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Abstract

The exact equations of motion are derived for a
point mass spinning in the orbital plane at the end
of a linear elastic, massless spring. The spring
is attached to a heavy point mass which moves in an
undisturbed Keplerian orbit. These nonlinear equa-
tions are linearized and solved on a computer. The
linear equations are shown to be ordinary, forced
differential equations with time variant coeffi-
cients. Results for a one hour spin period and
both circular and elliptic orbits are presented for
radial and tangential motion of both the linearized
and nonlinear equations. These results indicate
the validity of the linearization. Stability of the
linearized system of equations is shown for specific
orbits and spin periods of one hour and 1/10 hour by
numerically applying Floquet theory modified to
handle forced equations. A matrix squaring tech-
nique is shown to adequately bound the stability
multipliers without the necessity of calculating
them. Preliminary results are presented for the
above analysis applied to a 3 mass model which has
two lumped masses which approximate the mass of the
connecting cable. Both stable and unstable motions
are found.

Nomenclature

G Gravitational constant times Earth’s mass
k Spring constant for single mass model
Spring constant for three mass model
Length of spring in single mass model

11,2,3 Lengths of springs in three mass model

Lo Ungtretched spring length of spring

1g Free space equilibrium length of spring

M Mass for single mass model

m),o,3 Masses for three mass model
Number of equations

Qi Deviation from tg

Q@ Deviation from @,

R Orbital radius

T Kinetic energy

v Potential energy

Wi,2,3 Weight of three masses in three mass model

z Dummy variable

A() Implies deviation of enclosed variable from
free space value

e Orbital angle

N Stability multipliers which are the roots
of matrix [M]

¢ Relative angle

By Initial relative angle

%o Free space reference angle

Matrices

,[a(t)] Matrix of coefficients of system of dif-

ferential equations
{v(t)} Matrix of forcing terms

Michigan

{F(t)] Fundamental matrix
L[] ldentity matrix
M] Monodromy matrix

Introduction

Interest in masses connected by cables or wires
and spinning in’agravity field stemmed from a
desire to provide an artificial gravity for astro-
nauts by spinning their capsule about their booster
vehicle at the end of a cable. Several papers
resulted.l=5 All but the paper by Austin4 con-
sidered the cable to have mass and assumed the
tension to be constant or slightly perturbed.5
These papers deal with a continuous cable whose
analysis yields partial differential equations.
Assumptions such as uncoupling of radial and trans-
verse motion and constant tension are made which
enable solutions to be obtained. Gerber® did a
preliminary investigation of the related problem of
a long flexible wire in orbit by lumping masses and
assuming rigid rods as connectors while Austin® has
assumed two point masses connected by a linear mass-
less spring spinning in free space.

Current interest in building a large, orbiting,
slowly spinning antenna for radio astronomy obser-
vation has pressed the need for analysis of wire
connected systems where the tension i s not constant
and the motions are not uncoupled. For a system
such as the Kilometer Wae Orbiting Telescope7
(¥woT) shown in Figure 1 an analysis capable of
predicting both the motion and stability of the
system in orbit is necessary.
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Earth
Figure 1. KWOT System in Orbit

Analysis

Simple Model

The gross passive motion and stability of a
subsatellite in orbit can be obtained by studying
the model shown in Figure 2. Namely, two masses
connected by massless, linear elastic, undamped
springs.
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Spring-Mass Model of Subsatellites and
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Figure 2

The equations of motion for the simple model
can be derived using the Lagrangian method, The
gravity and elastic potential are defined in the
usual manner. The contributions to the Lagrangian
are as follows:

Kinetic energy

T=M[ R+ RS + 1%+ 457 1

The first two terms are for the center of mass and
the second two for the relative motion.

