

AIAA Paper No. $70-\mathrm{CS5}$

by
W.F. POWERS and J.P. McDANELL

The University of Michigan Ann Arbor, Michigan

SANTA BARBARA, CALIFORNIA/AUGUST 17-19, 1970

First publication rights reserved by American Institute of Aeronautics and Astronautics. 1290 Avenue of the Americas. New York. N. Y. 10019. Abstracts may be published without permission if credit is given to author and to AIAA. (Price: AIAA Member $\$ 1.25$. Nonmember $\$ 2.00$).

Note: This paper available at AIAA New York office for six months:
thereafter, photoprint copies are available at photocopy prices from Technical Information Service, 750.3rd Ave., New York. N.Y. 10017

W. F. Powers* and J. P. McDanel1**

Abstract
A singular optimal guidance problem which was motivated by difficulties encountered in the Saturn V SA-502 tight has been studied. It is shown that if the guidance equations are based upon 2 singular version of the flat-earth problem, the singular and nonsingular subarcs for almost all cases. A good suboptimal guidance scheme based upon a nonsingular approximation of the singular control is continuous, which is more desirable than a discontinuous control, and causes only a noiselevel difference in payload.

1. Introduction

In the second flight of the Saturn V vehicle (SA-502), two engines shut down early in the S-1 stage. The measurements received by the on board guidance scheme, the Iterative Guidance Mode (IGM) ${ }^{(2)}$ indicated that only one engine was This resulted in a steep planar steering proof change of the steering angle to reach its limiting保 for a large portion of the S-IVB flight. Sinc the IGM is based on unconstrained variational the sired terminal orbit.

In the night mentioned above a large disturbance caused the guidance law to determine a steering angle rate of change which was too large.
Thus, it would be desirable to design the guidance logic in such a way that the time rate of change of the steering angle is a bounded control variable, say u with $|u| \leq K$, such that the steering angle is a state variable since it cannot change rapidly (beever, the resultant optimal control problem is a singular problem, and the variational and computa ional theory for such problems is far from satisfactory.

As is well-known the variational and nume cal theory for totally nonsingular optimal control problems is well developed, and recently McDanel problems is well
and Powers ${ }^{(2)}$. Speyer and Jacobson ${ }^{(6)}$. and Goh ${ }^{(1)}$)
This research was supported by the National Science Foundation under Grant GK-4990 and the National Aeronautics and Space Administration under Grant NGR 23-005-329.

- Assistant Professor, Department of Aerospace Engineering.
*Graduate Student, Computer, Information and ontrol Engineering
developed new necessary conditions and sufficient conditions for totally singular problems. Thus, the main problems to ptimal trajectories which posesess both singular and nonsingular subarcs which is the case in the Saturn guidance problem); and (2) The development of a compuational scheme for the gencration of op timal trajectories which possess both singular and onsingular subare. Porshwin and tele ${ }^{(5)}$ and Pagurek and Woodside ${ }^{(6)}$.

In the following analysis, recently developed necessary conditions for composite optimal trajec tories (i.e., trajectories which contein both singuar and nonsingular subarcs) are used to charac aturn iuidenceproblem. Since the resultent heh is not physically desirable, the problem is transormed into a good suboptimal nonsingular representation of the problem which could be incorpo ated easily into a recently proposed guidance
scheme for Saturn clags vehicles ${ }^{(7, s)}$
II. Singular Optimal Control Theory

In this section, properties from singular optimal control the
Consider the problem of minimizing
$f=G\left(t_{f}, x_{f}\right)+\int_{t_{0}}^{t_{f}} L(t, x) d t \quad$ (2.1)
aubject to the following conditions

$$
\begin{array}{ll}
\dot{x}=f(t, x, u)=f(t, x)+f_{u}(t, x) u & (2.2) \\
x\left(t_{0}\right)=x_{0} & (2.3) \tag{2.3}\\
\left.\psi t_{f}, x_{f}\right)=0 & (2.4) \\
|u| \leqq K . & (2.5)
\end{array}
$$

The state x is n-dimensional, u is a scalar control variable and ψ is a p-dimensional vector function which defines the terminal surface, $p \leq n+1$.

