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Addressing the dynamics of multiphase fronts is crucial for successful practices of many 

engineering applications that involve both gas and liquid constituents. Numerical 

simulations of such flows need to resolve the location and the shape of the front, where 

interfacial conditions are satisfied as part of the solution. In this work, immersed boundary 

method on adaptively refined Cartesian grid is utilized to capture the dynamics of the 

multiphase front. Marker based interface representation is extended to handle the complex 

solid geometries that exist in the flow field. The entire computational algorithm is applied to 

simulate steady state and time dependent liquid plug problem and assessed against existing 

theoretical analyses. It is then used to simulate time dependent draining flow problems, 

motivated by spacecraft fuel tank operations where experimental guidance is available. 

Distinct interfacial characteristics and fluid physics associated with different flow regimes 

are highlighted.  

I. Introduction 

 

LOWS involving interactions between liquids and gases can be observed in a wide range of engineering 

applications. Some examples include the applications of drug delivery through the respiratory system or the 

design of a fuel tank of a space shuttle. Despite the diversity in their application areas, the common nature of both 

problems is the existence of a multiphase front between the liquid and the gas state, which may move in response to 

the flow dynamics. The interplay between the interface and the flow dynamics determines the outcome of the 

application mechanics. 

Numerical simulations of interfacial flows are required to resolve the location of the front to handle, which arise 

as a result of surface tension forces and distinctive material properties of the constituents. Techniques that involve in 

front tracking are grouped into three main categories, namely the Lagrangian, the Eulerian, and the combined 

Eulerian-Lagrangian methods
1
. In Lagrangian methods, the interface location is tracked explicitly by advecting and 

deforming the computational grid with the moving interface
2,3,4

. On the other hand, Eulerian methods such as 

volume of fluids
5,6

 and level set
7,8

 methods employ a scalar function to extract the interface location on stationary 

grids. The marker based front tracking algorithm falls into the mixed Eulerian-Lagrangian category as it tracks the 

interface using set of markers moving on a stationary computational grid
9,10,11,12,13

.  

One of the primary characteristics of multiphase flows is that pressure and viscous stresses show discontinuities 

across the interface as a result of the surface tension forces. These jump conditions are incorporated with flow 

computations via models which can be grouped into two distinguished methods; sharp interface methods (SIM), and 

continuous interface methods (CIM). SIM satisfies the jump condition across interface explicitly and thus, gives 

more accurate solution
9,14,15

. CIM smoothes the fluid properties and surface tension forces across interface, and 

solves a single set of equations for the entire domain
5,6,7,8,10,11,12

. The present study considers CIM due to the 

concerns related to computational efficiency and relative difficulties with sharp interface methods via marker based 

tracking. Specifically, overall method is referred to immersed boundary method (IBM)
10,11,12,13

. 

                                                           

*Post Doctoral Research Fellow, Member AIAA. 
†
Ph.D. Student. 

‡
 Clarence L. “Kelly” Johnson Collegiate Professor and Chair, Fellow AIAA. 

F 

45th AIAA Aerospace Sciences Meeting and Exhibit
8 - 11 January 2007, Reno, Nevada

AIAA 2007-336

Copyright © 2007 by authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



 

American Institute of Aeronautics and Astronautics 

 

2 

In recent years, interface tracking via triangulated elements have improved its most obvious drawback of 

algorithmic complexity for the problems in which topological changes occur. This is achieved by means of level-

contour construction algorithm without the need of the connectivity information
16

. On the other hand, keeping the 

connectivity information helps to reduce the computational effort as the reconstruction algorithm can be applied 

locally where it is required
12

. Additional algorithmic improvements for front tracking are required for handling 

contact line problems, in which liquid and solid phases meet at the computational boundaries
17

, and for handling 

infinitely long bubbles at the inflow/outflow regions. The behavior of the multiphase front at such conditions can be 

modeled to capture the multiphase front dynamics.  

