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Abstract

A method for adaptive refinement of a Cartesian mesh for
the solution of the steady Euler equations is presented.
The algorithm creates an initial uniform mesh and cuts
the body out of that mesh. The mesh is then refined based
on body curvature. Next, the solution is converged to a
steady state using a linear reconstruction and Roe’s ap-
proximate Riemann solver. Solution-adaptive refinement
of the mesh is then applied to resolve high-gradient re-
gions of the flow. The numerical results presented show
the flexibility of this approach and the accuracy attainable
by solution-based refinement.

1 Introduction

In the past several years, unstructured mesh methods for
fluid dynamics have become more and more prevalent, as
a way of surmounting some of the difficulties of generat-
ing body-fitted meshes about arbitrary bodies[1, 2, 3, 4].
Flow-fields with multiple bodies are particularly difficult
to generate structured meshes for, and multi-block meth-
ods [5] or patched-mesh methods [6] must be implemented
in these cases if structured meshes are to be used.

Even unstructured mesh generation is not simple for
complex configurations, however. Advancing front meth-
ods [2] must be carefully implemeted to avoid high aspect-
ratio or highly skewed cells; Delaunay methods [3, 4] typ-
ically require the generation of a cloud of points to tri-
angulate, and special steps must be taken to avoid the
breaking of boundary faces.
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A very simple mesh generation technique is to “cut”
the bodies in the flow out of a Cartesian mesh. Indeed,
this technique is commonly used for potential flow calcula-
tions [7]. Advantages of using Cartesian meshes for Euler
solvers, besides increased ease of mesh generation, include
simpler flux formulations and simplifications in the data
structure. In addition, Cartesian cells lead to fortuitous
cancellation of truncation errors not occuring on less reg-
ular meshes. Two difficulties that arise in developing an
Euler solver for a Cartesian mesh are:

1. poor resolution of leading and trailing edges, and

2. the introduction of cut cells that are a small fraction
of the size of uncut cells.

Euler solvers based on central-differencing on Cartesian
meshes have been developed by Clarke et al [8] and Ep-
stein et al [9]. In the work of Clarke et al, resolution of
leading and trailing edges was achieved simply by clus-
tering the mesh lines near the points of interest; cut cells
were handled by merging them with neighboring uncut
cells. In the work of Epstein et al, resolution was achieved
by local mesh refinement; cut cells were handled by a
non-conservative extrapolation procedure. An upwind-
differencing method on an adaptively refined Cartesian
mesh has been developed by Berger and LeVeque [10], for
unsteady flows. In their work, the large time-step method
of Leveque [11] was used to help remove the numerical
stiffness due to small cut cells.

In the work presented in this paper, resolution is
achieved by use of adaptive refinement; cut cells are han-
dled by a reconstruction method for general unstructured
meshes coupled with local time-stepping. The work con-
sists of a mesh generation based on a Cartesian mesh

166




Parent Cell

Cell Level n

Children Calis
Cell Level n+1

Figure 1: Parent/Children Relationship

with geometry-based refinement [12], and a flow solver
based on the MUSCL concept [13], with a linear recon-
struction technique [14] and Roe’s approximate Riemann
solver {15]. In addition, solution-adaptive refinement of
the mesh is used to gain resolution in high-gradient regions
of the flow [16, 17]. Each element of the mesh generation
technique and the flow solver is described in the following
text, along with the data structure used. Results for a
collection of test cases are presented and discussed.

2 Generation of the Mesh and
Data Structure

2.1 Data Structure

The basic data structure used is a hierarchical cell-based
quadtree structure — “parent” cells are refined by division
into four “children” cells. This concept is illustrated in
Figure 1. Each cell has a pointer to its parent cell (if one
exists) and to its four children cells (if they exist). The
cells farthest down the hierarchy, that is, the ones with
no children, are the cells on which the calculation takes
place.

In addition to this basic structure, a list of cell-faces is
made, and a structure containing the cell-to-face connec-
tivity, and the face-to-cell connectivity, is stored. Simi-
larly, a list of nodes and the cell-to-node connectivity of
the mesh is stored. The face structure is not strictly nec-
essary; however it does reduce the time spent in traversing
the quadtree structure. The node structure is necessary
only for the post-processing step; it is not utilized in the
solution process.

