
An Adaptively-Refined Cartesian Mesh Solver for the
Euler Equations

Darren De Zeeuw *

Kenneth G. Powell t

The University of Michigan

Department of Aerospace Engineering

Ann Arbor, MI 48109-2140

April, 1991

Abstract

A method for adaptive refinement of a Cartesian mesh for
the solution of the steady Euler equations is presented.
The algorithm creates an initial uniform mesh and cuts
the body out of that mesh. The mesh is then refined based
on body curvature. Next, the solution is converged to a
steady state using a linear reconstruction and Roe's a p
proximate Riemann solver. Solution-adaptive refinement
of the mesh is then applied to resolve high-gradient re-
gions of the flow. The numerical results presented show
the flexibility of this approach and the accuracy attainable
by solution-based refinement.

1 Introduction

In the past several years, unstructured mesh methods for
fluid dynamics have become more and more prevalent, as
a way of surmounting some of the difficulties of generat-
ing body-fitted meshes about arbitrary bodies[l, 2, 3, 41.
Flow-fields with multiple bodies are particularly difficult
to generate structured meshes for, and multi-block meth-
ods [5] or patched-mesh methods [6] must be implemented
in these cases if structured meshes are to be used.

Even unstructured mesh generation is not simple for
complex configurations, however. Advancing front meth-
ods [2] must be carefully implemeted to avoid high aspect-
ratio or highly skewed cells; Delaunay methods [3, 41 typ-
ically require the generation of a cloud of points to tri-
angulate, and special steps must be taken to avoid the
breaking of boundary faces.

*Doctoral Candidate, Member AIAA
t Assistant Professor, Member AIAA

A very simple mesh generation technique is to "cut"
the bodies in the flow out of a Cartesian mesh. Indeed,
this technique is commonly used for potential flow calcula-
tions [7]. Advantages of using Cartesian meshes for Euler
solvers, besides increased ease of mesh generation, include
simpler flux formulations and simplifications in the data
structure. In addition, Cartesian cells lead to fortuitous
cancellation of truncation errors not occuring on less reg-
ular meshes. Two difficulties that arise in developing an
Euler solver for a Cartesian mesh are:

1. poor resolution of leading and trailing edges, and

2. the introduction of cut cells that are a small fraction
of the size of uncut cells.

Euler solvers based on central-differencing on Cartesian
meshes have been developed by Clarke et a1 [8] and Ep-
stein et a1 [9]. In the work of Clarke et al, resolution of
leading and trailing edges was achieved simply by clus-
tering the mesh lines near the points of interest; cut cells
were handled by merging them with neighboring uncut
cells. In the work of Epstein et al, resolution was achieved
by local mesh refinement; cut cells were handled by a
non-conservative extrapolation procedure. An upwind-
differencing method on an adaptively refined Cartesian
mesh has been developed by Berger and LeVeque [lo], for
unsteady flows. In their work, the large time-step method
of Leveque [l l] was used to help remove the numerical
stiffness due to small cut cells.

In the work presented in this paper, resolution is
achieved by use of adaptive refinement; cut cells are han-
dled by a reconstruction method for general unstructured
meshes coupled with local time-stepping. The work con-
sists of a mesh generation based on a Cartesian mesh

Children Cells

Cell Level n+l

Figure 1: ParentIChildren Relationship

with geometry-based refinement [12], and a flow solver
based on the MUSCL concept [13], with a linear recon-
struction technique [14] and Roe's approximate Riemann
solver [Is]. In addition, solution-adaptive refinement of
the mesh is used to gain resolution in high-gradient regions
of the flow [16, 171. Each element of the mesh generation
technique and the flow solver is described in the following
text, along with the data structure used. Results for a
collection of test cases are presented and discussed.

2 Generation of the Mesh and
Data Structure

2.1 Datastructure

The basic data structure used is a hierarchical cell-based
quadtree structure - "parent" cells are refined by division
into four "children" cells. This concept is illustrated in
Figure 1. Each cell has a pointer to its parent cell (if one
exists) and to its four children cells (if they exist). The
cells farthest down the hierarchy, that is, the ones with
no children, are the cells on which the calculation takes
place.