Along an optimal trajectory the followin Along an options hrid
$\dot{\lambda}=-H_{x}(t, x, \lambda, u)$

$$
\begin{equation*}
\lambda^{T}\left(t_{f}\right)=G_{x_{f}}^{T}\left(t_{f}, x_{f}\right)+v^{T} \psi_{x_{f}}\left(t_{f}, x_{f}\right) \tag{2,6}
\end{equation*}
$$

$$
\begin{aligned}
& H\left(f_{f}, x\left(t_{f}\right), \lambda\left(t_{f}\right), u\left(t_{f}\right)\right. \\
& \quad+G_{t_{f}}\left({ }_{f}, x_{f}\right)+v \psi_{t_{f}}\left(t_{f}, x_{f}\right)=0
\end{aligned}
$$

$$
\mathbf{H}(t, x, \lambda, u)=\min _{\operatorname{lv}_{\Xi K}} H(t, x, \lambda, v)
$$

where $\lambda(t)$ and v are Lagrange multipliers and
$H(t, x, \lambda, u) \equiv L(t, x)+\lambda^{T} f(t, x, u)$.
This, of course, is the faminar Pontryagin maximum principle in a minimum form ${ }^{(9)}$, 1.e., the Hamiltonian is minimized with respect to the con

In general. the optimal trajectory for this problem consists of some combination of singular ares and nonsingular (bang-bang) arcs. A singular are is one along which

$$
\begin{equation*}
\mathrm{H}_{\mathbf{u}}(t, x, \lambda) \equiv 0 \tag{2.11}
\end{equation*}
$$

on a nonzero time interval. A nonsingular arc is one along which $H_{u}(t, x, \lambda) \notin 0$ except possibly at a countable number of points $\left\{t_{2}, t_{2}, \ldots\right\} \subset\left[t_{0}, t_{f}\right]$. On nonsingular arc (2.9) implies $u=-s g a H_{u}$. whic arcs.

The defining feature of a singular arc is that Eq. (2.9) of the minimum principle is satisfied rivially, and, thus, it cannot be used to distin guish between maxima and minima. In 1964. Kelley ${ }^{(10)}$ developed a new necessary condition for ingular arcs which allows one to distinguish beween maxima and minima

Generalized $\frac{\text { Kelley Condition }}{\text { Legendre-Clebsch Condition: }}$
Let $x(t)$ be a weak, relative minimum for Eq. (2.1). Then

$$
\begin{equation*}
(-1)^{q} \frac{\partial}{\partial u}\left[\frac{d^{2 q}}{d t^{2 q}} H_{u}\right] \geqq 0 \text {. } \tag{2.12}
\end{equation*}
$$

where Zq is the lowest order time derivative of H_{u} in which u appears explicitly. Note: if $q=0$, then the order of the singular arc.)

The Kelley condition is a pointwise or local necessary condition. Recently, a new arcwise necessary condition (a generalization of the clandition) was developed for totally cal Jacobi condition) was developed for totally this condition (along' with the strengthened Kelley condition and Eqs. (2.6)-(2.101) leads to a suffi cient condition for a totally singular arc. However a useful sufficient condition for composite singular

In Reference 11, Kelley, Kopp, and Moyer used Taylor series expansions in the neighborhood of a singular-nonsingular junction along with the maximum principle to obtain necessary conditions
at the junction. Recently these resulte have been generalized ${ }^{(12)}$ as follows:
THEOREM 1: Let x (t) be an optimal trajectory which contala the singular subarcs be of q th order i.e.
$H_{u}^{(2 q)} \equiv \frac{d^{2 q} H_{u}}{d t^{2 q}} \equiv A(t, x, \lambda)+B(t, x, \lambda) u$
Suppose the optimal control is piecewise analytic in a neighborhood of a junction (this is not always the case as is shown in Reference 11), and $B(t, x, \lambda)$
at the junction. If $u^{(r)} \equiv d^{r} u / d t^{r}(r) 0$, where $\left.u^{(0)} \equiv u\right)$ is the 1owest order derivative of u which is discontinuous at the junction, then $q+r$ must be an odd integer.

The main consequence of this theorem is that if a Taylor series expansion is valid in the neigh-
borhood of a junction and the control is discontinuous at the junction, then the singular subarc mus be of odd order. The singular Saturn guidance problem contains odd order $(\mathrm{q}=1)$ singular subarcs
Note that the theorem does not imply that the optimal control must jump if q is odd. Also, there exist well known cases of q-even problems with dis continuous controls but the controls are not piecewise analytic (e.g., an infinite number of switches between $u= \pm K$ on the nonsingular side of the junc tion in a finite time interval

With the analyticity assumption removed, the following result can be obtained:
THEOREM 2: Let $x(t)$ be an optimal trajectory which contains both singular and nonsingular subarcs, where the
(i) $\mathrm{H}^{(29)} \neq 0$ on the nonsingular side of the s the control must be dis-
(ii) $\mathrm{H}_{\mathrm{u}}^{(24)}=0$ on the nonsingular side of the junction and $\mathrm{B} ; 0$ (where $\mathrm{H}_{\mathrm{u}}^{(29)} \underline{\underline{0}} \mathrm{~A}+\mathrm{Bu}$) at the junction imply the control must be continuous.