Other data structure issues include the need to mark
cells, nodes and faces as to whether they are inside the
flow domain, inside the body, or crossing the body sur-
face. Also included in the mesh data structure are the
coordinates of the nodes, the face midpoints, and the cell
centroids. Again, these need not necessarily be stored;

they could be computed relatively inexpensively from the
basic quadtree structure.

With this data structure in place, refining a cell (i.e.
spawning four children cells) reduces primarily to a triv-
ial change of the cell-based quadtree structure. Resulting
changes in the list of nodes and faces, and the pointers,
can be derived from the quadtree structure.

2.2 Generation of an Initial Mesh

To generate the initial mesh, a coarse Cartesian mesh of
equal-sized cells is generated that covers the entire area
of interest. The body is then “cut” out of this mesh.
The procedure for computing the intersections of the body
with the mesh depends upon how the body has been de-
fined.

For a body defined by a piecewise analytic function
y(z), with the inverse function z(y) also known, a node
of the Cartesian mesh can be classified as inside or out-
side the body immediately, by determining whether the
z = constant and y = constant lines through the node in-
teresect the body an even or odd number of times between
the node and the outer boundary. For a body defined by
a piecewise analytic function y(z), with the inverse func-
tion not known, the intersections of the line x = constant
with the body are known immediately; a search proce-
dure must be set up to determine the intersections in the
z—direction. For a body defined simply by a set of data
points, a search procedure must be carried out in both
the z- and y-directions to find the intersections. For bod-
ies defined in this manner, a spline (C° at trailing-edges,
C? elsewhere) is fit through the points defining the body.
The spline-fit of the body data points was found to be
necessary to obtain smooth flow solutions.

Each node in the Cartesian mesh is tested and classified
as to whether it is inside one of the bodies, or in the
flow domain. Once each node has been thus classified,
the faces of the Cartesian mesh are classified as inside
the body (both nodes defining the face are classified as
inside), outside the body (both nodes defining the face
are classified as outside), or “cut” (one node is classified
as being outside, the other, inside). For faces classified as
cut, the location of the intersection of the face and the
body (which is known from the procedure for classifying
the nodes) is stored.

Cells are similarly classified, based on the number of
nodes inside or outside the body or bodies. If only one
node is outside the body, the cell is a cut cell, with three
faces (two cut faces and one face on the body). If two (or
three) nodes are outside the body, the cell is a cut cell
with four (or five) faces. Uncut cells are those with all
four nodes either outside or inside the body.
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Figure 2: Example Mesh

2.3 Geometry-Based Mesh Refinement

Geometry-based mesh refinement [12] is the next step in
creating a suitable mesh. Once the initial Cartesian mesh
has been generated, and the cut locations determined, a
combination of cut-cell refinement and curvature refine-
ment is applied to the mesh.

In cut-cell refinement, each cell cut by a body is refined,
along with its three nearest neighbors. Refining neighbors
of cut cells ensures a smoother transition to fine cells on
the body from the coarser outer flow cells. Refinement
of cut cells is applied successively until the mesh on the
body is brought to a user-specified level.

Once the desired cut-cell refinement is completed, cur-
vature refinement is applied to the mesh. The slopes of
the body faces on two consecutive cut cells are compared.
If the difference in slopes is above a threshhold value, both
cells, and their nearest neighbors, are refined. The actual
check used to flag cells for curvature refinement is given

by
(%) gun - (5%)
AX Celll AxX Cell2

with special care taken for faces with AX small.
An example mesh generated by the above procedures is
shown in Figure 2.

> 0.05 (1)

2.4 Solution-Based Mesh Refinement

An adaptive mesh may be refined or coarsened based on
the characteristics of the fiow about the body. Refinement
takes place only after a solution is sufficiently converged.
At that point, cells are flagged for refinement, based on the
difference (undivided) of the total velocity between cells.