In addition to this basic structure, a list of cell-faces is
made, and a structure containing the cell-to-face connec-
tivity, and the face-ta-cell connectivity, is stored. Simi-
larly, a list of nodes and the cell-to-node connectivity of
the mesh is stored. The face structure is not strictly nec-
essary; however it does reduce the time spent in traversing
the quadtree structure. The node structure is necessary
only for the post-processing step; it is not utilized in the
solution process.

Other data structure issues include the need to mark
cells, nodes and faces as to whether they are inside the
flow domain, inside the body, or crossing the body sur-
face. Also included in the mesh data structure are the
coordinates of the nodes, the face midpoints, and the cell
centroids. Again, these need not necessarily be stored;

they could be computed relatively inexpensively from the
basic quadtree structure.

With this data structure in place, refining a cell (i.e.
spawning four children cells) reduces primarily to a triv-
ial change of the cell-based quadtree structure. Resulting
changes in the list of nodes and faces, and the pointers,
can be derived from the quadtree structure.

2.2 Generation of an Initial Mesh

To generate the initial mesh, a coarse Cartesian mesh of
equal-sized cells is generated that covers the entire area
of interest. The body is then "cut" out of this mesh.
The procedure for computing the intersections of the body
with the mesh depends upon how the body has been de-
fined.

For a body defined by a piecewise analytic function
y(x), with the inverse function x(y) also known, a node
of the Cartesian mesh can be classified as inside or out-
side the body immediately, by determining whether the
x = constant and y = constant lines through the node in-
teresect the body an even or odd number of times between
the node and the outer boundary. For a body defined by
a piecewise analytic function y(x), with the inverse func-
tion not known, the intersections of the line x = constant
with the body are known immediately; a search proce-
dure must be set up to determine the intersections in the
x-direction. For a body defined simply by a set of data
points, a search procedure must be carried out in both
the x- and y-directions to find the intersections. For bod-
ies defined in this manner, a spline (CO at trailing-edges,
C2 elsewhere) is fit through the points defining the body.
The spline-fit of the body data points was found to be
necessary to obtain smooth flow solutions.

Each node in the Cartesian mesh is tested and classified
as to whether it is inside one of the bodies, or in the
flow domain. Once each node has been thus classified,
the faces of the Cartesian mesh are classified as inside
the body (both nodes defining the face are classified as
inside), outside the body (both nodes defining the face
are classified as outside), or "cutn (one node is classified
as being outside, the other, inside). For faces classified as
cut, the location of the intersection of the face and the
body (which is known from the procedure for classifying
the nodes) is stored.

Cells are similarly classified, based on the number of
nodes inside or outside the body or bodies. If only one
node is outside the body, the cell is a cut cell, with three
faces (two cut faces and one face on the body). If two (or
three) nodes are outside the body, the cell is a cut cell
with four (or five) faces. Uncut cells are those with all
four nodes either outside or inside the body.

Double Ellipeoid Grid Plot.

Figure 2: Example Mesh

2.3 Geometry-Based Mesh Refinement
Geometry-based mesh refinement [12] is the next step in
creating a suitable mesh. Once the initial Cartesian mesh
has been generated, and the cut locations determined, a
combination of cut-cell refinement and curvature refine-
ment is applied to the mesh.

In cut-cell refinement, each cell cut by a body is refined,
along with its three nearest neighbors. Refining neighbors
of cut cells ensures a smoother transition to fine cells on
the body from the coarser outer flow cells. Refinement
of cut cells is applied successively until the mesh on the
body is brought to a user-specified level.

Once the desired cut-cell refinement is completed, cur-
vature refinement is applied to the mesh. The slopes of
the body faces on two consecutive cut cells are compared.
If the difference in slopes is above a threshhold value, both
cells, and their nearest neighbors, are refined. The actual
check used to flag cells for curvature refinement is given

with special care taken for faces with AX small.
An example mesh generated by the above procedures is

shown in Figure 2.

2.4 Solution-Based Mesh Refinement
An adaptive mesh may be refined or coarsened based on
the characteristics of the flow about the body. Refinement
takes place only after a solution is sufficiently converged.
At that point, cells are flagged for refinement, baaed on the
difference (undivided) of the total velocity between cells.