Theorem 2 has the desirable quality of deter mining if the control "jumps" or is continuous at a junction without an anaiyticity assumption. However, the conditions are more difficult to verify than those of Theorem 1 if analyticity is a valid assumption. In some cases the theorems can be used together to indicate what one cannot assume,
e.g. $\mathrm{H}_{4}^{(24)} \neq 0$ on the nonsingular side of the junction and q even imply that u is discontinuous by Theorem 2, but by Theorem 1, u must he continuous if it is piecewise analytic. Thus, one may con clude that if a junction occurs it is a nonanalytic junction

Finally, another usefui property ${ }^{(12)}$ is:
Property 1: If $\mathrm{A}(\mathrm{t}, \mathrm{x}, \mathrm{\lambda})=0$ at a junction and
$|u| \leqq K \neq 0$, then the optimal control is discontinu at a singular-nonsingular (or nonsingular singular) junction.

III. Simple Singular Guidance Example

In this section we shall present a simple ex ample to demonstrate some of the features of a singular optimal guidance problem. Consider the $\left(x_{i}, 0\right)$ in minimum time. The boat has a constant peed, V. and steering angle, a (see Figure 1). If α could change discontinuously, then

$$
\tan \alpha=\frac{y_{f}}{x_{f}}
$$

s the best steering program
Suppose that we take into account the facts hat $\alpha\left(t_{0}\right)$ is probably not equal to $\tan ^{-1}\left(y_{d} / x_{f}\right)$ and finite, say $|\dot{\alpha}| \leqq$

$$
\alpha\left(\mathrm{t}_{0}\right)=0 .
$$

(3.2)
ince α is finite, α is continuous and, thus, not a natural control variable. Therefore, let $\alpha=u$ be problem, assuming to $=0$: minimize
$\mathrm{J}=\mathrm{t}_{\mathrm{f}}$
ubject to:
$\dot{x}=V \cos a, \quad x(0)=0, \quad x\left(f_{f}\right)=x_{f}$
$\dot{y}=\mathrm{V} \sin \alpha, \quad y(0) \times 0, \quad y\left(t_{f}\right)=y_{f} \neq 0 \quad$ (3.3)
$\alpha=u \quad, \alpha(0)=0,|u| \leq K$
The Hamiltonian 1s:
$H=\lambda_{1} V \cos \alpha+\lambda_{2} V \sin \alpha+\lambda_{3} u$,
and
$\dot{\lambda}_{3}=-H_{\alpha}=\lambda_{1} V \sin \alpha-\lambda_{2} V \cos \alpha$
$H_{u}=\lambda_{3}$
the optimal trajectory contains a singular sub arc. then

$$
H_{u}=\lambda_{3}=0
$$

on aome nonzero time interval. Conalder the Kelley condition.

$$
\begin{aligned}
& \dot{H}_{u}=\dot{\lambda}_{3}=\lambda_{1} V \sin \alpha-\lambda_{2} V \cos \alpha \\
& \left.\dot{H}_{u}=\lambda_{1} V \cos \alpha+\lambda_{2} V \sin \alpha\right) u \equiv B u \\
& -\frac{\partial}{\partial u} \ddot{H}_{u}=-B \leqq 0 \Rightarrow B \leqq 0
\end{aligned}
$$

ce u appears explicitiy in H_{4}
 he previous section, $A=0$ in (3.10) implies that u
must be discontinuous at a junction of singular and Tmal control is $u= \pm K$, and on a singular the op the optimal control is $u=0$ if $B \neq 0$ (as implied by (3.10) since $\dot{H}_{u} \equiv 0$ on a singular arc).

Because of the simplicity of this problem, the optimal control may be determined by inspection. At t_{0}, the steering angle is a $\left(t_{0}\right)=0$. Ho could optimal trajectory would be a straight line connecting (x_{0}, y_{0}) and (x_{i}, y_{f}), and the initial ateering angle would be $\alpha\left(f_{0}^{+}\right)=\tan ^{-1}\left(y_{f} / x_{f}\right)$, i, e., the velocity vector would swing to the dashed arrow at the ori gin in Figure 1 . Since the best steering angle at line connecting the state with ($\mathrm{x}_{\mathrm{f}}, \mathrm{y}_{\mathrm{f}}$), the optimal control $u \equiv \dot{\alpha}$ is the control which will cause $\dot{\alpha}$ to approach the "best" value of α as fast as possible Thus, on the subarc $\left(t_{0}, t_{1}\right), \alpha=+K$ is the optimal control, which is nonsingular. At $t=t_{1}, \alpha\left(t_{1}\right)=$ $\left.0+K\left(t_{1}-0\right)=\tan ^{-1}\left(y_{f}-y_{i}\right) /\left(x_{f}-x_{1}\right)\right) . i . e$. the true
steering angle at $\left(x_{1}, y_{1}\right)$ and the "best angie for ($x_{1} y_{1}$) coincide. This means that the hicle may now be stecred by $\alpha=\tan ^{-1}\left(\left(y_{j}-y_{j}\right) /\left(x_{f}\right.\right.$. $\left.\left.x_{1}\right)\right\}=$ constant for the remainder of the trajectory. and, thus, $u=\dot{a}=0$, which is a singular control. Note that the switch point is mainly dependent upon if $y_{f}=0$, then the optimal control is totally singular; if K is very small, then the optimal trajectory will possess a longer nonsingular arc than the same problem with a larger value of K; if K is very large, then the nonsingular arc should be relatively short, e.g., $\mathrm{K} \rightarrow \infty$ implies that the nonsingular ar these statements is that the joining of a singular subare to a nonsingular subarc is a function of "nonlocal" information. This complicates consid erably the procedure for synthesizing optimal singular guidance laws on-board a vehicle.