Potential energy

V = —-GM { [RE + 12 + 2RI cos(9-¢)]-1/2
2 - 2R¢ cos(9-¢)]-l/2} + k(l'lo)Z
J

+ (&% + 2

Orbital radius

R < R°2 .6 JrR+ 1 cos(e-9)
- 2 A

LRt cos(e-¢)} (1)
B
Orbital angle
o 2me, g P!
8= +2Rsin(e¢){A B}
Relative angle
w2 e o (11
g= = -3 sine-f) {5 %
Spring half length
*t a2 6 Jr+ R cos(e-8) 2 = R cos(e-9)
L= -3 { A * B }

(2)

(3)

T E () (%)

where

2

A= (R2 + 1% + 2Rg cos (6-¢) )3/2

and
B= (R + 12 - ory cos(9-8) )3/2

G = gravitational constant times mass of
Earth

k = spring constant

and

4y =

unstretched spring length

Following the development of Goldstein® for a
point mass in orbit one can show for a spinning
finite body that the orbit of the center of mass is
perturbed but stable. In other words, since the
relative and orbital motion are coupled as can be
seen from equations (L)-(4), it could happen that
the relative motion would gain energy while the
orbital motion loses energy, this occurrence how-
ever is shown to be bounded.

To show it, one uses conservation of energy and
angular momentum. If the conservation of angular
momentum equation is solved for ° and this put into
the total energy equation and all terms which are
positive definite collected into a single term, the
remaining so called "fictitious potential™ is a
function of R, I, and (8-¢). This can be expanded
in terms of the ratio /R which is quite small for a
satellite in orbit. If this fictitious potential is
plotted on a three dimensional plot versus R and
(9-8) one finds that the surface is a well similar
to the one for a point mass. However, the addi-
tional axis, (8-8), gives the surface a "ripple" as
one increases (8-#), There are an infinite number
of local wells corresponding to the gravity gradient
stabilized, or "captured” configuration. |If the
system is spinning, it in effect moves through this
rippled trough with its spin rate changing. The
orbit is still limited by the total energy which
differs from that of an equivalent point mass by
only the relative kinetic energy and elastic poten-
tial energy both of which are small compared to the
energy of the orbit. From this it can be concluded
that little error will be introduced if the center
of mess is assumed to move in a Keplerian orbit.

If the equations for only one mass assumed to be
attached by a spring to a point moving in a
Keplerian orbit are derived and the potential energy
expanded in terms of t/R, the following equations
result when only terms of order /R are retained:

Orbit

§=Ré2 -ﬁé (5) and.e. = __211':_é (6)
Relative motion
P=tfPf e 13 cos2(ge)l -5 (1 -2) (M)

2r3

and

¢=--2-§=¢-3§-sinz(¢-e) (@)
2X3

It is interesting to note that these are
exactly the same equations one would obtain if
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equations (1)-(4) were expanded and the same order
terms retained. The nonlinear equations may be
linearized, however, there is no stationary point
about which to linearize because the system is spin-
ning in a gravity gradient. If the free space
stationary point is used as the reference motion,

X 2

M .

namely f_ = °— and ¢, = const.

k_ g8 .
(M ¢0) ¢°=¢°t+¢i

zals+q1and¢=¢o+q2

The resulting linear equations for the deviations
from free space motion of £ and ¢ are

vk 2.6
qlE [E'¢O

.38 o5 o -eJ
2R3 2R3 (Bo-0) | 9

.. 3G
+ 28 pa, " 5‘- sin 2(f_-8)q,
Gt
$ o— [1+3 cos 2(¢°-e)1 (9)
2R3
and
LR 2

- 3¢ - - —9 .
q, = R3 cos 2(¢° e)qa I 9y

- 3—% sin 2(¢_-0) (10)
2R
respectively.
The following observations can be made:
1. The equations are of the form
{at = 1a(e)) {at + {p(e)} (11)

where q, and E] are defined as two new variables
therebylchangiig the system of equations (9) and
(10) into four first order equations. (!:Aét)] is
periodic for circular orbits where R an are
constants and for specific elliptic orbits where
the orbital period is an integer multiple of the
relative spin period.

2. The natural frequency of the system is

k g2
,/§+3¢oforn=a

as noted by Pittman and Ha118 and hence the rota-
tional rate "stiffens" the system.

3. The trace of (A(t)] is zero for all t
n

(1.&.E1 a, = 0).
i=

4. Since the periodic terms are all multiplied by
1/R3, a perturbation technique could be applied in
the same manner that Targoff> did for a rigid mass-
rod in orbit. However, this was not done in the
present study.