If the total velocity difference is above a user-specified
fraction (typically 5%) of the maximum total velocity dif-
ference, then the two cells sharing that face are flagged
for refinement. For each cell that is flagged, four children
cells are added to the quadtree data structure, one level
farther down the hierarchy than their parent cell.

2.5 Mesh "Smoothing"

The mesh resulting from the above procedure could have
certain "undesirable features." Some are undesirable in
that allowing them would complicate the data structure;
others are undesirable in that computational experience
shows that they may degrade the solution somewhat in
their vicinity.

The eight features that are currently labelled "undesir-
able" are described below, and depicted in Figure 3.

1. Cell level differences greater than 1 between two
neighboring cells

2. Cell level differences greater than 0 normal to body-
cut cells

3. Cell level differences greater than 0 through outer flow
boundaries

4. Cell level differences greater than 0 between three-
sided cells and their neighbors

5. "Holes" in the mesh

6. More than two cuts on a cell

7. Cell level differences greater than 0 on trailing edge
of body

8. Bodies too close, only two cells apart

When an undesirable feature is found, the mesh is
"smoothed" to eliminate it, by refining appropriate cells
until the feature no longer exists. This is a recursive p r e
cedure, that converges to a mesh with no undesirable fea-
tures.

3 Flow Solver

The flow solver described here consists of three primary
components: a linear reconstruction method, for obtain-
ing accurate, limited values of the flow variables at face
midpoints; an approximate Riemann solver, for comput-
ing the flux through cell-faces; and a multi-stage time-
stepping scheme for advancing the solution to a steady
state. The individual components of this procedure are
described below.

Figure 3: "Undesirablen Mesh Features

3.1 Reconstruction Procedure

In order to evaluate the flux through a face, flow quan-
tities are required at both sides of the face. To achieve
higher-order accuracy, solution-gradient information must
be used. A linear reconstruction method [l] is used to de-
termine a second-order approximation to the state at the
face midpoint, based on the cells in the neighborhood of
the face. It relies on a suitable path integral about the
cell of interest, with the gradient of a quantity Wk in a
cell being determined by

where An is the area encloeed by the path of integra-
tion, an. Here, Wk represents the quantity being recon-
structed; in this work, the primitive variables W = (p , u,
v , p)T are reconstructed.

The path for the integration is constructed by connect-
ing the centroids of neighboring cells. Away from cut cells
or cell-level differences, the eight immediate neighbors of
a cell are used. Near a body, as few as four cells are
used to construct the path. For a linear reconstruction,
a minimum of three non-colinear cell-centers are required
to form a proper path. Some examples of the paths are
shown in Figure 4 to the normal path, with the X denoting
the cell for which the gradient is being calculated.

Once the cells in the path are determined, the path
integral is carried out numerically. In general, the area
inside the path is calculated by summing the areas of the
triangles formed by connecting the centroids in the path
to the centroid of the cell for which the gradient is being

X

Figure 4: Normal And Special Paths

Figure 5: Integral Path

calculated. The z and y components of the gradient are
normalized by the cell width and height, respectively.

In the regions of the mesh where a cell and its eight
neighbors are uncut and the same eize, the resulting in-
tegral path is a square twice the size of the cell. In this
case, higher accuracy can be achieved by combining pairs
of faces in a trapezoidal rule. When the gradient is nor-
malized by the cell width or height, it becomes a function
of only the cell values, not the geometry. These more
accurate representations of the normalized gradient are

Figure 5 shows the path for this case.
Once the gradient of Wk is known in each cell, the value

of Wk can be found anywhere in the cell from

Residual History
1 .o to the "left" and "right" of the face. Using Roe's approx-

imate Riemann solver, this flux function is

1
-1.0 L R = T [* (U ~) + + (U ~)]

Loglo(reridual)
1 - - lhkl* av,Bk (14)

-3.0
2

k = l

with

-5.0

a =
Un

-7.0 , 1 I 1 I 1
0. 4000. 8000. 12000.

