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Introduction

THIS paper is intended to draw attention to a crisis
in algorithm development. This crisis will already

be familiar, in various forms, to some readers, and
some of them may feel that "crisis" is too strong a
word, but I want to point out connections between
difficulties being experienced across a rather broad
front. For several years now, we have had comput-
ers that are large enough to tackle three-dimensional
problems, but we have available only algorithms that
were designed using mostly one-dimensional analysis.
I believe that the discrepancy shows up most vividly
when the flows of interest involve strong vorticity, as
indeed many three-dimensional flows do.

To set the stage for a discussion of the numerics,
let us briefly review the reasons why vorticity is so
important in three dimensions. The vorticity transport
equation for u; = curl u is

- - + u • Vu; = • Vu + — Vp

The left-hand side shows that vorticity is transported
with the fluid, except as it is modified by the right-
hand side. Clearly a good advection scheme is impor-
tant, but unlikely to be sufficient.

The third term on the right is the diffusion of vortic-
ity by viscosity. Viscosity also creates vorticity at solid
surfaces. This process of creation is usually dealt with
by making a sufficiently fine mesh close to the surface.
The diffusion thereafter is then rather feeble, certainly
at Reynolds numbers of aeronautical interest. If this
weak diffusion is confined to a close neighborhood of
the surface where the vorticity was generated (in other
words, within the boundary layer) use of a sufficiently
fine mesh may be adequate to treat it accurately. How-
ever, once the vorticity escapes unpredictably from the
surface, following separation, then the choice is be-
tween an expensive enlargement of the refined region,
or allowing the delicate physical dissipation to be over-
whelmed by numerical error.
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The second term on the right is the so-called
barotropic mechanism, arising from misalignment of
the pressure and density gradients. If there is a density
gradient then the center of gravity of a fluid element
does not lie at its geometric center. Applying a pres-
sure gradient will then create a force that may not pass
through the center of gravity, and therefore may cause
the element to spin. This mechanism can be called into
play even in inviscid flow, provided that the functional
dependence p = p(p) has been broken, for instance by
the generation of entropy. Again, the mechanism is
rather weak, and it will be argued below that it too
can be overwhelmed by numerical error.

The first term on the right deals with the impor-
tant stretching effect, driven by changes of velocity in
the direction of the vortex lines. It is this term that
is usually held to be responsible for the evolution of
small-scale structure. For example, vorticity arising
from instabilities such as Tollmein-Schlichting waves
is stretched by secondary instabilities, but since the
circulation around a vortex line is preserved in an in-
viscid flow (and this is an inviscid mechanism) we must
find that the new velocities are increased but found at
smaller radii. Thus, vortical structures tend to become
less well resolved as time passes. This problem is to
some extent alleviated by the fact that the stretching
and concentration of vorticity will accelerate its dissi-
pation by the third term.

The particular importance of vorticity "Vorticity
is the muscle and sinews of fluid mechanics": Diet-
rich Kuchemann arises from the fact that it is hard
to generate (except at solid surfaces) but also, once
generated, hard to destroy. This makes vortical struc-
tures very long-lived, as evidenced by the contrails
stretching for miles behind a high-flying airliner. This
longevity can be useful. For example, many military
aircraft use vorticity generated by strakes or on a ca-
nard control surface to induce low pressures over the
main wing and thereby augment lift. The leading-edge
vortices on a delta wing serve a similar function. The
longevity can also be a nuisance. Helicopters in de-
scent pass through their own helical trailing vortices,
and the ensuing aerodynamic noise is a large disincen-
tive to inner-city heliports. The very delicacy of the
mechanisms that make vorticity important, also make
it particularly vulnerable to numerical error.
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From this discussion it seems that errors in com-
puting strongly vortical flows might either arise in the
inaccurate generation of vorticity, or in its inaccurate
transport. Both of these phenomena might be thought
simply to strengthen the case for more accurate (that
is, higher order) methods. Indeed that is one perfectly
sensible reaction. Tang and Baeder1 have derived
high-order compact versions of Godunov-type schemes
and report remarkable improvements in some problems
of vortex convection. Drikakis and Smolarkiewicz2

have computed some unstable two-dimensional shear
layers and find that second-order schemes can produce
spurious features that are absent in higher-order sim-
ulations.