If the total velocity difference is above a user-specified
fraction (typically 5%) of the maximum total velocity dif-
ference, then the two cells sharing that face are flagged
for refinement. For each cell that is flagged, four children
cells are added to the quadtree data structure, one level
farther down the hierarchy than their parent cell.

2.5 Mesh “Smoothing”

The mesh resulting from the above procedure could have
certain “undesirable features.” Some are undesirable in
that allowing them would complicate the data structure;
others are undesirable in that computational experience
shows that they may degrade the solution somewhat in
their vicinity.

The eight features that are currently labelled “undesir-
able” are described below, and depicted in Figure 3.

1. Cell level differences greater than 1 between two
neighboring cells

2. Cell level differences greater than 0 normal to body-
cut cells

3. Cell level differences greater than 0 through outer flow
boundaries

4. Cell level differences greater than 0 between three-
sided cells and their neighbors

5. “Holes” in the mesh
6. More than two cuts on a cell

7. Cell level differences greater than 0 on trailing edge
of body

8. Bodies too close, only two cells apart

When an undesirable feature is found, the mesh is
“smoothed” to eliminate it, by refining appropriate cells
until the feature no longer exists. This is a recursive pro-
cedure, that converges to a mesh with no undesirable fea-
tures.

3 Flow Solver

The flow solver described here consists of three primary
components: a linear reconstruction method, for obtain-
ing accurate, limited values of the flow variables at face
midpoints; an approximate Riemann solver, for comput-
ing the flux through cell-faces; and a multi-stage time-
stepping scheme for advancing the solution to a steady
state. The individual components of this procedure are
described below.
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Figure 3: “Undesirable” Mesh Features

3.1 Reconstruction Procedure

In order to evaluate the flux through a face, flow quan-
tities are required at both sides of the face. To achieve
higher-order accuracy, solution-gradient information must
be used. A linear reconstruction method [1] is used to de-
termine a second-order approximation to the state at the
face midpoint, based on the cells in the neighborhood of
the face. It relies on a suitable path integral about the
cell of interest, with the gradient of a quantity W; in a
cell being determined by

VW;,:i

Wiiid?
Aq Jon *

(2)
where Aq is the area enclosed by the path of integra-
tion, 8. Here, Wi represents the quantity being recon-
structed; in this work, the primitive variables W = (p, u,
v, p)T are reconstructed.

The path for the integration is constructed by connect-
ing the centroids of neighboring cells. Away from cut cells
or cell-level differences, the eight immediate neighbors of
a cell are used. Near a body, as few as four cells are
used to construct the path. For a linear reconstruction,
a minimum of three non-colinear cell-centers are required
to form a proper path. Some examples of the paths are
shown in Figure 4 to the normal path, with the X denoting
the cell for which the gradient is being calculated.

Once the cells in the path are determined, the path
integral is carried out numerically. In general, the area
inside the path is calculated by summing the areas of the
triangles formed by connecting the centroids in the path
to the centroid of the cell for which the gradient is being
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Figure 4: Normal And Special Paths
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Figure 5: Integral Path

calculated. The z and y components of the gradient are
normalized by the cell width and height, respectively.

In the regions of the mesh where a cell and its eight
neighbors are uncut and the same size, the resulting in-
tegral path is a square twice the size of the cell. In this
case, higher accuracy can be achieved by combining pairs
of faces in a trapezoidal rule. When the gradient is nor-
malized by the cell width or height, it becomes a function
of only the cell values, not the geometry. These more
accurate representations of the normalized gradient are

a;;; Eo= 1—12 (WP + AW + Wi°

—WPY - AW - W) (8
oW, 1
—ay" 3 Wi +4Wp +wpe

WY — AW -WP%) . (3b)

Figure 5 shows the path for this case.
Once the gradient of W} is known in each cell, the value
of Wi can be found anywhere in the cell from

Wi(z,y) = Wi+ VW, -dr 4)
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where W is the value of W, at the cell centroid, and dr
is defined as

(2 - o)
dry, = =
" Azce” (53)
(v —v°)
dr B — 5L
. AYeen ( ))