> IV. Saturn Guidance:

In this section, an analysis of the switching procedure for a flat-earth representation of circu lar orbit insertion will be presented. This is di rectly applicable to the guidance of the Saturn V ve hicle since the IGM is based upon the fat-earth
exceptional case, the optimal control is discontinuous at a junction of singular and nonsingular subarcs. Thus, the optimal control does not "ride" onto or off of the control boundary.

The planar equations of motion and boundary conditions for the singular flat-earth problem are (see Figure 2):

$$
\begin{aligned}
& x\left(t_{0}\right)=x_{0} \\
& y\left(t_{0}\right)=y_{0}, y\left(t_{f}\right)=r_{c}
\end{aligned}
$$

$$
p\left(t_{0}\right)=P_{0}, P\left(t_{f}\right)=v_{c}
$$

$q=\frac{F}{m} \sin \alpha-g \quad q\left(t_{0}\right)=q_{0}, q\left(t_{s}\right)=0$
 $d * u \quad a\left(t_{0}\right) * \alpha_{0},|u| \leqq K$
 $m(t)=m_{p}+\dot{m}_{\rho}\left(t-t_{p}\right)$

where $r_{c} \equiv$ radius of the circular orbit, $v_{c}=$ circu ar velocity at r_{c}. It is desired to transfer the vecircular orbit in mininum time.

The Hamiltonian is
$H=\lambda_{1} p+\lambda_{2} q+\lambda_{3}, \frac{F}{m} \cos a+\lambda_{4}\left(\frac{F}{m} \sin a-g\right)+\lambda_{5} u$,
which implies, by Eqs. (2.6)-(2,9):

$$
\begin{align*}
& \lambda_{1}(t)=0 \quad \lambda_{3}(t) \equiv c_{3} \tag{4,3}\\
& \lambda_{2}(t) \equiv c_{2} \quad \lambda_{4}(t)=c_{4}-c_{2} t \\
& \left.\lambda_{s}=\frac{F}{m} a_{3} \sin \alpha-\lambda_{4} \cos \alpha\right), \lambda_{s}\left(t_{f}\right)=0
\end{align*}
$$

If an optimal singular subarc exists, then by the kelley condition:
$\mathrm{i}_{\mathrm{u}}=\frac{\mathrm{F}}{\mathrm{m}} a_{3} \sin \left(-\lambda_{1} \cos a\right)$
$\left.\ddot{H}_{u}=\frac{F}{m} a_{2} \cos \alpha-\lambda_{1} \sin (\alpha)+\frac{F}{m} a_{3} \cos \alpha+\lambda_{6} \sin \alpha\right) u$
$\leq A(t, x, \lambda)+B(t, x, \lambda) u$
implies
$B(t, x, \lambda) \leqq 0$. (on singular arc) (4.6)
By Eq. (4.4). i.e., $\mathrm{H}_{4} \equiv 0$ on a singular subarc.

$$
\tan \alpha=\frac{\lambda_{1}}{\lambda_{3}} \Rightarrow\left\{\begin{array}{l}
\left.\cos \alpha= \pm \lambda_{3} \beta_{3}^{2}+\lambda_{4}^{2}\right)^{-\frac{1}{2}} \tag{4.7}\\
\left.\sin \alpha= \pm \lambda_{4} a_{3}^{2}+\lambda_{4}^{2}\right)^{-\frac{1}{2}}
\end{array}\right.
$$

and by Eq. (4.6):

$$
\begin{equation*}
B(t, x, \lambda)= \pm \frac{F}{m} \sqrt{\lambda_{3}^{2}+\lambda_{1}^{2}} \leq 0 . \tag{4.8}
\end{equation*}
$$

whicb implies that the minus sign should be chosen in Eq. (4.7) for the minimum time problem. Upon ii $=-F_{c_{2} c_{3}\left(c_{3}^{2}+\lambda^{2}\right)^{-\frac{1}{2}}-F\left(c_{3}^{2}+\lambda_{1}^{2}\right)^{\frac{1}{2}}{ }^{u} \text {. (on singular }}$ arc only) (4.9)