There are, however, other possibilities, and some of
these will be listed in the next section.

Methods Tuned to Vortical Flows
Vortex Methods

The mathematical basis of these is the fact that a
vector field (here the fluid velocity) can be recovered
from knowing the distribution in space of its diver-
gence and curl, together with appropriate boundary
conditions on solid surfaces and at infinity. In gen-
eral we have to solve the Cauchy-Riemann equations
with a given right-hand side, but if we can assume that
the vorticity is localized into some finite set of vortex
lines and that the flow is incompressible, then a direct
recovery of the velocity follows from the Biot-Savart
law;

(x — s) x ds
|x-s|3/2 ' (1)

where the sum is over a certain number of vortex lines
V, each of which carries a constant circulation IV,
and either forms a closed loop, or extends to infin-
ity, or terminates at a surface. Along each such line,
the position vector is s. The integral is replaced nu-
merically by a sum over short segments of the vortex
line. In each timestep, every segment is moved fol-
lowing the velocities "induced" by the other segments.
In practice, the Biot-Savart law is "desingularized" by
assigning small finite radius 5 to the vortex cores. A
nice survey and the principle references are given in
Almgren, Buttke and Colella.3 To quote from these
authors Vortex methods are especially useful for flows
which are dominated by localized vorticity distribution;
e.g., shear flows, wakes, and jets. In these flows most
of the vorticity is confined to a very small portion of
the flow, and then a method based on following the
vorticity can be very economical.

Weaknesses of the vortex method are the limitations
on its applicability to situations to which the words
"dominated" and "localized" truly apply, the appar-
ent restriction to incompressible flow, and the fact that

vorticity generation must be handled by separate, and
somewhat empirical, procedures. Nevertheless, when
the restrictions are met, this is a powerful and eco-
nomical tool.

Hybrid Methods
A Navier-Stokes solver can be used to predict the

near-field (generation) part of the flow, with vorticity
transport modelled in the far field by a pure vortex
method, in4 an intermediate regime, model-led by po-
tential flow, is also included. In a later paper given
to the American Helicopter Society in Virginia Beach,
in 1997, generally good agreement with experimen-
tal data is reported, although there seem to be a few
anomalies. Details of the hybridization probably need
to be tailored to the specific application of concern.
Vorticity Confinement

This is a very interesting attempt to address the
problem of vortex dissipation in some generality. It
originates with Steinhoff,5 who adds artificial terms to
the momentum equation of the Euler equations.

o ..

—- -f (u - V)u 4- -grad p = //V2u -h e n x a;ot p

Here // is an artificial diffusion coefficient, added for
reasons of stability, but it is the last term that is in-
teresting. The vector n is a unit vector, chosen to lie in
the direction of the vorticity gradient. For structures
that resemble potential vortices with a finite core, such
as the Lamb vortex, this vector is perpendicular to the
axis of vorticity. The product n x a; is also perpendic-
ular to this axis, and points toward it, irrespective of
the sense of rotation. By taking the curl of this equa-
tion, one finds that the artificial terms appear in the
vorticity transport equation, and that they have the
effect of convecting the vorticity toward the core axis.

Because there will be a paper devoted to this topic in
a later session, I will not say much more about it, but
it does strike me as an excellent device for transporting
the vorticity once it has been generated. Essentially,
the intention is to obtain Euler solutions in the high
Reynolds number limit.

