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Minimum Fuel Rocket Maneuvers in Horizontal Flight
N. X. VlNH*

The University of Michigan, Ann Arbor, Mich.

This paper presents the complete solution for minimum fuel, lateral turns in a horizontal plane of a rocket
powered vehicle. The aerodynamic characteristics of the vehicle are represented by a generalized drag polar. The
constraint on the angle-of-attack results in a bound for the bank angle. This upper bound is a function of the
weight and of the velocity of the vehicle. The optimal controls in lift, bank, and thrust are expressed explicitely
in terms of the state variables. Furthermore the set of adjoint equations in the variational formulation is completely
integrated allowing a rigorous discussion of the switching sequences.

Nomenclature
a, b = constants
c = exhaust velocity
C = constant of integration
CD = drag coefficient
CDo = zero-lift drag coefficient
CL = lift coefficient
D = drag
g = acceleration of the gravity
H = Hamiltonian constant
k = induced-drag coefficient
K = switching function
L = lift
m = mass of the vehicle
n = exponent in the generalized drag polar
Pi = adjoint variables
r = w/u2

S = reference area
t = time
T = thrust magnitude
u — dimensionless velocity
V = velocity
w = dimensionless weight
x = longitudinal range
y = lateral range
ft = heading angle
1 = lift control
/1M = maximum lift control
Y\ = aerodynamic parameter
p = air mass density
\j/ — ratio of the adjoint variables
a = bank angle
<p = tan2 a
T = dimensionless thrust
TM = maximum dimensionless thrust

1. Introduction

THIS paper presents the complete solution for minimum fuel
lateral turns in a horizontal plane of a rocket powered

vehicle. In Ref. 1, Connor considers the singular arc portion of
this problem while in Ref. 2, Bryson and Lele give the control
laws for the bank angle and the thrust program for the three
types of optimal arcs involved. In both papers a parabolic drag
polar with unconstrained lift coefficient has been used, and the
set of adjoint equations has not been integrated.

In this paper we consider a generalized drag polar. Moreover,
it will be shown that, since the angle-of-attack is generally con-
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strained, for the vehicle to stay in horizontal flight, the bank
angle is bounded by a value, function of the state variables.
The optimal thrust profile will be expressed explicitly in terms
of the flight velocity. Furthermore, the set of adjoint equations
will be completely integrated allowing a rigorous discussion of
the optimal switchings from one flight regime to another.

2. Equations of Flight in a Horizontal Plane
The equations of motion for a coordinated turn in a horizontal

plane, with the thrust always aligned with the velocity, are
(Fig. 1)

dx/dt = Kcos p, dy/dt = Ksin p, dV/dt = (T- D)/m (1)
V dp/dt = L sin a/m

dm/dt = - T/c
For a coordinated turn at constant altitude, we have the

constraining relation
L cos a — mg (2)

We shall use a generalized drag polar of the form

where the zero-lift drag coefficient CDo, the induced drag factor
k, and the exponent n are assumed independent of the Mach
number and the Reynolds number. For thin-winged configura-
tions operating in the hypervelocity domain, n is close to f. We
shall use the usual assumption for the lift and drag forces of the
form

L = %pSCL V2, D = %pSCD V2 (4)
Since x and y are ignorable coordinates, if the longitudinal and
the lateral ranges are free, we need only consider the equations
in V, p and m. By using P as the new independent variable we
have

dV/dp= V(T-D)/Lsin(r
dm/dp = - m V T/cL sin a

We introduce the nondimensional quantities

™9 „_<

(5)

V
u= —,c

n-l\l/n

(6)

Fig. 1 Flight in a horizontal
plane.
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If the angle-of-attack, or equivalently the lift coefficient CL, is
not constrained, a natural choice for the aerodynamic control
would be the bank angle a. Then, the lift and the drag coefficients
will be obtained from Eqs. (2) and (3). In the practical case where
the lift coefficient is bounded, the corresponding bound on the
bank angle is function of the state variables m and V through
the relation (2). Hence, the lift coefficient will be a better choice
as control parameter in this case.

We define a lift control parameter A such that Xn is the ratio of
the induced drag to the zero-lift drag

then we have

(9)

iO\

cos a = w/t/2A, sin a = (1 - w2/M4/l2)1/2 V '
The state equations become, with the nondimensional variables

du/dp = [r]u/(l2u4 - w2)1/2] [T - (1 + /I >2]

where the control variables are the dimensionless thrust T and the
lift parameter L They are subject to the constraints

0 < T < TM, |A| < AM (10)
To write the variational equations for optimal trajectories, we
introduce the adjoint components pt and p2 to form the
Hamiltonian

WAI + A")u3/(A2u4 - w2)1'2 (11)
These adjoint variables are defined by the equations
dp i

dp2

For a minimum fuel trajectory, we maximize the final weight. The
solution to the problem is obtained by integrating the systems
of state equations (9) and adjoint equations (12) with the appro-*
priate end-conditions, while selecting T and A, subjected to the
constraints [Eq. (10)], in such a way that, at each instant, the
Hamiltonian H given by Eq. (11) is an absolute minimum.