Practices of fluid flow simulations oftentimes require capabilities of handling complex geometries within the 

flow field. The marker based data structure which has already been defined for tracking the multiphase fronts can be 

utilized to apply the prescribed conditions on the embedded boundary. Consequential technique falls into the 

category of non-boundary conforming techniques, which are relatively easier to generalize, computationally 

efficient, and can be used along with Cartesian grids. Yang and Balaras
18

 demonstrated its capabilities via validation 

studies including the laminar flow induced by oscillating cylinder, a flow over a cylinder and turbulent flow 

(modeled by LES) over a traveling wavy wall. A similar approach is utilized for the numerical simulations of 

flapping wings and insect flight
19

.  

Additions of each of these components stress on the one of the most obvious challenges in developing physical 

numerical tools for multiphase flow simulations: the cost of computations. Mechanisms including convection, 

diffusion, pressure, body force and interfacial conditions create multiple time/length scales, which can amplify the 

resolution requirements to impracticable levels due to the limitations in computational resources. The present work 

considers two remedies to overcome such difficulties, adaptive grid refinement and multi-domain techniques for 

parallel computing purposes. Adaptive grid refinement optimizes the computational data size while maintaining a 

desirable quality solution by resolving the required length scales to a desired level of resolution, which can be 

controlled locally
20

. This refinement procedure is utilized on Cartesian grids due to the nature of uncomplicated grid 

generation and data-structure. 

Large discontinues in the transport properties results in stiff linear systems. The convergence characteristics of 

solvers are usually different when they are utilized in parallel computations. Multi-domain methods provide a 

technique that ameliorates such difficulties by handling the linear system in smaller subsets of the overall 

computational domain. Its success on parallel environment is based on its capability of reducing the frequency of the 

data exchange between the sub-regions while maintaining a reasonable convergence rate. The objectives of a multi-

domain method include a balanced distribution of computational load, minimal communication between processors, 

and minimal number of iterations for convergence. The unstructured nature of adaptively refined grids requires a 

partitioning algorithm to meet these objectives, which can be attained using a cost-effective strategy via space filling 

curves
21

. 

The present study employs the immersed boundary method, which uses marker points to track the interface 

location, and continuous interface methods to model interfacial conditions. The large transport property jumps 

across the interface, the resulting computational stiffness, and moving boundaries are treated on adaptively refined 

3D Cartesian grid. A domain decomposition method and a partitioning strategy for adaptively refined grid are 

developed to enable parallel computing capabilities. Specifically, the approach consists of multilevel additive 

Schwarz method for domain decomposition, and Hilbert space filling curve ordering for partitioning. The issues 

related to load balancing, communication and computation, convergence rate of the iterative solver in regard to grid 

size and the number of sub-domains, and interface shape deformation are studied. Furthermore, interfacial 

representation using marker points is extended to model complex solid geometries for single and two-phase flows. 

Finally, we probe the numerical accuracy of the combined computational capabilities, and simulate the front 

propagation associated with the liquid plug problem, and draining fluid flow related to spacecraft fuel tank 

operations.  

II. Numerical Methods 

A. Immersed Boundary Method 

The immersed boundary method (IBM) is employed to track the interface location and compute the surface 

tension forces, which are smeared around the interface over a finite thickness. The main strength of IBM lies in its 

ability to allow simulations to be carried out using a single set of equations for the entire flow field. The interface is 

explicitly tracked using marker points. The governing equations of the flow are solved on the background adaptive 

Cartesian grid.  

The incompressible Navier-Stokes equations for mass and momentum conservation are given in Eqs. (1) and (2). 
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 0u∇ ⋅ =  (1) 

 ( ) ( )T

s

u
uu p u u F g

t

∂ρ
+ ∇ ⋅ ρ = −∇ + ∇ ⋅ µ∇ + µ∇ + + ρ

∂
 (2) 

where u is the velocity vector, p is the pressure, ρ is the density, µ is the viscosity, and Fs is the source term, which 

includes the interfacial forces arising from the surface tension (σ ) and the curvature (κ ) as shown in Eq. (3). 