Spurious structures; the carbuncle
Under some circumstances, Euler codes produce

anomalous solutions, unlike the flows that would be
anticipated in an experiment. Frequently, perhaps
even invariably, the undesirable solution contains vor-
tical structures. Two of the best-known anomalies are
the 'carbuncle' that sometimes appears ahead of blunt
bodies in supersonic flow computations1, and which
has recently been surveyed in.6 Another example is
the "Quirk phenomenon",7 where an instability can

1l have also seen this behavior, in unpublished work, when a
cylindrically expanding shock is computed on a square grid. It
tends to arise where the shock crosses an axis of symmetry of
the grid.
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Fig. 1 Two valid solutions for the flow past a flat-
faced obstacle.
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to happen physically is that when the wind tunnel is
started up, vorticity is created in the boundary layer
on the plate. It is created faster than than it can
escape by advection, and therefore accumulates in the
region ahead of the body, which acquires an increasing
circulation. Eventually a steady state is reached2 in
which circulation around the contour ABC can be ac-
counted for by vorticity that has been produced in the
past, but which by then is no longer being produced.
If this explanation is correct (and there is no direct ev-
idence) then no critical Reynolds number is involved.
Repeating the experiment in imagination with less vis-
cosity should just mean that it takes longer to build up
the circulation. The flow is "inviscid" in the sense that
a flow satisfying the Kutta condition is inviscid. Some
viscosity is needed, but the amount can be arbitrarily
small.

The axisymmetric version of this flow was studied
by Maull.9 Figure shows a plate from his paper,
and Figure 3 shows a computation by Pandolfi and
d'Ambrosiano6 of a two-dimensional cylinder suffering
from a severe carbuncle. Despite the differences in ge-
ometry and test conditions these seem to be examples
of the same flow pattern. An explanation for the car-
buncle phenomenon could therefore be that vorticity
can be produced in a computation by truncation error,
and that this can accumulate to produce significant
circulation.

In a very interesting recent paper, Robinet et alw

argue that the "Quirk phenomenon" is closely related.
They show an exception to the usual text-book ar-
gument that a plane shock propagating through a
uniform flow does so stably. They consider the usual
case of a plane shock with a small sinusoidal perturba-
tion along its length, and find that there is in fact an
unstable mode that arises from a resonance between
acoustic and advective modes. The eigenfunction of
this mode has vorticity generated at the shock and
convected downstream from it. Moreover, this eigen-
function resembles closely the behavior encountered
numerically in Quirk's phenomenon. It seems that the
mechanism for generating vorticity here is the baro-
clinic one associated with entropy variation behind
a curved shock. Velocities induced by this vorticity
then feed back into the shock through acoustic sig-
nals. The mode is actually unstable, though, only for
one isolated flow condition, corresponding to a partic-
ular Mach number of the unperturbed shock.

Therefore, both the carbuncle and Quirk phenom-
ena are "almost legitimate" flow patterns. Apparently
both can be found in nature, but not unless they are
triggered somehow. We might almost regard them as

Fig. 2
tion.

Schlieren photograph of alternative solu-

be triggered by a tiny irregularity in the mesh, during
the propagation of a one-dimensional shock through
an otherwise uniform mesh. Both of these anomalies
have usually been treated as purely numerical arti-
facts. What is especially disturbing is that both tend
to turn up in what are, by other criteria, the most
accurate codes.

Let us begin by considering a rather simple geome-
try, the two-dimensional flow past a flat-faced obstacle.
Figure shows two possible solutions to the Euler equa-
tions under these conditions. The expected solution is
of course a smooth bow shock, detached ahead of the
obstacle, producing a mix of sub- and supersonic flow.
However, we can construct a second solution by sup-
posing a triangular region of "dead air" ahead of the
body, past which the flow turns just as it would if the
obstacle were shaped like a wedge. There seems to
be no mathematical objection to this second-solution.
It is assembled out of standard solutions to the Euler
equations, and the discontinuities that it contains are
stable and admissible.

Moreover, this second solution is experimentally re-
alizable, by setting a thin plate along the line of sym-
metry. Figure 2 shows plate 272 from.8 What appears

2 Not in all cases; some of the experiments cited gave rise
to flow patterns that oscillated between two kinds of solution,
often in an asymmetric manner. Generally the phenomenon was
not repeatable enough to be useful as part of any aerodynamic
design.
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Fig. 3 Schlieren photograph of flow past a sphere
with a needle ahead of it.
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by simple flux-splitting schemes that are also inaccu-
rate in shear layers. However, a large carbuncle results
when the contact is reinserted into the HLL scheme
(HLLC). Hybrid schemes, such as the different versions
of AUSM, give intermediate results, although AUSM-
M shows only a barely detectable glitch. Robinet et al
state that the carbuncle could be removed from their
computations by including the Navier-Stokes terms in
the governing equations, but that this was not very
effective. It was necessary to reduce the Reynolds
number to a few hundred to make the phenomena dis-
appear.