For example, the values at the face midpoints of an uncut
cell are simply

0, e ]'
wir = Wi + 5V Wi (6a)
wrieht = Wf+%V,,Wk (6b)
Wpotten = Wf—%vyw,, (6¢)
1
wit = Wi = 5V We . (6d)

3.2 Limiting

If the full gradient were used in reconstructing the values
at face midpoints, the computed values could fall outside
the bounds of the data used in the path integral. ‘To
avoid this, the computed gradients are limited; that is the
primitive variables W = (p, u, v, p)7 are reconstructed via

(7

where ¢ is a limiter, with a value between zero and one.
In regions where ¢ = 1, a linear reconstruction is being
used; in regions where ¢ = 0, a piecewise constant recon-
struction is being used. The limiter ¢ is defined as

W(z,y) = W4+ ¢VW . dr

1

ming

B maXpqen|Ws —W7
= min

maxeer |We—Wg

. i Wi —W§
iy ':T"H'll)
The minimum and maximum over the path are found by
examining the values of Wi used in the path integration;
the minimum and maximum over the cell are found by
using the gradient to reconstruct Wj at the corners of
the cell. Thus, the limiter acts to ensure that the values
of Wi at the nodes of the cell for which the gradient is
being calculated are bounded by the values of Wy that are
used in calculating the gradient. Using a single limiter for
the gradient of the vector W was found to give superior
results. In standard MUSCL-type schemes [13], a separate
limiter is typically used for each variable, and for each

mesh direction, resulting in eight limiters for each cell.

Unfortunately, limiting can seriously hamper the con-
vergence to a steady state, with the nonlinearity of the

(8)
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Figure 6: Limiter Values — Transonic Airfoil

scheme resulting in limit cycles. To combat this prob-
lem, the limiter values are “frozen” after a certain point
in the convergence, using previously stored values of the
limiter rather than recomputing them at each time step.
Freezing the limiters allows the residuals to converge to
machine zero.

Typical values of the limiter are shown in Figure 6, in
which the ¢(x,y) is plotted for a transonic airfoil case. As
can be seen, a linear reconstruction (¢ = 1) is used nearly
everwhere. In the immediate vicinity of the shocks, and
the wake, the limiter reduces the order of accuracy of the
scheme. The percentage of cells in which the limiter is less
than one is extremely small, however. A representative
convergence history is shown in Figure 7.

3.3 Approximate Riemann Solver

The finite-volume form of the Euler equations can be writ-
ten as
dU

1
== Y (FAy—GAr)

Jaces

(9)

where A is the area of that cell, Az and Ay are the changes
of z and y along a face (defined so that the integral is
carried out in a counter-clockwise sénse), and U, F and
G are defined as

(10a)
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Defining the face length and the normal and tangential

velocities as
As =1/(Az)’ + (Ay)?

(vAy — vAz)
As

v — (uAz + vAy)

£ As '

the flux through a face may be written as

(11)

(12a)

Uy =

(12b)

Pun
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punv — p4Z

pun H

The flux through a face is a function of the values at
the face midpoint, given by the reconstruction in the cells

to the “left” and “right” of the face. Using Roe’s approx-
imate Riemann solver, this flux function is
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p VPLPR

. +/PLYL +/PRUR
VvPL + /PR

VPLYL + \/PRVR
VPL + /PR

i o= VPLHL + \/prHR
VPL ++/PR

where ¢, i, and 4, are calculated directly from p, @, o,
and H.

To prevent expansion shocks, an entropy fix is im-
posed [18]. A smoothed value, I&(")r, is defined to replace
|a®)| for the two acoustic waves (k = 1, k = 4). For those

two waves,
* la(k)| |a(k)| > .liga(k)

§a®) = maz (4Aa(k), 0) ,Aa(k) = ag) - a(Lk) .

(16a)

(16b)

[~
il

(16¢)

(16d)

la(k)

(17)
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For each cell, the face fluxes, calculated as above, are
summed to give the residual for the cell,

Res(U) = —% S #As. (18)
Jaces

These residuals are then integrated in time, as described
below.

