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ABSTRACT 

A design technique is presented to improve the 
overall performance of a structural system by 
simultaneously optimizing the design of the structure 
and an associated controller. This procedure requires 
the minimization of a single objective function, 
subject to dimensional or mass constraints. This is 
done by including the control and disturbance forces 
in the equations of motion for the structure and using 
the eigenfunctions of a uniform structural design as a 
basis for the eigenfunctions of the optimally 
designed, nonuniform structure. The results of the 
concurrent optimization of an Euler-Bernoulli beam 
and H2 controller are presented. More complicated 
structures/controllers can be designed using this 
technique, provided the structure can be modeled as 
a linear time-invariant plant and the controller 
synthesis technique involves a single cost functional. 

1. INTRODUCTION 

Currently, control-structure interaction is being 
widely investigated in the aerospace community due 
to the difficulty of controlling the vibrations of 
lightweight structures. While structures have 
traditionally been designed independently of control 
considerations, significant gains in terms of 
performance objectives (e.g . vibration suppression or 
modal damping) may be realized if a structure and 
associated control system are designed concurrently . 
The inclusion of the active control system in the 
optimal design of the structure makes it possible to 
increase both control authority and disturbance 
rejection, often decreasing the required mass of the 
structure. The purpose of this paper is to present a 
technique for the concurrent optimization of a 
structure and its controller. 

As it is impossible to fully characterize the 
disturbances acting on a structure, and because of the 
varying sensitivity of different structures to these 
unknown disturbances, one would ideally like to 
design the structure to meet certain performance 
specifications and then be able to turn on a controller 
to add to the performance of the structure. The 

implementation of the controller may affect such 
parameters as the stiffness, desired damping, shape 
and mass of the structure. In this work, the ability to 
concurrently optimally design the structure and its 
controller to attain the best overall performance of the 
structure to unknown disturbances is investigated. 
The performance measure used is the 2-norm of a 
weighted sum of structural deflections and control 
effort which will be referred to as the 2-norm of the 
overall closed loop system. 

Multidisciplinary approaches to the optimization of 
controlled structures have been investigated by 
various researchers in the past. The problem of 
controlled flexible space structures was investigated 
by Woodard et al. l in 1990. Maghami et a1.2 
formulated the control-structure design problem as a 
single-objective constrained optimization problem. 
Starkey et al.3 minimized a weighted sum of the 
structural design parameters and feedback gains and 
desirable regions for the closed loop eigenvalues. A 
10 bar truss example with collocated sensors and 
actuators was studied by Schmit in 1992~. Khot used 
the weight of the structure as an objective function 
and also investigated the minimization of the 
Frobenius norm and its relation to the weight of the 
structure5. A multiobjective approach to optimal 
placement of actuators and sensors in control- 
augmented structural optimization was investigated 
by Sepulveda et in which the structural member 
sizes and control variables were treated 
simultaneously as design variables. 

2. STRUCTURALICONTROL SYSTEM 
DESCRIPTION 

A controller is included in the optimal design of the 
structure by introducing its output to the equation of 
motion for the structure as a force input. Then, by 
maximizing the structural response to the controller 
output and minimizing the structural response to a set 
of external disturbing forces, optimal structural 
performance can be achieved. 
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Using a finite element representation of a control- 
augmented structure, the dynamic system equations 
of motion can be written as 

where [MI is the system mass matrix, [C] is the 
system viscous damping matrix, [K] is the system 
stiffness matrix, (w(t)] is the vector of nodal external 
excitation forces, {u(t)] is the vector of actuator 
forces and {q(t)] is the vector of nodal displacements 
and rotations. 

In order to use the information found by solving 'the 
partial differential equations of motion with boundary 
conditions for the beam (i.e., the natural frequencies 
and modes of vibration) to design a controller for the 
structure, a state space model representation of the 
structural dynamics is preferred. This allows for a 
standardized controller design approach. We will 
investigate an example which uses a single input- 
single output (SISO) controller. However, the 
following derivation is also valid for systems with 
multiple input-multiple output (MIMO) controllers. 

is essentially a specification of positions and 
velocities. The inputs which the controller can freely 
vary are represented by u, while the disturbances over 
which one has no control are placed in w. The output 
of the system is y. A is the dynamics matrix; in this 
case, it describes how the structure will vibrate. B 
describes how the inputs act on the system, while C 
specifies how the outputs are derived from the full 
state. In some systems, the input directly affects the 
output; this represented by the matrix D. However, 
for this structure, D will always be zero. 

