known immediately; a search proce- 
dure must be set up to determine the intersections in the 
x-direction. For a body defined simply by a set of data 
points, a search procedure must be carried out in both 
the x- and y-directions to find the intersections. For bod- 
ies defined in this manner, a spline (CO at trailing-edges, 
C2 elsewhere) is fit through the points defining the body. 
The spline-fit of the body data points was found to be 
necessary to obtain smooth flow solutions. 

Each node in the Cartesian mesh is tested and classified 
as to whether it is inside one of the bodies, or in the 
flow domain. Once each node has been thus classified, 
the faces of the Cartesian mesh are classified as inside 
the body (both nodes defining the face are classified as 
inside), outside the body (both nodes defining the face 
are classified as outside), or "cutn (one node is classified 
as being outside, the other, inside). For faces classified as 
cut, the location of the intersection of the face and the 
body (which is known from the procedure for classifying 
the nodes) is stored. 

Cells are similarly classified, based on the number of 
nodes inside or outside the body or bodies. If only one 
node is outside the body, the cell is a cut cell, with three 
faces (two cut faces and one face on the body). If two (or 
three) nodes are outside the body, the cell is a cut cell 
with four (or five) faces. Uncut cells are those with all 
four nodes either outside or inside the body. 
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2.3 Geometry-Based Mesh Refinement 
Geometry-based mesh refinement [12] is the next step in 
creating a suitable mesh. Once the initial Cartesian mesh 
has been generated, and the cut locations determined, a 
combination of cut-cell refinement and curvature refine- 
ment is applied to the mesh. 

In cut-cell refinement, each cell cut by a body is refined, 
along with its three nearest neighbors. Refining neighbors 
of cut cells ensures a smoother transition to fine cells on 
the body from the coarser outer flow cells. Refinement 
of cut cells is applied successively until the mesh on the 
body is brought to a user-specified level. 

Once the desired cut-cell refinement is completed, cur- 
vature refinement is applied to the mesh. The slopes of 
the body faces on two consecutive cut cells are compared. 
If the difference in slopes is above a threshhold value, both 
cells, and their nearest neighbors, are refined. The actual 
check used to flag cells for curvature refinement is given 

with special care taken for faces with AX small. 
An example mesh generated by the above procedures is 

shown in Figure 2. 

2.4 Solution-Based Mesh Refinement 
An adaptive mesh may be refined or coarsened based on 
the characteristics of the flow about the body. Refinement 
takes place only after a solution is sufficiently converged. 
At that point, cells are flagged for refinement, baaed on the 
difference (undivided) of the total velocity between cells. 

If the total velocity difference is above a user-specified 
fraction (typically 5%) of the maximum total velocity dif- 
ference, then the two cells sharing that face are flagged 
for refinement. For each cell that is flagged, four children 
cells are added to the quadtree data structure, one level 
farther down the hierarchy than their parent cell. 

2.5 Mesh "Smoothing" 

The mesh resulting from the above procedure could have 
certain "undesirable features." Some are undesirable in 
that allowing them would complicate the data structure; 
others are undesirable in that computational experience 
shows that they may degrade the solution somewhat in 
their vicinity. 

The eight features that are currently labelled "undesir- 
able" are described below, and depicted in Figure 3. 

1. Cell level differences greater than 1 between two 
neighboring cells 

2. Cell level differences greater than 0 normal to body- 
cut cells 

3. Cell level differences greater than 0 through outer flow 
boundaries 

4. Cell level differences greater than 0 between three- 
sided cells and their neighbors 

5. "Holes" in the mesh 

6. More than two cuts on a cell 

7. Cell level differences greater than 0 on trailing edge 
of body 

8. Bodies too close, only two cells apart 

When an undesirable feature is found, the mesh is 
"smoothed" to eliminate it, by refining appropriate cells 
until the feature no longer exists. This is a recursive p r e  
cedure, that converges to a mesh with no undesirable fea- 
tures. 

3 Flow Solver 

The flow solver described here consists of three primary 
components: a linear reconstruction method, for obtain- 
ing accurate, limited values of the flow variables at face 
midpoints; an approximate Riemann solver, for comput- 
ing the flux through cell-faces; and a multi-stage time- 
stepping scheme for advancing the solution to a steady 
state. The individual components of this procedure are 
described below. 



Figure 3: "Undesirablen Mesh Features 

3.1 Reconstruction Procedure 

In order to evaluate the flux through a face, flow quan- 
tities are required at both sides of the face. To achieve 
higher-order accuracy, solution-gradient information must 
be used. A linear reconstruction method [l] is used to de- 
termine a second-order approximation to the state at the 
face midpoint, based on the cells in the neighborhood of 
the face. It relies on a suitable path integral about the 
cell of interest, with the gradient of a quantity Wk in a 
cell being determined by 

where An is the area encloeed by the path of integra- 
tion, an. Here, Wk represents the quantity being recon- 
structed; in this work, the primitive variables W = (p ,  u, 
v ,  p)T are reconstructed. 