3.4 Time-Stepping Scheme

The time-stepping scheme used is one of the optimally-
smoothing multi-stage schemes developed by Tai [19, 20].
The general m-stage scheme is defined as

u® —- yn»
U® = U 4 o AtRes (U(""l)) k=1m
Uttt = um, (19)

The five-stage scheme which gives optimal damping of
Fourier modes in the range x/4 < kAz < 7 has multi-
stage coefficients

a; = 0.0695
az = 0.1602
ag = 0.2898
ay = 0.5060
as = 1.0000 (20)

and CFL number 1.1508.

Local time-stepping is used, and indeed is necessary.
The meshes generated have extremely large differences in
area from cell to cell, due to the cut cells.

4 Post-Processing

Post-processing requires transfering the known cell-
centered values to nodal values for plotting as accurately
as possible. To do this, the limited cell gradients are used
to extrapolate to each cell’s nodes as shown in Figure 8

The function as reconstructed at the nodes is multi-
valued; there is one value resulting from the representation
in each cell sharing that node. These multiple values at
each node are averaged to yield a single accurate, bounded
value there.

5 Current Results

The method described above has been tested on several
internal and external flows. The cases were chosen so as to
show the flexibility of the Cartesian mesh approach, and
the fidelity of results available by use of solution-based
refinement.

Figure 8: Obtaining Post-Processed Nodal Values
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Figure 9: NACA 0012, Mesh

5.1 Transonic NACA Airfoil

The steady-state flow is computed about a NACA 0012
airfoil at M, = 0.85 and a = 1°. For these conditions,
shocks exist on the upper and lower surfaces of the airfoil.

The outer boundary of the mesh was set at a 2048-
chord radius. This virtually eliminated the need for a vor-
tex boundary condition; simply specifying the free-stream
state at the outer boundary faces proved adequate. The
initial mesh was refined based on curvature, to resolve the
leading and trailing edge. Three levels of solution-based
refinement were done, as well.

As can be seen in Figures 9 and 10, both shocks, as well
as the wake, are well resolved. The pressure coefficient,
plotted in Figure 11, results in a lift of 0.3670 and a drag
of 0.0581.

To show the effect of the outer boundary conditions
on the solution, this case was run for outer boundaries
ranging from a 4-chord to a 2048-chord radius. Geometry-
based refinement was carried out so as to ensure an equiva-
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Figure 12: NACA 0012, Lift and Drag vs. Boundary Ra-
dius

lent mesh in the vicinity of the airfoil for each case. Three
levels of solution-based refinement were also done for each
case. As can be seen in Figure 12, this wide range of outer
boundary radius resulted in only a small change in the to-
tal number of computational cells. Even though the crud-
est possible outer boundary condition (free-stream flow)
was enforced, the lift and drag are converged by the 512
chord case. Thus, by use of mesh refinement, simple outer
boundary conditions may be enforced, at a radius far from
the body, at very little computational cost.

5.2 “Subsonic” Three-Element Airfoil
For this case, M, = 0.2 and « = 0°. Portions of the mesh
are shown in Figures 13, 14, and 15. As can be seen, the
geometry-adaptive refinement gives sufficient resolution of
leading and trailing edges. Contours of Mach number are
shown in Figures 16, 17, and 18. Due to the high effec-
tive camber caused by the flaps, the flow actually expands
to supersonic speed about the leading edge, and a weak
shock is present. The Mach number and pressure coeffi-
cient distributions on the surface are shown in Figures 19
and 20. Despite large variations in cell size on the body
(the smallest cut cell is a factor 10° smaller than its uncut
neighbor) the solution is smooth. The total pressure loss,
1 — po/po.., 18 shown in Figure 21. There is some total
pressure loss on the upper surface of the main element (=~
0.5%), due to the shock at the leading-edge. On the lower
surface of the main element, and on the flaps, the loss is
less than 0.1%. The lift for the system is C; = 3.7842; the
drag is Cq = 0.0159.

number of ¢
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Figure 13: Three Element Airfoil, Mesh
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Figure 15: Three Element Airfoil, Mesh (Detail)
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3 Element Airfoil Mach Number Contours. 3 Element Airfoil Mach Number Cross-Sections.
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Figure 21: Three Element Airfoil, 1 — po/po., on Surface