I now propose an hypothesis to account for the avail-
able evidence. Spurious vortical structures can be in-
troduced into a computation by discretization errors. It
is not necessary that these errors be particularly large,
since they can accumulate over time. The structures
can be eliminated by introducing sufficient damping,
either of a numerical or physical nature. If true, this
puts us between a rock and a hard place. Schemes with
much damping will not generate the spurious struc-
tures, but they will excessively dissipate the genuine
structures.

I admit that much of this conjecture, and that a
high-order scheme might suffer from none of these
problems, but I want to explore in the next section
the idea that some special notions of accuracy may be
useful here.

Dealing with spurious production
In the design of upwind codes, we have learned to

work simultaneously with more than one form of the
Euler equations. To ensure the correct propagation of
nonlinear discontinuities, we work with the conserva-
tion form, but to obtain cleanly propagating waves we
work with the characteristic form. Conservation form
is based on ensuring that some properties of the exact
solution are shared precisely by the discrete solution,
so that there are certain kinds of error that just will
not happen. I speculate that something like this may
be possible for vorticity.

The sort of code I have in mind would still need to
be in conservation form because we will not be deal-
ing with flows that are totally dominated by vorticity.
There will still be shocks that must be treated prop-
erly, but the way that the fluxes are calculated will ac-
knowledge that vorticity is important, just as upwind
codes acknowledge that characteristic information is
important. It may not be necessary to incorporate
the vorticity transport equation directly into the code,
any more than an upwind code directly incorporates
the Rankine-Hugoniot relations. Instead, the principle
should probably be this. From the discrete equations
that are used in the code, it should be possible to obtain
discrete equations for vorticity transport that are phys-
ically valid. In particular, vorticity should be generated
only by terms that have physical meaning, and not by

Fig. 4 A well-developed carbuncle, reproduced
form Pandolfi and d'Ambrosiano.6

interesting discoveries that we have made about the
Euler equations by doing computations. Nevertheless,
they are unwelcome. In the context of this paper they
can be thought of as "spurious vortical structures".

We now turn to the question why these phenomena
are apparently characteristic of schemes that in other
contexts give particularly good accuracy. In Pandolfi
and d'Ambrosiano6 the two-dimensional flow past a
cylinder is computed using a variety of flux functions
to solve the one-dimensional Riemann problem. The
largest carbucles are generated by the exact Riemann
solution and by the Roe linearization. These solvers
both yield accurate results for isolated contact discon-
tinuities, which is a crucial property for the accurate
treatment of boundary layers.11 Almost no carbuncle
is generated by the HLL flux, which dispenses with
the contact in the interest of speed and simplicity, or
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truncation error from physically irrelevant terms.

Linear Acoustics
The simplest model problem having any relevance

to this is two-dimensional linear acoustics

pt + pa2(ux + vy) = 0
ut + (l/p)px = 0
vt + (I/p)py = 0 (2)

Defining u - vx — uy it is an easy deduction, if p, a are
constants, that

wt = 0. (3)
On the other hand, if p is a given function of x and y
then we have production of vorticity via the barotropic
mechanism. The principle above states that in the con-
stant density case we should seek a scheme that gener-
ates no vorticity, and in the variable density case the
only production should be recognizably barotropic. In
Morton and Roe,12 a family of Lax-Wendroff schemes
were reviewed for their effect on the discrete vortic-
ity3 u/ = imy5xv — \jLxbyu. Almost all members of
the family generated vorticity, on a square grid with
mesh spacing h, at a rate proportional to h? (and re-
lated first-order schemes generated vorticity at a rate
proportional to h2). In a student project directed by
Professor Alain Lerat, these predictions were verified,
and initial data corresponding to a Lamb vortex was
quite rapidly dissipated. One single member of the
family was predicted to conserve the vorticity, and in-
deed did so in practice. We will now describe and
motivate that particular Lax-Wendroff scheme.