3. Optimal Controls
First, since H does not contain the independent variable /?,

we have the first integral
H = const (13)

We define the switching function
K = Pl-p2w (14)

From consideration of the Hamiltonian (11) we deduce the
thrusting law. If

K < 0, we select T = TM (boosting phase)
K > 0, we select T = 0 (coasting phase)
K = 0 for a finite time interval
we selected T = variable (sustaining phase)

Considered as function of A, H reaches a minimum either at
I=*M (16)

or at an interior point given by dH/dk = 0. Explicitly we have
(p1-p2w)T = w2p1[l-(n-l)An + «w2

W-4/in-2] (17)
Along a coasting arc, T = 0, and along a sustaining arc, K = 0.
In both cases the equation is simplified to give an explicit law
for the lift control

[(n- l)An- 1J/HA"-2 = w2/w4 (18)
In terms of the bank angle

[(n-l)-ncos2^/cos"a = u2n/\vn (19)
We shall refer to the interior lift and bank as the normal lift and

the normal bank controls. Along a boosting arc, the optimal lift
control is either the maximum lift or as given by Eq. (17) with
T = TM. In this case, /I is also function of p1 and p2.

Along a sustaining arc, relation (18) can be further simplified.
In general, let

<A = P2/Pi (20)
Then

dt/dp = -Wpjdpjdp+d/pjdpjdp
Using Eqs. (12) and (20) and rearranging, we have a Riccati
equation for \//

dft (AV-vv2)3/2 r (AV-w2)3'2

Explicit solution for this equation can be obtained for the case
of sustaining flight and for the case of coasting flight.

Along a sustaining arc, K = 0, and we have
* = 1/w (22)

By substituting this solution into Eq. (21) and using Eq. (9) we
have

A2 = w2(3 + w)/u4 (23)
Relations (22) and (23) characterize the sustaining flight regime
for a finite time interval, and they are valid for both the normal
lift and maximum lift control. For normal lift, using the relation
(8) for the bank angle, we deduce the simple law for banking
along a sustaining arc

cos2 <T = l/(3 + w) (24)
We notice that, it is remarkable that this optimal bank angle
is independent of the numerical coefficients in the generalized
drag polar [Eq. (3)]. The lift control can also be expressed
explicitly in terms of the dimensionless velocity. Combining
Eqs. (18) and (23) we have

A" = (3 + ii)/[(n - l)u + (2n - 3)] (25)
Finally, upon elimination of A between Eqs. (18) and (23) we have
the relation between the dimensionless weight and velocity along
a sustaining arc, using normal lift

w"W-2"(3 + w)("/2)-1[(n-l)M-h(2n-3)] = 1 (26)
By taking the derivative of this equation with respect to /?, and
substituting the appropriate derivatives from the state equations
(9), we have, after rearranging, the thrust magnitude profile
along a sustaining arc with normal lift control

(30n-41)ii+12(2H-3)]
(27)

( }

where n = 2 we have

For sustaining flight, using maximum lift, we write Eq. (23) as
w = /lMw2/(3 + H)1/2 (29)

This relation replaces (26) when maximum lift is optimal. By
taking its derivative and using the state equations (9) we have
the thrust magnitude profile along a sustaining arc with
maximum lift control

T = 3(14- AM
n)(4 + u)u2/(2u2 + 9u + 12) (30)

We notice that the bank angle is also given by Eq. (24).
Explicit formula for the normal lift along a maximum thrust arc
is not known. For the case where the flight is at maximum lift,
by dividing the state equations (9) and using A = /1M, T = TM
we have

du/dw= -( (31)
where
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Table 1 Optimal controls
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(32)
By integrating we have

(33)

where C is a const.
When TM -> oo, a -» 0, we write i = l/2(a)1/2 and consider

as co

Hence, if impulsive thrust is permitted, we have, along an
impulsive thrust arc

we" = C (34)
This relation can be obtained by integrating Eq. (31) with a = 0.

In the minimum fuel turning to a specific heading angle, if
pure coasting flight leads to a final velocity higher or equal to
the prescribed final velocity, the fuel consumption is zero. Hence
subsequently we shall assume that the prescribed final condition
is such that the trajectory shall include at least one thrusting arc.
The results of this section are collected in Table 1.