5. Floquet theory as reported by CeasazilO may be
used to determine stability of equations (11) when
(a(t)] and { (&)} have a common largest period.
This method is applied in the remainder of the
paper.

Stabilitv Analysis

Equations (11)are put in proper form so that
Floquet theory may be applied by defining an arti-
ficial variable z with z = 0 so that equations (11)
become

. |

q ]

:* 1A(£)] | B(t) g

s t= T 12
. o | o qa, (12)

3 | z

Briefly, the fundamental matrix of (12) at time
t is related to itself at time t + » where ~ is the
largest period of [A(t)] and {&(&)} by the equation

[F(t + )] = [F(£)] [M]

where [M] 1S the so called monodromy matrix. 1l |f
{F(0)1 = [1]then {¥] is found to be

[F(z)] = [1] [M].

The roots of [M], Ay*s, called multipliers, deter-
mine stability in the following way.

In;| > 1.0 asymptotically unstable
|7"i‘ < 1.0 asymptotically stable

[A;] = 1.0 and not repeated neutrally stable

= 1.0 and repeated either neutrally
stable or poly-
nomial type growth
with time, depend-
ing on the Jordan
normal form of (M].

To apply the Floquet theory, modified to handle
forced equations, to equations (12}, they must be
integrated n + 1 times with initial conditions so
that [F(0)] = [I].

This was carried out on an IBM 7090 using a
fourth order Runge Kutta technique. Experience has
shown that about 20 steps per shortest cycle will
give adequate accuracy from the standpoint of both
truncation and round off errors. The monodromy
matrix which resulted for all cases run had
repeated roots of value 1.0. The Jordan normal
form of [M] indicated a linear growth with time of
a solution. This is however a "trivial' instability.
It only means that the system can be given an ini-
tial angular mentum different from the reference
value and a linear growth in the angular position
from the nominal position results. For spin
periods of one hour and one tenth hour, a range ¢of
elastic constants and most orbital radii, the
spring-mass model was neutrally stable except for
the trivial instability mentioned. The only non
trivial instability resulted when the orbital
radius was too low so that the subsatellite was
captured by the gravity field and merely oscillated
about the vertical direction.
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In most cases, the roots were not actually
calculated. They were merely bounded using three
facts

n

Lo gl < Z Imijl = 1,ee0,n
i=1
max

2 The roots of [M]'rl are A.;_l
and

3. The bound in (1) becomes better as the
power of [M] increases.

This matrix squaring technique proved highly
eatisfactory from the standpoint of accuracy and
computer time required. For example, 15 squarings

of ab XCZ rt%atlrix reduced the ugﬁéesr bound from

1.75 x 1 ,0007 1n 20 sec including
It should be

printing all intermediate bounds.
pointed out that 15 squarings gives [M] to the

32,768th power. To apply this technique to large
matrices, some type of repeated scaling will have
to be carried out to prevent over and underflows.

The method used to determine stability may be
applied to any number of masses. The limiting
factor will probably be computer time required to
generate the monodromy matrix. The time required,
increases as (n+ 1) for a forced system sgince
n + 1 equations must be integrated over one period,
n + 1 times. There is a further restriction that
enters as masses are added for a better approxima-
tion, the shorter spring segments and smaller mass
points cause the highest frequency (which dictates
step size) to increase. Hence there is a trade off
between the number of lumped masses used for each
wire and round off errors due to a large number of
steps.

Motion of Spring-Mass System
The motion was investigated in two ways; first

the linearized equations were solved on an analog
computer for ease of solution, secondly, the non-
linear equations were numerically integrated, again
using a fourth order Runge Kutta technique.

Figure 3 shows a plot of the axial stretching
due to gravity gradient vs. effective spring stiff-
nes r various circular orbits and a spring length
of igﬁ) X 10& ft. pring g

An empirical formula given below may be used to
obtain the axial deflection for a given set of
conditions:

Lo
ar = (115) & .
23 (k - 82\

— 2-—
m_ fo~2 )

This equation has been verified by comparison with
Figure 3 but its validity for spin rates other than
one revolution per hour has not been demonstrated.