We shall now consider under what conditions a saturation junction is possible, i.e., the control rides on or of

If the control is continuous and well-behaved at the junction, then Theorem 1 of Section 2 is apicable, ie, the control is piecewise analytic in neighborhood of the junction. Since $q=1$ for this ablem, if the control is assumed to be continuous at the junction, then by Theorem 1, $x \geqq 2$ i, e., if $r \neq 0$, then $r \neq 1$ since $q+r$ must be odd). Thus,

By Eq. (4.7), the expression for $\ddot{\alpha}$ on the singule arc may be determined.

$$
\dot{u} \times \ddot{\alpha}=-\frac{2 c_{2}^{2} c_{9} \lambda_{2}}{\left(c_{3}^{2}+\lambda_{4}^{2}\right)^{2}} \text { (on singular arc). }
$$

Since $\dot{\alpha}= \pm \mathrm{K}$ on the nonsingular arc, it follows the
$\dot{u}=\ddot{\alpha}=0$ (on nonsingular arc). (4.11) Therefore, the continulty of it at the junction re quires $\dot{u}=0$ at the junction, which imples
$c_{2}=0$ or $c_{3}=0$ or $\lambda_{4}=0$.
If $c_{2}=0$ or $c_{3}=0$, then the first term in Eq. (4.9) is zero, whith implies a is discontinuous at the junction by Property 1 of Section 2 . Thus, $c_{2} \neq 0$ $c_{3} \neq 0$ if the junction is continuous, and Eq. (4,12 then implies:
$\lambda_{4}=0$, (at a continuous junction) (4,
or by Eq. [4.7):
$\alpha=0^{\circ}, 180^{\circ}$, (at a continuous junction) (4.14) i.e., if $a * 0^{\circ}, 180^{\circ}$ at a junction, then the junction must be discontinuous. Since the steering angles $a=0^{\circ}, 180^{\circ}$ do not appear to possess special prop
erties, further anslysis would probably eliminate the possibility of a continuous junction at these points, also.

If indeed smooth junctions are possible when $\alpha=0^{\circ}, 180^{\circ}$, then one can easily show that only one smooth junction is possible on the trajectory go through zero only once. Also, if one considers an inverse-square gravity field and it is assumed that a continuous junction is possible, then necessary conditions for such a junction can be derived in the same way as Eq. (4.13) was derived for the lat-oarth problem qbove,
$\frac{\text { V. Synthesis of Guidance Laws }}{\text { for Singular Problems }}$
In the previous section it was shown that a junction of singular and nonsingular subarcs in the singular hat-earth problem requires a jump in the
control (cxcept possibly for the zero-probability cases when $\alpha=0^{\circ}, 180^{\circ}$). In Section 3 it was shown that the time 4 . rump is mainly a function of non-iocal information, atsid, thus, a formidable synthesis problem arises. In this section a suboptimal synthesis procedure to be used in conjunction with the guidance scheme of References 7 and 8 is sug ested

In References 7 and 8, a guidance scheme two-point boundary-value problem is proposed. Such a scheme is possible for Saturn clasis vehicles since it has a relatively large on-hoars cornputer. In this section a nonsingular approximation bf the singular saturn guidance problem, will be developed, and the fat-earth approximation will be relaxed
ateering angle (1. e., the optimal control) has the desirable property of continuity.

The planar equations of motion and boundary conditions for the singular inverse-square pr
lem in polar coordinates are (see Figure 3):

$t=v_{r}$	$\boldsymbol{r}\left(\mathrm{t}_{0}\right)=\mathrm{ra}_{0}, r\left(t_{f}\right)=r_{c}$
$\dot{\theta}=\nabla_{0} / \mathbf{r}$	$\theta\left(t_{0}\right)=\theta_{0}$
	$v_{r}\left(t_{0}\right)=v_{r_{0}}, v_{r}\left(t_{f}\right)=0$
$\dot{\nu}_{\theta}=-v_{r} v_{\theta} / r+\frac{F}{m} \cos y$	$v_{\theta}\left(t_{0}\right)=v_{\theta_{0}}, v_{\theta}\left(t_{f} f^{\prime}\right)=v_{c}$
$\dot{\gamma}=u$	$y\left(t_{0}\right)=y_{0},\|u\| \leq K$
$m(t)=m_{0}+\dot{m}_{0}\left(t-t_{0}\right) \text {. }$ where	

is to be minimized.
In Reference 5, the following method for computing singular control problems is suggested adjoin " $f_{0} u^{2} d t$ to the performance index, i.e., Eq (5.2), and solve the resultant nonsingular boundar value problem for successively smaller values of - As $\rightarrow 0$, it is argued that the solutions approach the optimal singular solution. Another computational scheme is also suggested in Reference 5 since numerical stability problems may r
sult for small values of \& However, the main effect of the second scheme is to sharpen the control history while only a slight improvement in the performance index is noted. Data from the Saturn SA-502 night will be used to show that merely
adding the $\int_{\text {t }} \mathrm{u}^{2} \mathrm{dt}$ term to the performance index
results in a good suboptimal control for a relative y large value of t .