4. Optimal Switchings
Both the lift (and hence the bank) and the thrust controls can

switch from one mode to another. For the normal bank angle,
we see from Eqs. (19) and (24) that G varies between
arccos [(n— 1)/«]1/2 and 90° for coasting flight and between
54° 44' and 90° for sustaining flight, hence at a rather high
angle. Therefore, if the lift coefficient is constrained, the flight
may be effectuated at the maximum permissible bank angle. This
angle is a function of the state variables w and u and is given by

coso-max = wMMW
2 (35)

A convenient graphical discussion of optimal switching in bank is
obtained using polar coordinates. Let

r = w/u2 (36)
Along a flight at maximum bank angle, we have

(37)

except for boosting flight at T = IM, the normal optimal bank
angle is given by Eq. (19) which .can be written as

r" = cos" <?/[(n -l)-n cos2 d] (38)
The plot representing this relation starts at the origin for o = 90°
and tends asymptotically to r = oo wheno- = arccos \_(n— l)/n\l 2.
It should be noted that, for horizontal flight, r is bounded by
r ^ AM. The two curves intersect each other at the point

cr* = arccos

The point is real when
V >!/(«-!) (40)

Hence, if this condition is satisfied, the flight is at normal
bank angle whenever

It is at maximum bank angle for
-in1/2nn-Dv-n

L «V-2 J (42)

From Eq. (39) we see that, for a given aerodynamic configuration
of the vehicle, the switching is always made at a fixed bank
angle. Along a coasting arc, the switching in lift and bank is
made at different values of w and u but in such a way that
the ratio w/u2 is constant. On the other hand, if the switching
is made along a sustaining arc, because of the additional relation

Fig. 2 Switching in bank
angle.

The plot of this relation is a circle (Fig. 2). On the other hand,
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(23), it is always at a prescribed weight and a prescribed velocity.
These are given by

(43)

The switching velocity u* is positive when
l/(n-l)< V<3/(2n-3) (44)

For a vehicle with low lifting capability, condition (40) is usually
violated and the trajectory is entirely flown at /1M and at the
maximum permissible bank angle as given by Eq. (35).

The switching for the thrust program is governed by the
function i//. From Eq. (11), along a coasting arc, for a minimizing
Hamiltonian pl is negative and since K = pl — p2w > 0 along
this arc, we can write the thrusting condition (15)

\l/ > l/w (coasting phase) (45a)
\l/ ^ 1/vv (boosting phase) (45b)
if/ = l/w (sustaining phase) (45c)

Hence the engine is activated as soon as ^ = l/w. The function
(// is given by the Riccati equation (21). Along a coasting arc,
T = 0 arid the equation becomes linear. Using u as the new
independent variable, we have

d\l/ (/lV-3w2) w
^-W(AV-w^ + (I^^^) = ° (46)

We notice that w is a constant along a coasting arc. If the flight
is at A = AM the solution of this equation is

il/ = Cu3/(JiM
2u4-w2)1/2-u/2w (47)

where C is a constant of integration. For flight at normal lift, for
a parabolic drag polar n = 2, and A2 can be easily expressed in
terms of u through the Eq. (18). For arbitrary n we use the new
variable

</> = tan2<7 (48)
and rewrite Eq. (19)

Hence
d(f>/du = 4(0+ l)[(n- !)</>- l]/w[(w-1)0+ 1] (50)

And the equation for \j/ along a coasting arc at normal lift
becomes
d\l/ (0-2)[(n-1)0+1] , u[(n-1)0+1]—_ — ——————————————y _|_ ——————:————:———_ = y
^0 40(0+l)F(n—1)0—1] 4w0(0+l)[(w—1)0—1]

(51)
In terms of the bank angle, the solution of this equation is

(52)

where C is the constant of integration. When n = 2,
0 = 1 + W

4w~2 and we have
\l/ = (C/w)(w4/w2 + 1)1/2 - «/2w (53)

where one constant term in w has been included in the new
constant C. The expression (47) for i// along a coasting arc at
AM, and (52) for \ji along a coasting arc using normal lift, can be
used to prove rigorously the existence of the six types of optimal
trajectories as has been displayed by Bryson and Lele.2 For
ease of notation we shall use the expression (53) for normal flight
using a parabolic drag polar. The conclusions are the same if
expression (47) or (52) is used instead. With the impulsive
approximation for the boosting arc, we have the following
theorems.

Proposition 1 : there is no coasting arc between two thrusting
arcs.