Figure 4 gives the deviation in spin rate for
various orbits. The effective spring stiffness had
no noticeable effect on these deviations (at least
for the range of stiffnesses noted in Figure 3).
The spin rate deviation changed as 1/R3 for various
orbits. This is to be expected since the coeffi-
cients of the forcing term of the linear equations
also change as 1/R3.

p Rev
Lk 4 ¢o = & Hr.
.20 lO = 164 X 104 Pt
. Digital Result
:ég: 'R = 14,000
.06"
.Oh"
W !
& .02 R = 14,000
' Nautical Miles
a o
+008 4
+006+ 20,000
+00k+
.002.4 * 30,000
' 40,000
,001 T —r—T——
A .2 b6 1,0 2,0
ko102 ( AE ) (Ll
ceaf (5 ) (55 )
o sec
Figure 3. Axial Deviation vs. Effective Spring
Stiffness
1.0 Digital Result ;.6 "_ 1 Bev
a o = " Hr.
-6 ¢ - 164 x 10" Ft
R °

v Digital Result

Aé x 107 (Radians/Sec)
8

W01
foles
«00€
.00k —
I 20 4 60 loo
Orbital Radius x 1073 (Nautical Miles)
Figure &, Spin Rate Deviation vs. Orbital Radius

The angular deviation converted to feet and
called the transverse deviation is shown in Figure
5. This deviation also changes as 1/R3 and is
periodic down to an orbit which captures it.
this happens, damping will cause it to become
gravity gradient stabilized in one of the local
potential walls mentioned above.

Note in Figure 3-5 that the "Digital-nonlinear
Results™ are in very good agreement with the analog=
linearized equation results.
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Figure 5. Transverse Deviation vs. Orbital Radius
The results shown in Figure 4 and the angular
deviation data which was used to generate Figure 5
can be shown to be independent of the length of the
springs. |f a new non-dimensional variable is

defined as

q, (t)
m (0 = :

8

then equations (9) and (10) can be made to be inde-
pendent of the length of the spring.

As was mentioned in the preceding section, the
simple spring-mass model was neutrally stable even
for certain elliptic orbits as determined by Floquet
theory, This can be shown also for the solution of
the full, nonlinear equations. Figure 6 shows the
deviation of the position angle ¢ from the free
space, linearly increasing reference angle. There
is a periodic deviation superimposed on a linear
growth (the so-called trivial growth). The_ampli-
tude of the periodic motion varies like 1/R3, inde-
pendent of the eccentricity of the orbit. The
linear growth decreases with eccentricity because
the radius at time of release increases.

¢o=1n=v 4

He. £, = 1.6h X 107 Ft

1

F=74x1073

sec
"P" Denotes Perigee
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(circular) 10,000 x 20,000

154 / /
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o

o
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Z + 08 / /\lp//\/ //
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.02
J 1 | 1 1 y —_—
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Time (Sec. X 10'3)

Angular Deviation from Free Space Motion
vs. Time

Figure 6.

Figure 7 shows the effects of a low perigee and
a slow spin rate. In this case the orbit is highly
eccentric (5,000 x 60,000 NM) and the spin rate is
altered as much as 50% during perigee passing. It
can be seen that the system can either gain or lose
energy depending on the initial conditions, in this
:ase, angular position. As pointed out previously,
the equations which were solved are valid for either
a dumbbell configuration (Figure 2) or a single mass
constrained at the center of rotation. For a dumb-
bell, with its center of mass free to move, total
energy is conserved and hence a gain or loss in spin
rate must show up as a loss or gain in orbital semi-
major axis measured to the center of mass. For a
single mass with a constrained center of rotation,
total energy is not conserved, nor is angular
momentum.

Slower
! v,
AIO.O!" ¢o s EI?V
§ 8.0
=5 6 OJ 0,x
& O I Earth
g €=
o L,0 | Perigee
& 2.0 ~ g=0
"6 i = 2
- ‘ et - 16
%.2.04 \
.0 X  =3x
b " ! -~ & =3n
-,-I-.O:‘ \\I/u/\/ h

Time (Sec, x 10-3)

Figure 7. Angular Rate Deviation vs. Time (5,000
X 60,000 N.M.)