Define

$$
J_{2}=t_{f}+\cdot \int_{t_{0}}^{t_{f}} u^{2} d t,
$$

$$
\begin{aligned}
& \text { Where } \quad \begin{aligned}
H= & \text { is a given constant. The Hamiltonian is } \\
& =\lambda_{1} v_{r}+\lambda_{2} v_{\theta} / r+\lambda_{3}\left(v_{\theta}^{2} / r-\mu / r^{2}+(F / m) \sin \gamma\right) \\
& +\lambda_{4}\left(-v_{r} v_{\theta} / r+(F / m) \cos \gamma\right)+\lambda_{s} u+c u^{2},
\end{aligned}
\end{aligned}
$$

which defines a nonsingular optimization problem. The minimum principle states that the Hamiltonian ust be minimized with respect to the control. problem: minimize

$$
\tilde{h} \equiv \lambda_{s} u+s u^{2}
$$

subject to the inequality constraint
$|u| \leq K$

Eq. (5.6) can be transformed into an equelity con straint by introducing a slack variable, x, i.e. .

$$
z^{2}=K-u^{2} \geq 0
$$

is an equality constrat which entorce the

 inequality constraint. By defining the augmented function$h(u, z)=\lambda_{g} u+e u^{2}+\Lambda\left(z^{2}+u^{2}-K\right)$
$\frac{\partial \mathrm{h}}{\partial \mathrm{u}}=0, \frac{\partial \mathrm{~h}}{\partial \mathrm{z}}=0$.
and then checking the second-order sufficient conditton for ordinary minimization problems, the fol lowing optimal control is determined:

$$
\mathrm{u}=\left\{\begin{array}{lll}
-K & \text { if } & \lambda_{5} \geqq 2 \mathrm{e} K \\
-\lambda_{5} / 2 \mathrm{if} & \text { if } & -2 \mathrm{~K} \leqq \lambda_{5} \leqq 26 \mathrm{~K} \\
+\mathrm{K} & \text { if } & \lambda_{5} \leqq 2 \mathrm{~K} K .
\end{array}\right.
$$

Note that the control is continuous at the junction points $\lambda_{5}= \pm 26 \mathrm{~K}$ since λ_{5} must be continuous by the Weierstrass-Erdmann corner conditions.

The usual Eufer-Lagrange equations hold for the multipliers. The only other new condition of interest is the transversality condition for $\lambda_{s}\left(t_{f}\right)$
Since $\gamma\left(t_{f}\right)$ is unspecified, then

$$
\begin{equation*}
\lambda_{s}\left(t_{f}\right)=0 . \tag{5.11}
\end{equation*}
$$

which implies that $-2_{e} \mathrm{~K}<\lambda_{s}\left(t_{f}\right)<2 \mathrm{~K}$. or

$$
\begin{equation*}
u\left(t_{f}\right)=-\lambda_{s}\left(t_{f}\right) / 2 z_{f}=0 \tag{5.12}
\end{equation*}
$$

This states that the control must have an interior segment in a neighborhood of t. However, in some
numerical studies for s small this terminal interior arc was very short, e.g., 0.1 seconds of a 160 second trajectory

Since the guidance scheme of References 7 and 8 involves an iteration scheme which uses ini tial Lagrange multiplier estimates, a similar scheme was used to converge the optimal trajectories of this study. Fince a sufficient condition for composite singular problems does not exist, we can only use physical reasoning to argue that the resultant singular extremals are indeed optimal

In Figure 4, the "best" steering angle history from the initial position and velocity of the vehicle (see Appendix A for the numerical values used in this study) is shown. The initial position and velocity represent a point on the SIVB stage trajec-
tory of the Saturn SA-SO2 तight. Note that the desired steering angle at the given initial position and velocity is $y=-29.5^{\circ}$. However, at that instant the steering angle was approximately 46.6° away from the desired angle, i.e., $y\left(t_{0}\right)=+17.1^{\circ}$ Since the steering rate on the Saturn is constrained to approximately one degree per second, one cannot as neously to the desired value.

In Figure 5, the suspected optimal time rate f change of the steering angle is presented. T 0,554) and singular on the interval (55.4, 157.305). ote that the control is discontinuous at the juncron, which is expected since the flat-earth prob$1 \cdot \mathrm{~m}$ is an excellent approximation of the problem of his section Note that the difference in the initial alue of y causes the constrained trajectory to be iry of Figure 4 , which results in a 3500 pound tuel loss.