  ( )ˆ x X
s

S

F n dSσκ δ= −∫  (3) 

The surface force in Eq. (3) is computed using the Lagrangian marker points ( X ) and is translated into an 

Eulerian quantity ( x ) via the approximate discrete Dirac delta function ( ( )h rδ ) in Eq. (4), in which r is the 

distance between the marker point and the cell center scaled by the grid spacing.  
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Approximate Dirac delta function is also used for obtaining the marker velocity field to move marker points for 

obtaining the new geometric surface representation. As the interface evolves, markers are added or deleted to 

maintain interface resolution. Capabilities of handling topological changes can be included with reconstruction 

algorithms
16

. 

 ( ) ( )u (X) u x x X
n n

h

v

dvδ= −∫  (5) 

The material properties, i.e. density and viscosity, are discontinuous across the interface. The variation needs to 

be smoothed in order to facilitate a single fluid formulation. An indicator function, I, that varies smoothly from a 

value of unity outside the interface to zero inside the interface is employed for this purpose. It is computed on the 

background grid using the Dirac delta function by Eq.(6).  

 ( ) ( )2
ˆ x X

s

I x n dSδ∇ = ∇ ⋅ −
 
 
 
∫  (6) 

The transport properties are smeared across the interface using Eq.(7).  

 
2 1 2

( )Iβ β β β= + −  (7) 

The term β represents a material property such as density or viscosity. The subscripts 1 and 2 represent fluids 

outside and inside the body respectively.  

B. Modeling Complex Solid Boundaries 
The present work adopts the technique described by Yang and Balaras

18
 on adaptively refined Cartesian grids. 

This approach employs the prescribed boundary conditions on an arbitrary interface by reconstructing a velocity 

field at cells near the interface. This process doesn’t involve smearing and can be seen as a sharp interface method.  

In this approach, cells around a solid body are marked as forcing, pseudo-fluid and solid cells. Forcing points are 

used for defining the imposed boundary conditions on the flow field, whereas pseudo-fluid points are required in 
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case solid body can freely move. Solid points are turned off for velocity and pressure field computations. As the 

flow field can have multiple fluid components and complex solid bodies, a function of I smoothly varying from zero 

to two is formed using Eq. (6). Certain ranges are marked to indicate if the cell lies in the vicinity of a different 

constituent than the bulk material. This is illustrated 

in Fig. 1 with the ranges used in the computations. 

The velocity field is constructed at the forcing 

points to yield the boundary condition defined on 

the solid boundary. Forcing points are defined on 

the fluid phase side, which have at least one 

neighboring point inside the solid interface. The 

velocity components are defined at the faces of a 

cell.  

Figure 2 shows a representation for this flagging 

process on X-oriented faces. The triangle shaded 

areas represent the points considered for 

reconstruction of forcing point velocities. The 

construction involves an interpolation schema that 

uses one point on the interface, which does not 

necessarily have to be a marker point, and two 

points from the liquid faces. The possible 

interpolation schemas are presented by triangular 

shaded regions. Schema “A” involves in two faces 

that are closest to the construction point
18

, whereas 

schema “B” uses a probe in the normal direction that 

passes through the construction point to utilize a 

bilinear interpolation
19

.  

The present interpolation procedure employs 

scheme “A”, which assumes linear variation of any 

variable φ . In Eqs. (8) and (9), xi, yi represents the 

corners of the triangle presented in Fig. 2. For 

stationary objects, the coefficients can be obtained 

once and can then be used for reconstructing the 

velocity field at each time step. On the other hand, 

the system has to be solved at every time step for 

moving boundaries. 3D computations are achieved in a similar manner by adding an additional point to obtain the 

coefficient of the z-coordinate, b4. 

 
1 2 3

b b x b yφ = + +  (8) 
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 (9) 

C. Adaptive Grid Based Computations 

Immersed boundary method solves a single set of equations for all the constituents, which brings rapid variations 

to flow variables and material properties around the interface. Resolving the whole domain to the desired length 

scale may result in unnecessary resolutions at regions far from the interface. This would require an enormous 

amount of memory and computational power especially for large-scale simulations. One remedy is to employ 

adaptive grid refinement, which offers a way to adjust the grid sizes to the desired length scale locally.  