5.3 Supersonic Double Ellipsoid

For this case, M, = 8.15 and a@ = 30°. The mesh was re-
fined four times based on the solution; the resulting mesh
is shown in Figure 22. The refined regions correspond to
the nose, the bow shock and the canopy shock. The Mach
number and pressure contours are shown in Figures 23
and 24 respectively. The shocks and the expansion about
the nose are all well resolved. Finally, the pressure coef-
ficient on the body is plotted in Figure 25. Despite the
presence of small cut cells on the body, the pressure distri-
bution is very smooth, and the canopy shock is captured
cleanly.

5.4 Supersonic Channel Flow

In this, the steady-state flow is computed in a channel with
a 15° compression corner, followed by a 15° expansion cor-
ner. The free-stream Mach number is M, = 2.0. There
is an attached shock at the compression corner, which re-
flects from the top wall, forming a small Mach stem. The
shock reflects from the bottom wall as well, before exit-
ing the channel. The expansion corner acts to weaken the
reflected shock. There is also a slip line, emanating from
the triple point near the upper wall.

The Mach number contours and mesh are shown in Fig-
ure 26. A blowup of the Mach stem is shown in Figures 27
and 28. The shear that emanates from the triple point of
the Mach stem is carried cleanly out through the flow, al-
though somewhat weakened by the expansion. The pres-
sure contours plotted in Figure 29 pass smoothly through
the shear, as they should. The pressure on the wall is
shown in Figure 30. Note that the pressure is constant on
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Figure 22: Double Ellipsoid, Mesh

Double Ellipsoid Mach Number Contours
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Figure 23: Double Ellipsoid, Mach Number Contours
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Double Ellipsoid Pressure Contours

17432 Cells, Level 6 Mesh
61.51

58.12
55.02
51.64
48.54
45,15
42.05
38 67
3557
3218
20.08
2570
22 54
19.21
1611
1270
962

624

3.14

n.n4

a.1an

0.050

v

0.000 -

—0.050
~-0.100

0.000

0.050

T
—.0580

Figure 24:

Double Ellipsoid, Pressure Contours
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Figure 25: Double Ellipsoid, Pressure Coeflicient on Body
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Figure 26: 15° Wedge, Mach Number Contours and Mesh

the incline of the ramp. Cell areas on the incline vary as
much as six orders of magnitude from cell to cell without
having a detrimental affect on the solution.

5.5 Axisymmetric Under-Expanded Jet
Flow

In this case, an axisymmetric jet with Mach number
M;.. = 1.25, exhausts into a stream with Mach number
Msiream = 1.25. The total pressure ratio of jet to stream
is fiffeen; the total temperature ratio is unity. Two lev-
els of solution-based refinement were done; the final mesh
and Mach number contours are shown in Figure 31. The
outer stream passes through a shock slightly upstream of
the lip of the nozzle. A curved shear and a curved shock
emanate from the lip of the nozzle; the shock reflects from
the axis of symmetry, and interacts with the shear.

6 Summary

An adaptive Cartesian mesh algorithm has been devel-
oped, and has been used successfully to obtain steady-
state solutions of the Euler equations for a variety of in-
ternal and external flows. Test cases included a transonic
airfoil, a three-element airfoil, a double ellipsoid, a chan-
nel flow, and an axisymmetric jet flow. For airfoil cases,
the outer boundary can be placed arbitrarily far from the
airfoil without significantly increasing the number of cells,
thus eliminating the need for sophisticated outer bound-
ary conditions. Both geometry- and solution-based re-
finement effectively enhance resolution of regions of high
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15 Degree Wedge Pressure Cross- Sections.
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Axisymmetric Nozzle Mach Number Contours.
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Figure 31: Axisymmetric Under-Expanded Jet, Mach
Number Contours and Mesh

body curvature and large flow gradients. The reconstruc-
tion method, coupled with local time stepping, eliminate
the problems typically associated with the small cut cells
caused by cutting the body from the Cartesian mesh.
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