6, + 2
Iteration

Figure 7: Representative Convergence History

PU

1 0 1 1

(15~)
A8

H - One iit2 H +6,t

and

(1 0 ~) p = dEEi (164

u = &UL + &'UR

Defining the face length and the normal and tangential ,h%+fi
(16b)

velocities as
9 = &VL + &OR

as = Jm (11) &+,mi (

Ut = (UAZ + WAY) where t, Q,, and iit are calculated directly from @, ii, 9,
As 1 and I?.

the flux through a face may be written as To prevent expansion shocks, an entropy fix is im-
posed [18]. A smoothed value, I B (~) ~ * , is defined to replace
Idk)I for the two acoustic waves (k = 1, k = 4). For those
two waves,

(FAy - GAx) = As r *As. (13)
h0)I > I -

+ lba(k) lh(k)I < 46a(k)
4 -

The flux through a face is a function of the values at
the face midpoint, given by the reconstruction in the cells 6a(k) = max (4 ~ a (~) , 0 1 , ~ a (k) = a f) - a f) . (17)

For each cell, the face fluxes, calculated as above, are
summed to give the residual for the cell,

These residuals are then integrated in time, as described
below.

3.4 Time-Stepping Scheme
The time-stepping scheme used is one of the optimally-
smoothing multi-stage schemes developed by Tai [19, 201.
The general m-stage scheme is defined as

~ (0) = U"

u (~) = u(O) + akAtRes u('-') , k = 1, m ()
u"+' = ~ (4 . (19)

The five-stage scheme which gives optimal damping of
Fourier modes in the range ~ / 4 5 LAX 5 T has multi-
stage coefficients

a 1 = 0.0695

a 2 = 0.1602

a 3 = 0.2898

a 4 = 0.5060

a g = 1.0000 (20)

and CFL number 1.1508.
Local time-stepping is used, and'indeed is necessary.

The meshes generated have extremely large differences in
area from cell to cell, due to the cut cells.

4 Post-Processing

Post-processing requires transfering the known cell-
centered values to nodal values for plotting as accurately
as possible. To do this, the limited cell gradients are used
to extrapolate to each cell's nodes as shown in Figure 8

The function as reconstructed at the nodes is multi-
valued; there is one value resulting from the representation
in each cell sharing that node. These multiple values at
each node are averaged to yield a single accurate, bounded
value there.

5 Current Results

The method described above has been tested on several
internal and external flows. The cases were chosen so as to
show the flexibility of the Cartesian mesh approach, and
the fidelity of results available by use of solution-based
refinement.

Figure 8: Obtaining Post-Processed Nodal Values

NACA 0012 Grid Plot.

9609 Cells, Level 4 Mesh, Lifk0.3670, Drag=0.0581
1.50

0.50

Y

-0.50

-1.00 0.00 1.00 2.00
X

Figure 9: NACA 0012, Mesh

5.1 Transonic NACA Airfoil

The steady-state flow is computed about a NACA 0012
airfoil at M, = 0.85 and a = lo. For these conditions,
shocks exist on the upper and lower surfaces of the airfoil.

The outer boundary of the mesh was set at a 2048-
chord radius. This virtually eliminated the need for a vor-
tex boundary condition; simply specifying the free-stream
state at the outer boundary faces proved adequate. The
initial mesh was refined based on curvature, to resolve the
leading and trailing edge. Three levels of solution-based
refinement were done, as well.

As can be seen in Figures 9 and 10, both shocks, as well
as the wake, are well resolved. The pressure coefficient,
plotted in Figure 11, results in a lift of 0.3670 and a drag
of 0.0581.

To show the effect of the outer boundary conditions
on the solution, this case was run for outer boundaries
ranging from a 4-chord to a 2048-chord radius. Geometry-
based refinement was carried out so as to ensure an equiva-

[17] M. J . Aftosmis and N. Kroll, "A quadrilateral based
second-order T V D method for unstructured adaptive
meshes," AIAA Paper 91-0124, 1991.

[18] B. van Leer, W. T. Lee, and K. G. Powell, "Sonic-
point capturing," in AIAA 9th Computational Fluid
Dynamics Conference, 1989.

[19] C.-H. Tai, Acceleration Techniques for Explicit Euler
Codes. PhD thesis, University of Michigan, 1990.

[20] B. van Leer, C. H. Tai, and K. G. Powell, "Design
of optimally-smoothing multi-stage schemes for the
Euler equations," in AIAA 9th Computational Fluid
Dynamics Conference, 1989.