An isotropically adaptive Cartesian grid is employed for solution of the flow governing equation. The grid is 

initialized in a uniform structure which has prescribed number of cells in each coordinate direction. The cell that 

needs to be refined is split into four smaller and equal cells. This procedure brings additional levels of grid in which 

new coordinates in computational space is assigned to the level that cells reside. To ensure a smooth variation in 

  

Solid 

I = 2 

Fluid I 

I = 0 

Fluid II 

I = 1 

 
Figure 1. Indicator function varying smoothly from zero 

to two. 

 

 
Figure 2. Definition of faces around the solid interface for 

u-velocity. 
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grid cell-size for quality and simplicity, cells sharing a face are not allowed to differ by more than one level of 

refinement. This procedure is called cell-by-cell adaptation and illustrated in Fig. 3. The implementation details are 

described in the work Singh and Shyy
12

. 

The fractional step method, originally developed by Chorin
22

, is used to solve the governing equations as it 

offers efficient solutions to the Navier-Stokes equations for incompressible flows. The fractional step method 

decouples the pressure field by integrating an incomplete form of the momentum equations. Equation (10) shows 

advection-diffusion equation for the original fractional step method. 

 ( ) ( )
*

u u
uu

n

su F
t

ρ ρ
ρ µ

−
+ ∇ ⋅ = ∇ ⋅ ∇ +

∆
 (10) 

Equation (10) is discretized using second order Runge-Kutta and Crank-Nicholson scheme for convection and 

viscous terms in order to obtain an approximate velocity field, which is usually not divergence free. The pressure 

field is solved using the continuity equation that is obtained by taking the divergence of the momentum equation 

considering only pressure term as shown in Eq. (11). 

 ( )
*

u
p

t

ρ∇ ⋅
= ∇ ⋅ ∇

∆
 (11) 

 The intermediate velocity field is corrected using the pressure gradient to make the final velocity field 

divergence free (Eq. (12)). 

 
1 *

u u
n

t p
+ = − ∆ ∇  (12) 

D. Multi-Domain Techniques for Pressure Poisson Equation 

The linear system arising from the pressure Poisson Equation (Eq. (12)) has slow convergence properties, 

especially for high density ratios
23

. For efficient parallelism, the implementation accounts for a balanced load 

distribution, minimal communication between processors, and minimal number of iterations for convergence. As the 

present study employs adaptively refined Cartesian grids, achieving these requirements can be possible by 

employing domain decomposition method with a state-of-art partitioning algorithm.  

Multi-domain methods offer a way to cope with these tradeoffs in parallel algorithms for solving linear systems. 

Its essence is to divide a large problem into smaller pieces, each of which is then solved independently before being 

combined to obtain the global solution of the original problem. In the literature, domain decomposition methods are 

recognized in two different classes; namely, Schur complement methods and Schwarz methods
24

. The present study 

employs Additive Schwarz method, which divides the computational domain into sub-regions, possibly overlapping. 

Each of these sub-regions forms subsystems of linear equations that are solved locally and they are then coupled 

with other sub-systems to obtain global solution. It couples sub-systems using successive exchange of Dirichlet 

conditions at the overlap regions.  

The decision for choosing sub-problems for domain decomposition is referred to partitioning, which is a crucial 

ingredient of efficient parallel scientific computations. Once the decomposition is marked in the data, sub-problems 

   
 (a)  (b)  (c) 

Figure 3. Steps of interface location based adaptation with 4~5 layers of cells across the interface refined 

uniformly, (a) Initial 10x10 base grid, (b) grid after two level adaptation, (c) grid after four levels adaptation. 
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are mapped onto a number of processors. For this purpose, space filling curve based ordering is used for mapping 

the physical space on a 1-D line, which 

is a special function with the property 

of locality
21

.  

In two dimensions, the basic 

building block of the Hilbert curve is a 

“U” shaped line which visits each of 4 

cells in a 2x2 block. Each subsequent 

level further divides the previous 

level’s cells, creating sub-quadrants, 

visited by rotated “U” shaped curves. 

In three dimensions, the curves follow 

the same basic construction rules, but 

the basic building block extends to 

three-dimensions with additional “U” shaped turns. As the resolution increases, the curve fills the space. 