In this formulation, the Dl matrix describes how 
external forces will affect the vibration of the 
structure, and the D2 matrix represents noise in the 
sensor and actuator measurements. One way of 
specifying the performance goals is to use z ,  a 
performance measure, which is a weighted sum of the 
states and inputs. The maximum amount of effort the 
actuator can give is specified in the E2 matrix, while 
the relative importance of the states are specified by 
the El matrix. In our example, we will assume Eo, 
the weighting of the disturbance on the performance, 
is zero. 

3. PROBLEM STATEMENT 
Defining the state space variables as 

The equation of motion can be transformed to state 
space representation as follows, 

Thus, the state-space representation of the dynamical 
system is798 

and 

z = E,x + E,w + E p .  
These nine matrices can be written as a partitioned 
matrix: 

Here, x is the state vector, a vector of quaitilies that 
completely specifies the system. For the structure, x 

In this optimization problem, the objective is the 
minimization of the 2-norm of the complete, closed- 

loop system. is the transfer function between 
disturbance w and the observable states of the system, 
y. This function can be formed by combining the 
plant for the structure, G, and the controller, Gc. 

Finally, the cost functional can be defined as the 

square of the 2-norm of G : 



The optimization problem becomes 

2 i T ~ + ~ 2 i + i i = 0  
(Lyapunov equation for closed loop stability) 

and 

dimensional and weight constraints on the 
structure 

where 
J: the objective function 
v: vector of design variables 
V: constraint set 

P, the observability grammian, is the unique solution 
to the Lyapunov equation and must be symmetric and - 
positive definite. A is the dynamics matrix of the 
closed loop system. The design variables for the 
optimal controller problem are Ac, Bc, and Cc which 
represent the control dynamics. The structural design 
variables are the dimensions of the structure. 

Only recently have sufficient computer resources 
been available to attempt optimizations over a large 
parameter space, such as for concurrent optimization 
of the structure and controller. The optimization is 
an iterative process which seeks to minimize the 
controller cost. To take advantage of currently 
available tools, each iteration of the optimization is 
done as a four step process. First, a sample structural 
design is chosen, subject to constraints such as 
weight, size, or minimum desired stiffness. Then, a 
model of the structure under consideration is 
developed. Finally, an optimal controller is 
synthesized. At this point, the performance measure 
is calculated for this particular structure/controller 
pair. 

Implementation of this algorithm is accomplished 
with each step evaluated by a separate computer 
program. Refer to Figure 2 which illustrates the 
interaction between steps. The overall control of the 
process is performed by E M P ~ ,  an expert system for 
generating nonlinear optimization code, which 
defines the structure to be considered. Once the 
structure is defined, a basis is defined for the modes 
of the optimized structure based on known mode 
shapes for a simplified structure and the coefficients 
for the new modes as a combination of the basis 
modes are computed. These mode shapes and 

frequencies are used by Matlablo to construct an 
appropriate system model and to find the optimal 
controller for that model. Matlab then calculates and 
returns the overall performance of the 
structure/controller pair to EMP, which uses a 
Sequential Quadratic Programming (SQP) algorithm 
to determine the next design step. 

Structural Parameters 

Perf rmance Measure I Mode hapes 4 
Controller 

Figure 2:. Flow of data in concurrent optimization 

4. EXAMPLE 

We investigate the simultaneous optimization of a 
Bernoulli-Euler beam and associated H2 controller. 
This relatively simple example illustrates the 
interaction between the structure and its control 
system, as well as performance gains, through a 
comparison of 1) a uniform beam without controller, 
2) a uniform beam with associated optimal controller 
design, and 3) concurrent optimization of a 
nonuniform beam and controller. A single 
input/single output (SISO) controller is designed for 
the clamped-free beam which has one disturbing 
force, and one actuator with collocated sensor. 