A model problel and solution
Consider solving the problem (2) on a square grid

with spacing h by a finite-volume method. Variables
p,u,v are stored in cell centers, and in this context
may be regarded as conserved variables. The fluxes
of the velocities are U, V and of the pressures P, Q
as shown in Figure 5. Auxiliary quantities are stored
at the vertices and denoted p'.u'.v1. Update of the
velocities takes place through

Stu = (k/h)6xP
Stv = (k/h)SyQ

(4)
(5)
(6)

where k is the time step, and so the vorticity is updated
through

3 Clearly we need to choose some definition of discrete vor-
ticity, just as we need to define some quadrature formula before
we can discuss conservation. The exact choice should not be
crucial. If vorticity behaves perfectly according to some reason-
able definition, then it cannot behave too badly under any any
reasonable definition.

p' u' v'

p

p ' u ' v

Q V p'

U P>u>v P

QV p

u' v'

U

'u' v'
Fig. 5
tions.

Storage for computing the acoustic equa-

To ensure that this vanishes, we can take P =
'', Q = nxp', and there is no other solution without

enlarging the stencil. The striking conclusion of this
very simple analysis is that the fluxes P, Q must be
computed in two-dimensional mannner. No flux for-
mula, no matter of what order, that is obtained from
one-dimensional interpolation, can have this property.

To obtain second-order accuracy in time the inter-
mediate quantities must be evaluated midway through
the time step, and there is only one compact way to
do this.

p = - (k/2h)[p,ydxu (8)

Note, however, that pr could be obtained from a
random number generator, and there would still be
bo vorticity generated! This provides a mechanism
for inserting non-linear limiters. In fact the two-
dimensional algorithm can be constructed so that, for
one-dimensional data, it collapses to a favored high-
resolution scheme. Therefore, for thye model proble,
there is no conflict between ensuring conservation,
monotonocity, and vorticity preservation.

The update of pressure does not in itself affect vor-
ticity, but can be achieved in a neatly symmetric man-
ner by choosing U = V>yu' , V = nxv' with

v =
(9)

(10)

This completes the description of a second-order
scheme of Lax-Wendroff type4 It can be identified with
the Rotated Richtmyer scheme,13 which has been ne-
glected because it suffers from an odd-even spurios
mode. It is also identical, on regular grids, to the
Ni scheme.14 Among the many Lax-Wendroff schemes
that are possible these two are optimal with respect to

4The basic strategy involved is aplicable also to semidiscrete
schemes.

5 OF 6

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-2523



(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization,
stability and isotropy. The odd-even decoupling can 1 4Ni, R-H., Multiple-grid scheme for solving the Euler equa-
be dealt with by the limiter. tions' AIAA J> 20> PP 1565-1571, 1982.

One explanation for the freedom from vorticity is
that the analytical identity dx(dy) = dy(dx) is irrored
at the discrete level by the identity p>y6x(p,x6y) —
IJ>x6y(fj,y6x). In Morton and Roe12 it is shown that
the same scheme, applied in a natural way to the case
of variable density, does produce vorticity, and that a
discrete version of Kelvins Circulation Theorem,

dtrc - t ^ (ii)_ f dp
he P

can be found. In other words, the circulation around
any contour C depends correctly on the events on the
boundary of C and not on any events within C. This
is moreover true on unstructured grids, if the control
volumes of concern are chosen correctly. It is not an
easy task to extend this analysis to the full nonlinear
Euler equations in three dimensions. Nor is it self-
evident that a code designed in this way will be free
of all problems concerning vorticity, any more than
conservation form by itself solves all problems in shock-
capturing. Nevertheless, a start has been made on
adressing an issue that impacts many current corcerns
in computational aerodynamics.
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