Consequently, it can be used for mapping n-dimensional space on a 1D line. Figure 4 illustrates the Hilbert curves 

on a unit domain with different resolution, which can be recursively defined by substituting a straight line segment 

by a certain pattern of lines. The curve fills the whole domain as this process is repeated infinitely. Repeating this 

sub-division for k times will yield in an 

approximation of a Hilbert curve of k-order, which 

indicates the resolution. 

Algorithms for encoding and decoding work on a 

domain, which is either a unit-square in 2D or a unit-

cube in 3D, can only be applied for cell-ordering on a 

computational domain with equal number of cells in 

each direction. Moreover, the number of cells is 

required to be multiples of 2
n
. Otherwise, some cells 

would not conform to the 2
n
 nature of the space 

filling curve. In order to overcome such issues, the 

initial box grid, which is defined by the user as an 

input parameter, is assigned a base orientation and a 

base Hilbert key. Because the nature of the isotropic 

adaptation is similar to the Hilbert curve, which is 

based on division of a square/cube cell to four/eight 

sibling cells, the function for Hilbert curve can 

operate independently inside each of these boxes to 

create Hilbert keys depending on the refinement. 

During the cell-ordering, the independent Hilbert 

keys can be combined with the base values of 

orientation and resolution parameters to preserve the overall ordering. Figure 5 illustrates possible grid arrangements 

for channel flows with the initial and adapted curves. The initially set base values are inherited by the sibling cells 

during the adaptation. 

Figure 6 summarizes the partitioning process for grids with multiple levels. First, the order of the Hilbert curve is 

set to the maximum level that exists in the grid. This allows us to use the quick sort algorithm based on Hilbert keys, 

which has NlogN operations. Then, the separation points are determined on the ordered cell list to include equal 

number of cells on every Hilbert curve segments. This is to ensure the computational load is distributed on 

uniformly on the sub-domains, which are determined by these segmented curves. A global
§
 array is created in order 

to track the identification of the governing processor for each cell. This enables us to create overlapping cell/face 

lists to be utilized by the domain decomposition technique. 

Hilbert curve based ordering is also utilized to aid geometric multigrid solver, which is a challenging task on 

unstructured grids. Multigrid is one of the best iterative linear solvers for elliptic equations
26,27

. Multigrid achieves 

such computational efficiency by damping high and low frequency error components at the same rate. This is an 

attractive property as the additive Schwarz algorithm has a strong dependence on the overlap grid size. 

                                                           
§
 The term “global” is referred to data available to all processors, whereas the term “local” is referred to data 

available only to the processor of ownership. 

  
 (a) (b) (c) 

Figure 4. Construction of the Peano-Hilbert curve. (a) 1-order,  

(b) 2-order, (c) 3-order. 

 

  
 (a)  (b) 

Figure 5. Initial cell-ordering for a computational 

domain with different number of cells assigned in 

different directions. (a) Two-dimensional domain,  

(b) Three-dimensional domain. 
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The creation of coarser grids is 

handled by traveling on the 

ordered cells and combining four 

cells in 2D and eight cells in 3D 

together wherever possible. If all 

candidate cells to be combined are 

at the same level, all represent a 

coarser cell in the new level. This 

process is repeated until base 

uniform grid is reached unless 

desired number of levels is 

specified. Coarse grid generation 

is illustrated in Fig. 7. 

Geometric based coefficient 

matrix assembly is based on 

conservation laws. Coefficient 

matrix is created and stored for all 

grid levels, which are updated once after grid adaptation. This avoids the computational cost of the matrix assembly 

during the time steps between adaptations at the cost of 30% increase in memory allocation. The coefficient matrix 

at this stage is in a template form involving only grid related information without the density field which changes 

with the location of the interface. Density field can be incorporated to the template during the solution of the 

pressure Poisson equation.  