fi 
We begin with the Euler-Bernoulli equation for a 
beam in bending with uniform cross section, 

where w is the transverse displacement of the beam, f 
is a sum of the external forces, m is the linear mass 
density, I is the moment of inertia. and E is Young's 
Modulus. It is assumed that the beam is composed of 
a linearly elastic, isotropic material. Assume that w 
has the form 

where the yi satisfy 



EZY,"" ( x )  - o i 2 m Y i  ( x )  = 0. 
The Yi are the mode shapes, and are ordered so that 

Oi i Oi+, . We substitute the modal decomposition 
for w into the equation of motion. This yields 

5 [EIQ~ ( t ) ~  ,."' ( x )  + m a ,  ( t ) ~  , ( x ) ]  = f  (x ,  t )  . 
i=l 

Substituting for Yi"" and taking the inner product of 
each side with Yj yields 

S i n c e  t h e  Y a r e  o r thogona l ,  

( ~ , ( x ) , m ~ ~ ( x ) )  = 0, i + j. SO. 

At this point, it is convenient to rewrite f(x,t) as a 
summation of individual terms, which represents a set 
of independent forces acting on the beam, 

Therefore, 

For convenience, define 

Then, 

The 2nd order inhomogeneous differential equation 
can be rewritten in matrix form: 

We have represented the jth vibrational mode as a 
linear system. Now, approximating the entire 
vibration of the beam by considering n modes yields 

where 

Thus, we have approximated the beam as a finite 
dimensional linear time invariant system. 

4.2 Controller svnthesis 
There are many techniques available to design a 
controller for a system in the above form. In control 
theory, it is typical to classify the forces fk  ( t )  as one 
of two types: inputs from the controller, which we 
can influence, and disturbing forces, which we cannot 
influence. Using standard notation and including the 
effects of damping, the dynamics matrix becomes: 

with 

where each ci is the damping ratio for each mode. 

The input u is composed of those f k ( t )  which 
represent forces created by the actuators of the 
controller, while the disturbance w is composed of the 
other f k ( t ) ,  over which the controller has no 
influence. Accordingly, B is made up of those 
columns associated with the actuator forces, and Dl, 
the columns associated with the disturbance forces. 
We assume the use of velocity sensors positioned at 

the points of actuation, such that C = B ~ .  The 
performance weighting matrices, E l  and E2, as well 
as the matrix representing measurement noise, D2, 
will be discussed in the presentation of the results. 

Having constructed a complete model of the beam, 
we are ready to synthesize a controller for this model. 
We do an Hz, Linear Quadratic Gaussian (LQG), 

controller synthesis1 . This technique yields an 
optimal controller in the sense that, for white noise 
disturbances, the 2-norm of the performance signal 
will be minimized. This technique is desirable in that 
it will yield a controller even in marginal or ill- 
conditioned cases, so that, during the iteration 
process, a controller will almost always be found. 

4.3 A~~roximate solution for the nonuniform beam 
When considering the nonuniform beam, we again 
consider the Euler-Bernoulli equation of motion, but 
allowing I and rn to vary with position 12. As before, 
we consider a modal decomposition of w .  



Unfortunately, it is no longer possible to find closed 
form equations for the Yi, which must satisfy 

( E I ( X ) Y ;  (x))" + m i 2 m ( x ) ~ i  ( x )  = 0. 

Because this equation cannot be solved in closed 
form, we need to consider approximations to the 
actual solution. Approximating the mode shapes Yi 
by functions $i , and assuming the to be 
orthogonal, we can write 

which is the familiar Rayleigh quotient13y14. The 
Rayleigh quotient can be calculated for any @ 
satisfying the boundary conditions, and that it is 
always greater than or equal to the frequency of the 
solution, with equality holding if and only if the @ is 
the actual solution to the differential equation. Note 
that the $ i need to be orthogonal only to find 
frequencies other than the lowest natural frequency. 

The particular approximation that we will consider 
for each Ym(x), is of the form 

where these $j are the mode shapes for the uniform 
beam. 

Substituting this form for Y ,(x) into the Rayleigh 
quotient, we have, for the numerator 

This expression is still extremely difficult to 
integrate, so we will consider a design that varies 
piecewise over the length of the beam. If the width on 
interval i is b, and the height is hj, this integral 
reduces to 

Similarly, the denominator can be written as 

The expression for orthogonality of the Y i is derived 
in the same manner, which yields 

This orthogonality condition must be satisfied in 
order to find the higher modes of the nonuniform 
beam. 