The optimal control for a nonsingular appro mation of the given singuiar problem is presente in Figure 5, also. The value e $=100,000$ was and ease of convergence. Note that the suboptimal ontrol is continuous, and in some sense approxiates the optimal singular control. The final time It the suboptimal trajectory is 157.392, which re resents a fuel penalty of only 46.5 pounds.

A puzzling trend was encountered when the method was used for converging the suboptimal rajectories of this study It was found that lowe 4. (5. 2), were obtained as \& increased instead ais - decreased, which at first glance scems conrary to intuition. Of course this trend may be due as used to converge the trajectories instead of a nction space method. However, the Pontryagin inimum principle was satisfied numerically in "ach case

A possible explanation of the above trend is imply that the augmented performance index of E.4. (5. 3) does not converge to the minimum value Athe original performance index (tf) for this par$\rightarrow 0$ problem as $\rightarrow 0$. The prool of convergen Tr the ealgorithm in Reference 5 is for fixed t_{f}, ance cannot be assumed. Indeed, further analysis evealed that the augmented periormance index dereased monotonically as e decreased and áppeared :We converging to a value considerably larger i:an the minimum value or the orishal perfor adex. In other words, as i decreased, J_{2} de$\because r e a s e d$, but t_{f} increased, indicating that $\lim _{f \rightarrow 0} J_{2}(f)$
$f, 0)$. $J_{2}\{0)$.

To lend support to our contention that the - algorithm may not converge to the optimal singu-
lar solution for a minimum time problem, consider tie following argument. From Eq. (5.3) the mini::num value of J_{2} for a particular value of $\&$ can be aritten
$\mathrm{J}_{2}(\mathrm{c})=\mathrm{t}_{\mathrm{f}}(\mathrm{c})+\mathrm{ea}(\mathrm{k}) \mathrm{t}_{\mathrm{f}}(\mathrm{c})$
(i) a(e) >0 is the average value of the optimal (i) over the interval $\left\{t_{0}, t_{f}\right.$ for the given value of - and for simplicity we have taken $t_{0}=$

$$
\frac{d J_{2}}{d t}=a t_{f}+(1+\epsilon a) \frac{d t_{f}}{d \epsilon}+c t_{i} \frac{d a}{d t}
$$

where the terma containing s are negigible for , sufficiently small. Let $\epsilon_{1}<\epsilon_{0} \ll 1$. The series expansion for $J_{2}\left(f_{2}\right)$ to first order is

$$
\begin{aligned}
J_{2}\left(\epsilon_{1}\right) & =J_{2}\left(\epsilon_{0}\right)+\frac{d J}{d \epsilon}\left(\epsilon_{1}-\epsilon_{0}\right) \\
& =J_{2}\left(f_{0}\right)+\left(a\left(\epsilon_{0}\right) t_{f}\left(f_{0}\right)+\frac{d t_{f}}{d \epsilon}\right)\left(\epsilon_{1}-f_{0}\right) \cdot(5.15)
\end{aligned}
$$

If $J_{2}\left(\epsilon_{1}\right)<J_{2}\left(f_{0}\right)$, then it is necessary that
$\frac{d t_{f}}{d t} \geqslant-a\left(\epsilon_{0}\right) t_{f}\left(\epsilon_{0}\right)$.

$$
\begin{equation*}
\frac{\mathrm{dt}_{f}}{\mathrm{de}} \geqslant 0 . \tag{5.17}
\end{equation*}
$$

Satisfaction of the inequality (5.16) does not imply Satisfaction of the inequality (5.16) does not impl
satisfaction of (5.17). Therefore, it is to be expected that t_{f} may increase while J_{2} decreases as $\rightarrow 0$.

The above analysis is valid for sufficiently small c. It is still somewhat surprising that a good suboptimal control would result from using e 100,000. In this regard, note that if t is very small in the performance index of Eq. (5.3), and performance (with respect to the original performance index), which is a common occurrence in singular problems, then nothing is acting to keep u interior in the neighborhood of the optimal singular subarc. On the other hand, if c is large, then to minimize the second part of J_{2}, u should be as near an interior u in the neighborhood of the singular are

To demonstrate this argument, another example was considered. The only difference between this example and the given Saturn SA-502 data is that $\gamma_{0}=-1.8^{\circ}$ instead of $\gamma_{0}=+17 . \mathrm{a}^{\circ}$. Because of
the smaller difference between γ_{0} and $\gamma_{c o v}=-29.5^{\circ}$. we have more confidence that the singular extremal obtained for this problem is indeed optimal.