Restriction operator, R, relates the variables that are at a fine level, f, to a coarser level, c. On the other hand, 

prolongation operator, P, relates the variables that are at a coarse level, c, to a finer level, f. They are utilized in the 

process through the following relations: 

 ( )1 2 3 4

1

4

C f f f f
R R R R R= + + +  (13) 

 
1 2 3 4

f f f f C
P P P P P= = = =  (14) 

The multigrid algorithm is recursively defined and accepts three parameters, γ , 1µ , and 2µ  which sets the 

nature of the cycle as V-cycle or W-cycle. 1µ  and 2µ  denote the number of sweeps for pre-smoothing and post-

smoothing, respectively. When γ=1, µ1=µ2>0, multigrid follows a V-Cycle and when γ=2, µ1=µ2>0, it follows a W-

cycle.  

  

A 

B 

C 

D 

E 

  

Ω1 

Ω3 

Ω2 

Ω4 

Ω5 

  
Figure 6. Partitioning based on cell-ordering. New partitions start at the 

capital letters. 

  

 
 (a) (b) (c) 

Figure 7. Results of the coarsening process. (a) Level = 2 illustrated with Hilbert cell-ordering, (b) Level = 1, 

(c) Level = 0 (initial box grid). 
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III. Results 

A. Multigrid Solver 

The developed multigrid solver is compared with the conjugate gradient solver, which is another efficient solver 

widely used for sparse and unstructured linear systems. The performance comparison is performed on the Poisson 

equation as described in Eq. (15). 

 
( )

( ) ( ) ( )2

,

, 2 cos cos

p
f x y

f x y x y

ρ

π π π

∇
∇ ⋅ =

= −

 
 
   (15) 

Equation (16) states the boundary conditions applied to Eq. (15), 

 ( 0.5, ) (0.5, ) ( , 0.5) ( , 0.5) 0f y f y f x f x− = = − = =  (16) 

 

The multigrid solver’s performance is first tested on the uniform grids, in which all the cells in the grid can be 

coarsened. Figure 8 illustrates that the multigrid performance increases with the number of levels employed. 

Furthermore, the computation time, scaled with respect to the total time spent by the conjugate gradient algorithm, is 

found to be in favor of the multigrid solver. Only the case of multigrid with two levels is found to be slower than 

CG, while a speedup of three is achieved when all the available levels are employed by the algorithm.  

On the other hand, in adaptively refined grids, coarsening process only includes those cells that can be coarsened 

in adaptively refined grids. Figure 9 shows the performance of conjugate gradient and multigrid solvers on 

adaptively refined grids. Grid size is modified by changing the base level grid size while keeping the level of 

refinement in order to employ same number of levels in the multigrid solver. Total iteration number to reduce the 

maximum error to a tolerence limit is observed to remain in the same order for multigrid while it is found to increase 

linearly for the conjugate gradient algorithm. Similar to the uniform grid case, the computational cost of multigrid 

algorithm is less than conjugate gradient solver for all grid sizes and the speedup values vary between 1.5 and 3.4. 

Cycles, µ
1
=µ

2
=1

L
o

g
(e

rr
o

r)

5 10 15 20 25 30

-6

-4

-2

0

2 Levels
3 Levels

4 Levels
5 Levels

 

Number of Levels

S
p

e
e

d
u

p

2 3 4 5
0

1

2

3

4

Based on CPU time of CG

 
 (a) (b) 

Figure 8. Performance of multigrid when different number of levels is employed. (a) Iteration history,  

(b) Speedup based on the CPU-time of the conjugate gradient algorithm. 
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The density variation in the flow field affects the coefficient matrix at all levels. At the finest grid level, density 

varies across the interface smoothly as it is smeared using indicator function. One way to incorporate density values 

at a coarse level is to employ the restriction operator on the fine level. Another way we consider is to use interface 

location and employ the density variation sharply only at coarser levels. Original density field with smooth variation 

and both options for density field at coarse levels are presented in Fig. 10. 

Figure 11 shows the performance results at different density ratios for conjugate gradient algorithm and 

multigrid algorithm with smooth and sharp density treatment. Materials inside and outside the interface is chosen in 

a way to simulate the problems of bubble and drop dynamics. Ratios less than one corresponds to a bubble (lighter 

fluid inside the interface) while ratios greater than one corresponds to a drop. 