We can now build a complete model of the beam as 
was done for the uniform beam, using the Ra~leigh 
quotient to find the natural frequencies and the 
approximate mode shapes. As for the uniform beam, 
we will be using H2 (LQG) controller synthesis. The 
only difference is the plant model used for controller 
design. The plant model for the nonuniform beam has 
more degrees of freedom than the uniform beam 
model, allowing the investigation of a larger class of 
systems. 

4.4 Alternate metho& 
We consider a problem that minimizes the 2-norm of 
the modal deflections; minimizing deflections at the 
point of disturbance, while maximizing deflections 
due to the control force. This results in a much 
simpler model than others considered, but it may also 
yield less accurate results; displacements, while 
related to the energy, are only a portion of the modal 
energy of the structure. However, this is a very 
simple approach that seems to be an appropriate fust 
step towards developing a more exact method. 

As an alternative, we could choose the modal energy 
approach, as it models the structure reasonably well, 
and it also gives ready insight into how a structure 
might be designed to have a better response to control 
inputs and disturbances. This method which uses both 
position and velocity. In the future, this would be a 
likely candidate for additional research. 

Another alternative modeling approach is Statistical 
Energy Analysis (SEA), which models the flow of 
energy between the subsystems of a structure15,16. 
This approach would be to be especially effective in a 
large, complicated structure, such as a truss. 
However, SEA is a more complex theory, and there is 
very little insight into how the dynamical and 
geometrical parameters affect the flow of energy. 
This lack of insight makes it difficult to analyze the 
resulting system and also creates potential problems 
with the robustness of the design process. 

Although we have considered a H2 (LQG) controller 
for this example, other controllers may have worked 
as well. Such controllers could include an H, 
controller that minimizes the =-norm of the 
disturbance-to-performance transfer function or a 



LQR controller that maintains a static gain over all 
frequencies. 

We solve the problem for each of three cases: 
uniform beam, uniform beam with controller, and 
nonuniform beam with controller. 

4.5 Sample uniform beam 
We examine a uniform beam with width and height 
equal to 10 cm. As shown in Figure 2, the 
disturbance force, w, is acting at the mid-span of the 
beam, while the actuator is acting at the end. 

I* l m  
I 

0.5 m  
Figure 3: Sample uniform beam 

A problem that one encounters in every control 
design problem is just how much information to 
include in the model of the system one is trying to 
control; in this case, how big the dynamics matrix 
and state vector should be. The analytic model we 
have been dealing with gives no clear indication 
regarding how many modes to include, but we will 
take the first three modes17, disregarding the rest for 
computational purposes. We assume that the higher 
modes will contribute less to the vibrational response 
of the beam because of the frequency content of the 
disturbance. However, one must be careful when 
designing a controller for such a simplified system; 
an unmodeled mode can be forced unstable by 
controller excitation. Each mode is assumed to have 
1% damping (damping ratio of 0.01). 

Having chosen the size of our beam and the number 
of modes to account for, we can find the natural 
frequencies and the coefficients for the B and Dl 
matrices. These values are presented in Table 1. 

Table 1: Natural frequencies and vibrational 

4.6 Sample uniform beam with optimal controller 
As a natural performance measurement, we have 
chosen to minimize the 2-norm of the time response 
of the deflection of the beam to a white noise 
disturbance force placed at the midpoint of the beam, 
or, equivalently, to minimize the 2-norm of the 
transfer function from the disturbance to the 
performance measurement (displacement). The 
performance measurement is chosen through the use 
of the El and E2 matrices. For this problem, 

resmnses for the first three modes 

This places a premium on the vibrational amplitude 
of the modes, and allows the controller to exert a 
relatively large amount of effort. In other words, we 
are claiming that we have fairly powerful actuators 
and want the vibration to be reduced dramatically. 
The zeros in the matrices are due to the fact that the 
two performance variables, weighting the state and 
control effort, should be independent of each other. 
We set our measurement noise to be 0.0004, orders of 
magnitude smaller than the disturbance constants. In 
other words, compared to the disturbing forces, our 
sensors are quite accurate. 