Consider a coasting arc between two thrusting arcs. Along the
coasting arc, the expression for ̂  is given by Eq. (53). Let u\ and
u2 be the velocities at the two ends of this arc, with M X > t/2, and

let the constant weight be wx = w2 = w. We can calculate the
constant of integration C at the point 1. At this point which is
the end of a thrusting phase, \l/ = l/w. Hence

l/w = (C/ul)(u^'/w2 + l)1/2-V2w

this gives
C = (Vw)(l + Wl/2)(Wl

4/w2+ 1)~1/2 (54)
We have similar relation with u± replaced by u2 if we evaluate
the constant of integration C at the point 2. Therefore we have
the relation between u^ and u2

Wl(l + V2)("i4/vv2+ir 1/2 = H2(l + u2/2)("2
4/vv2 + ir1/2 (55)

Now consider the function
/(w) = w(l + M/2)(«4/w2+l)-1/2 (56)

Since ul ^ u2, a necessary condition for relation (55) to exist is
that the function /(M) passes at least through a maximum or a
minimum for a certain value W£[w2,t/1]. This value u is given by

(1 + w)(H4/w2+ 1)- 1/2-(2w4/w2)(l + w/2)(w4/w2 + I)-3/2 = 0
or

w2 = w4/(l-hw) (57)
This is the same relation as Eq. (26) with n = 2. Hence the point
(w, u) is on the switching surface for sustaining flight and the arc
from 1 to 2 is not a pure coasting arc. This contradiction
completes the proof.

Proposition 2: A thrusting arc between two coasting arcs is not
possible for impulsive thrust.

At the ends of the thrusting arcs we have
<Ai = i/>Vi, ^2 = i/w2

The function \fi is continuous since it is the ratio of two con-
tinuous adjoint variables. If the thrusting arc is an impulsive
one, at the point of application of the impulse we have i/^ = \l/2.
This is not possible since the impulse produces a discontinuity
in the weight, that is. H^ ^ w2.

Proposition 3 : The initial arc is a coasting arc if
w0<Wo

2/(l-hM0)1/2 (58)
It is a boosting arc if

w0>W o
2 /( l + t/0)1/2 (59)

Consider the case of an initial coasting arc followed by a
thrusting arc. In the (w, u) plane the coasting arc starts at the
point (w0, WQ) anc* ends at the point (w0, u^ with w0 > uv Along
this arc the function \l/ is given by Eq. (53). If we evaluate the
constant of integration at the point (w0, wJ, we have along the
initial cqasting arc

(60)
By Eq. (45), \f/ > l/w0 along the coasting arc, and in particular
at the initial point (WO,MO). Hence, at this point we have

(61)
Each side of the inequality has the same functional form as/(w)
given by Eq. (56). We have shown that this function is stationary
along the variable thrust switching surface, and hence Eq. (61)
shows that the function is decreasing at (w0, w0). Mathematically,
we have

By carrying out the operation, we have the condition in Eq. (58).
A similar proof shows that when the inequality [Eq. (59)] is
satisfied, the initial arc is a boosting arc. Of course, for the
very special case where an equality exists, the trajectory starts
with a variable thrusting arc.

Let B = Boosting arc, C = Coasting arc and, S = Sustaining
arc, we see now that there exist six possible types of optimal
trajectories as have been displayed in Ref. 2, namely

BC CB
BSC and CSB
BSB CSC

(62)
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Fig. 3 Phase space and
switching surfaces.
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Along a sustaining arc with normal lift, we have
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sustaining arc. In the notation of this paper, with u^ > u2 we
have

Along a coasting arc using normal lift, the change in heading
is

(66)

5. Optimal Trajectories
The totality of optimal trajectories is contained in the

cylindrical coordinates space (w, u, ft) (Fig. 3). For simplicity we
consider a parabolic drag polar. In this space we have the
following switching surfaces of revolution:

Sustaining flight using normal lift
W=W 2 / (1+H) 1 / 2 (63)

Sustaining flight using maximum lift

Switching from normal lift to maximum lift
(64)

•u2 (65)
When Amax < 1, the flight is always at maximum lift. The con-
ditions in Eqs. (58) and (59) and similar conditions for the case of
maximum-lift flight indicate the initial arc. Subsequent selection
of one of the six types of trajectories in Eq. (62) depends on the
terminal conditions as discussed in Ref. 2. In the same reference,
the change in heading angle has been given for the case of normal
lift. The velocity decreases both along a coasting arc and along a

21og{2[(w+l)(w + 2)]1

« /_!„
For flight at maximum lift, these expressions are replaced by

(67)

(68)

and

(6)1/2 log

\ l /2 -l; (69)
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