The path for the integration is constructed by connect- 
ing the centroids of neighboring cells. Away from cut cells 
or cell-level differences, the eight immediate neighbors of 
a cell are used. Near a body, as few as four cells are 
used to construct the path. For a linear reconstruction, 
a minimum of three non-colinear cell-centers are required 
to form a proper path. Some examples of the paths are 
shown in Figure 4 to the normal path, with the X denoting 
the cell for which the gradient is being calculated. 

Once the cells in the path are determined, the path 
integral is carried out numerically. In general, the area 
inside the path is calculated by summing the areas of the 
triangles formed by connecting the centroids in the path 
to the centroid of the cell for which the gradient is being 

X 

Figure 4: Normal And Special Paths 

Figure 5: Integral Path 

calculated. The z and y components of the gradient are 
normalized by the cell width and height, respectively. 

In the regions of the mesh where a cell and its eight 
neighbors are uncut and the same eize, the resulting in- 
tegral path is a square twice the size of the cell. In this 
case, higher accuracy can be achieved by combining pairs 
of faces in a trapezoidal rule. When the gradient is nor- 
malized by the cell width or height, it becomes a function 
of only the cell values, not the geometry. These more 
accurate representations of the normalized gradient are 

Figure 5 shows the path for this case. 
Once the gradient of Wk is known in each cell, the value 

of Wk can be found anywhere in the cell from 
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the flux through a face may be written as To prevent expansion shocks, an entropy fix is im- 
posed [18]. A smoothed value, I B ( ~ ) ~ * ,  is defined to replace 
Idk)I for the two acoustic waves (k = 1, k = 4). For those 
two waves, 

(FAy - GAx) = As r *As. (13) 
h0)I > I - 

+ lba(k) lh(k)I < 46a(k) 
4 - 

The flux through a face is a function of the values at 
the face midpoint, given by the reconstruction in the cells 6a(k) = max ( 4 ~ a ( ~ ) ,  0 1 , ~ a ( k )  = a f )  - a f )  . (17) 



For each cell, the face fluxes, calculated as above, are 
summed to give the residual for the cell, 

These residuals are then integrated in time, as described 
below. 

3.4 Time-Stepping Scheme 
The time-stepping scheme used is one of the optimally- 
smoothing multi-stage schemes developed by Tai [19, 201. 
The general m-stage scheme is defined as 

~ ( 0 )  = U" 

u ( ~ )  = u(O) + akAtRes u('-') , k = 1, m ( ) 
u"+' = ~ ( 4 .  (19) 

The five-stage scheme which gives optimal damping of 
Fourier modes in the range ~ / 4  5 LAX 5 T has multi- 
stage coefficients 

a 1  = 0.0695 

a 2  = 0.1602 

a 3  = 0.2898 

a 4  = 0.5060 

a g  = 1.0000 (20) 

and CFL number 1.1508. 
Local time-stepping is used, and'indeed is necessary. 

The meshes generated have extremely large differences in 
area from cell to cell, due to the cut cells. 

4 Post-Processing 

Post-processing requires transfering the known cell- 
centered values to nodal values for plotting as accurately 
as possible. To do this, the limited cell gradients are used 
to extrapolate to each cell's nodes as shown in Figure 8 

The function as reconstructed at the nodes is multi- 
valued; there is one value resulting from the representation 
in each cell sharing that node. These multiple values at 
each node are averaged to yield a single accurate, bounded 
value there. 

5 Current Results 

The method described above has been tested on several 
internal and external flows. The cases were chosen so as to 
show the flexibility of the Cartesian mesh approach, and 
the fidelity of results available by use of solution-based 
refinement. 

Figure 8: Obtaining Post-Processed Nodal Values 
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Figure 9: NACA 0012, Mesh 

5.1 Transonic NACA Airfoil 

The steady-state flow is computed about a NACA 0012 
airfoil at M, = 0.85 and a = lo. For these conditions, 
shocks exist on the upper and lower surfaces of the airfoil. 

The outer boundary of the mesh was set at a 2048- 
chord radius. This virtually eliminated the need for a vor- 
tex boundary condition; simply specifying the free-stream 
state at the outer boundary faces proved adequate. The 
initial mesh was refined based on curvature, to resolve the 
leading and trailing edge. Three levels of solution-based 
refinement were done, as well. 

As can be seen in Figures 9 and 10, both shocks, as well 
as the wake, are well resolved. The pressure coefficient, 
plotted in Figure 11, results in a lift of 0.3670 and a drag 
of 0.0581. 

To show the effect of the outer boundary conditions 
on the solution, this case was run for outer boundaries 
ranging from a 4-chord to a 2048-chord radius. Geometry- 
based refinement was carried out so as to ensure an equiva- 
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