Equations (1)~(L) were integrated using double
precision arithmetic on the 7090, The orbital
radius and angular rate did indeed adjust as the
relative motion gained or lost energy. However,
the calculations for the relative motion (such as
shown in Figure 7) where the center of rotation or
center of mass were assumed to be constrained to a
Keplerian orbit, agreed with solution of the exact
equations where the center of mass was free to move,
to at least 5 significant figures. This coupled
with the fact that an indefinite transfer of energy
cannot take place (as pointed out earlier) justifies
neglecting the orbital perturbations.

Multi-mass Model

The method of analysis above can be applied to
any number of masses. As discussed before, a
lumped mass model can be used to study the motion
and stability of a complex system. It can equally
well be used to study the problems of thrusting,
deployment, and spin-up or spin-down. The equations
for the three mass model shown in Figure 8 were
derived and linearized about a free space motion.

The masses are coupled only through the elastic
potential terms. The effect of the gravity gradient
on each mass must be approximately independent of
its distance from the center of rotation as was
found previously for the linear equations of a
single mass. Hence, if no parametric excitation
occurs one would expect no transverse oscillations
to build up since each mass would speed up and slow
down at the same rate as its neighbor. This was
indeed the case. Both an application of Floquet

542



theory to the linear set of equations and the
actual numerical integration of the nonlinear set
showed transverse deflections of less than a few
feet out of a length, #3, of 1.54 x 10% ft. for
maost cases.

Central Bodv

L
Center of Earth

Figure 8. Three Mass Model in Orbit

One numerical integration, did reveal what
appeared to be an instability, that is, the trans-
verse deviation began to get large. This occurred

when the axial:frequency of the third mass (subsatel-

lite) was close to the lowest transverse frequency
of the two small masses. In this case the deflec-
tions became as high as 300 ft. Figure 9 shows the
time history of the first mass' deviation from a
line passing through the center of rotation and the
end mass (13 in Figure 8).

-3
k1,2,3 = 7.4 x 10 ° 1lbs/ft
60,000 x 10,000 Nautical Miles
W1,2 _ 1.185 1bs

W. = 100 lbs '
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ta

t

200 g, = 1 rRev/Hour

0 b—m——

'1000

Time (Sec) vy

lst mass Iransverse Deviation (Ft)
ul
o)

Tn

igure 9. Transverse Deflection of m vs. Time

This motion suggests a parametric excitation of the
Wire due to the oscillations of the end mass. Note
that as the amplitude increases, nonlinearities

entered in and limited the amplitude.
and growth was not directly related to the gravity
gradient but this disturbance probably helped the
notion get started. The behavior of the stability

multiplier of the linear equations for the same con-

ditions has not been examined because of computer
time limitations.

The frequency

Conclusions

1. Lumping a continuous complex cable connected
system in orbit is a convenient way to analyze the
system because:

a. The exact equations of motion can be syste-
matically derived using the Lagrangian method.

b. A fourth order Runge-Kutta can effectively
be used to numerically integrate the nonlinear
equations when the motion is desired,

c. Floquet theory can be applied to the
linearized equations when the coefficients are
periodic with commensurate periods.

d. Computer experiments can be conducted to
examine spin up, deployment, etc.

2. The orbit of an elastic dumbbell is bounded and
the center of mass may be assumed to follow a
Keplerian orbit when calculating the relative motion
of a large cable connected system in orbit.

3. Neutral stability was shown in all cases
examined for the linear equations of motion for the
simple spring-mass system as long as the orbit was
high enough and/or the spin rate fast enough to
avoid gravity gradient stabilization.

4. The three mass model showed stability for some
cases. An instability (large but finite deflec-
tions) was found from numerical integration of the
nonlinear equations. The motion suggests a para-
metric excitation of the transverse modes due to
axial motion. It does not appear to be caused by
gravity gradient effects alone.
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