Mode 
Number 

1 

With the complete system model in hand, we solve 
for the optimal controller using Matlab. As 
described above, a closed form solution for the 
optimal H2 controller exists. 

4.7 Concurrenth optimized nonuniform beam and 
controller 

We generalize the techniques to allow for a beam of 
varying but solid cross section. We examine the 
design of a piecewise uniform beam, considering a 
beam divided into ten segments of length 0.1 m, with 
width bi and height hi, i=1,2, ... 10. This entailes the 
use of the approximations derived above. In addition, 
we also use polynomials to approximate the mode 
shapes of the uniform beam, to facilitate the 
necessary integration. We used a Taylor series 
expansion of up to twenty terms to approximate the 
mode shapes, allowing the integration to be carried 
out easily. 

The frequencies of the nonuniform beam vary much 
more widely than the possible frequencies of the 
uniform beam. This required the El matrix to be 

Disturb. 
Response 

-0.152 

Natrual 
Frequency 

40 Hz 

chosen differently. In the example chosen, we 
selected 

Input 
Response 

-0.448 
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Figure 4: Performance of the sample uniform beam and optimal H2 controller 
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Frequency (Hz) 

Figure 5: Performance of the optimal nonuniform beam and H2 controller 



The other values remained identical to the uniform 
beam. The constraints for this optimization problem 
were that the approximations to the nonuniform mode 
shapes had to be orthogonal to each other, as well as 
normalized. We also had a resource constraint of 
0.007 m3, and in each interval, the width and height 
were forced to lie between 1 cm and 10 cm. 

The problem statement becomes: 

sublect to 

1) closed loop stability 

3) orthogonality of the mode shapes 

5 .  RESULTS 

In both optimization problems defined above 
(uniform beam and nonuniform beam), concurrent 
optimization of the structure-controller pair yields 
significantly improved performance over the baseline 
design. Not only did the H2 response improve, but 
the H, response (peak response) is significantly 
improved as well. In Figure 4, we show the effect of 
adding a controller to a benchmark beam. Figure 5 
shows the performance of the optimal nonuniform 
beamlcontroller system. The performance of the 
nonuniform beam is similar to the uniform beam 
case, but the weight of the structure is decreased 
considerably. Figure 6 shows the nonuniform beam. 
The resulting design is similar to that expected. The 
beam is thicker near the root and near the disturbance 
input, and thinner everywhere else. 

Table 2: Shape of each element for final nonuniform 

Interval 
1 
2 
3 
4 
5 
6 
7 
8 
9 

beam 
Width (m) 
0.020 
0.010 
0.016 
0.011 
0.06 1 
0.042 
0.014 
0.023 
0.015 
0.014 

6. CONCLUSIONS 

Height (m) 
0.063 
0.043 
0.017 
0.013 
0.013 
0.016 
0.01 1 
0.0 15 
0.014 
0.01 1 

The method presented here may have a number of 
applications. It will be most useful in the synthesis of 
new structures, designed with integrated active 
control systems. Concurrent optimization will yield 
extremely efficient structures that meet stringent 
stiffness requirements. This technique may also be 
used to guide the redesign or modification of existing 
structures to be retrofitted with active controllers. 

There are a number of issues yet to be addressed. 
Primary among them is a need to modify the 
formulation to prevent mode shifting and guarantee 
sufficient spacing between modes. Other extensions 
involve refinement of the structural model to allow 
more accurate mode shape determination, inclusion 
of more structural modes in the dynamic model, and 
generalization of the structural model to allow more 
complex cross-sectional variations along the length of 
the beam. 

More complex structures and other optimal 
controllers can be designed using this technique, 
provided that the overall performance can be 
expressed in terms of a scalar cost functional. One 
must be able to model the structure in a form 
compatible with the controller synthesis technique, 
and the resulting cost functional must have certain 
mathematical properties (continuity is sufficient, 
convexity is desirable). 

Extensions to this study will include investigating 
distributed actuators and sensors to accommodate 
smart structures that use piezoelectric (PZT) actuators 
and polyvinylidene fluoride (PVDF) sensors, which 
are currently being investigated and used for 
aerospace applications. 

Figure 6: Optimal nonuniform beam 
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