In Figure 6, three control histories are shown. The singular control results in $\mathrm{t}_{\mathrm{f}}=151.66$ seconds, the $,=100,000$ 2pproximation results in
$t=151.93$ seconds, and the $=100$ approximation results in $t_{f}=157.70$ seconds. As , was decreased from $,=100,000$, the trajectories tended to become more bang-bang. In fact, with -1 , the interior segments are approximately only 0.1 seconds long and, thus, are essentially bang-bang. Therefore, ally go away from the desired singular control.

It should be emphasized that the feasibility of generating suboptimal controls with desirable prop vergence of the,- method as $\epsilon-0$ for the free-fina
time problem is still an open question. In fact, the use of relatively large values of s is desirabl cally well-conditioned. Nonetheless, research o convergence is being continued, and alternate approaches which circumvent the convergence ques tion are also being considered. One possible apinto a fixed interval problem by treating vo as the independent variable with $v_{0}\left(t_{0}\right)$ and $v_{\theta}\left(t_{f}\right)$ specified since v_{θ} is monotonic with respect to time.

VI. Conclusions

A singular optimal guidance problem which was motivated by difficulties encountered in the hown that if the puidance system uses a singuler version of the flat-earth problem, then the contro must be discontinuous at a junction of singular and nonsingular subares for almost all cases. Since the junctions of singular and nonsingular subares are determined by nonlocal inform described above is undesirable.

A suboptimal guidance scheme based upon a nonsingular approximation of the singular problem was suggested. Since it allows for rapid comput tion of a nonsingular two-point boundary-value problem, the scherne could be incorporated into the guidance scheme of References 7 and 8

In addition to the use of the ε-method in an on-board iteration guidance scheme, since the -method leads to nonsingular representations of structing suboptimal neighboring optimum guidance cremigs for singular problems

Appendix

Data from the Saturn SA-502 night, 586.72 seconds into the mission (waproximately 160 seconds of flight remaining)

$$
x=6.2133939 \times 10^{6} \text { meters }
$$

$y=2.1301780 \times 10^{6}$ meters
$\dot{x}=-2.0242460 \times 10^{3}$ meters $/ \mathrm{sec}$ on
$\dot{y}=6.4412899 \times 10^{3}$ meters $/ \mathrm{sec}$ ond
$F=2.2790300 \times 10^{5}$ pounds
$\mathrm{W}=3.5280200 \times 10^{5}$ pounds
Isp $=4.2476900 \times 10^{2}$ seconds
$\mathrm{y}=+17.1$ degrees
$r_{c}=6.5633660 \times 10^{6}$ meters
$\mathrm{v}_{\mathrm{c}}=7.7930430 \times 10^{3}$ meters $/ \mathrm{sec}$ ond

References

1. Chandler, D.C., and Smith, I.E., "Development the ol of Spacecraft and Rockets, Vol.4, No. 7 . 1967, pp.898-903.
2. McDanell, J. P., and Powers, W, F cobi-Type Necessary and Sufficient Conditions for Singular Optimization Problems," to appear In the AIAA Journal. (Also, University of Michigan Dept. of nerospace Engineering Report No. (2671-1-1, Ocker 1969.1
3. Speyer, J. L., and Jacobson, D. H., "Necessary and Sufficient Conditions for Optimality for Approach, " Report No.69-24, Analytical Mechanics Associates, Inc. Cambridge, Mass. November 1969
4. Goh, B.S. ."A Theory of the Second Variation in Optimal Control," unpublished report, Division of Applied Mechanics, Un
Berkeley, January 1970.
5. Jacobson, D. H., Gershwin, S. B., and Lele, M. M., "Computation of Optimal Singular Controls," IEEE Transactions on Automatic Control, Vol AC-15, No.1, pp.67-73.
6. Pagurek, B., and Woodside, C. M. . The Conjugate Gradient Method for Optimal Control Prob lems with Bounded Control Variables." Automatica, Vol.4,1968,pp. 337-349
7. Brown, K. R., and Johnson, G.W., "Real-Time Optimal Guidance, matic Control, October 1967, pp. 501-506.
Brown, K. R., Harold, E. F., and Johnson, G. W. FIIghts." NASA CR-1430, Septernber, 1969.
8. Bryson, A.E., and Ho, Y.C., Applicd Optimal
Control, Blaisdell Publishing Co. , Waltham, Massachusetts, 1969
9. Kelley, H.J., "A Second Variation Test fo Singular Extremals," AIAA Journal, Vol. 2, No. 8, 1964, pp. 1380-1382.
10. Kelley, H.J., Kopp, R.E., and Moyer, H. G. "Singular Extremals," in Topics in Optimization
. McDanell, J. P. . and Powers, W.F., "Necessary Conditions for the Joining of Optimal Sing Michigan, Dept, of Aerospace Engineering Re port No. 02721-1-T. April 1970