The convergence rate and hence the computational cost of multi-grid algorithm for both density treatments 

stayed advantageous over conjugate gradient for moderate density variations. All algorithms of MG and CG have 

shown a significant increase for the iteration numbers when the density ratios are in the order of 1000. Such an 

increase in iteration number is observed to be higher in cases resembling droplets than the ones of bubbles. 

Especially, the multi-grid algorithm with smooth density variations in coarse levels requires under-relaxation factor 

to achieve convergence at the ratio of 1000. On the other hand, convergence is achieved without employing under-

relaxation with the sharp treatment for density variation achieved convergence without under-relaxation even though 

the iterations for convergence still shows a significant increase when compared to moderate density ratios. Figure 11 
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 (a) (b) 

Figure 9. Performance of multigrid and conjugate gradient algorithms on non-uniform grids. (a) Iteration 

number. (b) Computational time and speedup. 

 
 (a) (b) (c) 

Figure 10. Treatment of the density field in multigrid algorithm. (a) Smeared density field at the finest level, 

(b) Smooth variation at intermediate levels, (c) Sharp variation at intermediate levels. 
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is produced using 4 sweeps for pre- and post-smoothing inside the 

multigrid algorithm. When the number of sweeps is increased 

from 4 to 8 for the case of sharp treatment of density variation, the 

iteration number for convergence decreased to back to 19. Also, 

sharp treatment achieved convergence at a reasonable rate for 

density ratios of 10,000 when the number of sweeps is set 24, 

while smooth treatment failed to converge for ratios above 1,000.  

Figure 12 illustrates total computation time for CG and MG for 

sharp and smooth treatment. The number of sweeps for smoothing 

operators is consistent with the iterations presented in Fig. 12 (4 

sweeps). Sharp variation for multigrid achieves better performance 

for the ratios of 0.001, 0.01, 0.1, 1, 10 and 100 than the CG and 

MG with smooth treatment. The choice of underrelaxation 

parameters and number of sweeps in smoothing steps of multigrid 

modifies the overall performance significantly for density ratios in 

the order of 1000 or higher. 

Multilevel additive Schwarz method is explored for its 

performance on multiple domains. It is similar to the multigrid 

method presented in a single domain. As it can be seen from Fig. 

13, grids at the coarser levels are also decomposed into multiple 

subdomains provided that they are greater than a threshold value 

for the number of cells in a single domain. If it is lower than the 

threshold value or it is the coarsest level, then partitioning is not 

employed. This is mainly because the hidden latency for the 

vector-matrix multiplication would become ineffective for the 

communications on very coarse grids. 

Choice for the smoother can affect the performance of the 

multigrid solver and parallelization procedure. Ghost cells at each 

grid level are required to communicate as many as the number of 

sweeps when conjugate gradient is used as a smoother. This is 

referred to MG-CG algorithm. This algorithm can further be 

enhanced to yield a better performance by utilization of AS 

preconditioner to the conjugate gradient algorithm. Another 

approach is to employ Gauss-Seidel as both pre- and post 

smoother. This arrangement, referred to MG-GS, requires single 

communication at the beginning of the sweep and uses that value 

to smooth the solution field.  

Figure 14 shows the number of 

iterations for each of the algorithm 

for density ratio of 100. In this 

figure, coarse granular solver with 

Gauss-Seidel smoothing has 

similar characteristics of single 

level additive Schwarz algorithm. 

On the other hand, multigrid 

solver with CG smoother can 

achieve convergence rates 

independent of number of 

subdomains. When employed as a 

preconditioner, iteration number 

for convergence decreases. 
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Figure 11. Iteration numbers for 

convergence of multigrid and conjugate 
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Figure 13. Creation of coarse grid levels and the way they are partitioned 

into five sub-domains. 
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B. Liquid Plug Problem  

The theory of elongated bubbles is a classical problem in 

fluid mechanics, referred to as the Bretherton problem or liquid 

plug flow. Figure 15 illustrates an infinitely long air finger in a 

channel. It has been shown
1
 that the thickness between the film 

and the channel wall, or the film thickness, decreases with a 

decrease Capillary number Ca=Uµ/σ, where U is the speed of 

the air finger, µ is the viscosity and�  σ is the surface tension. 

The asymptotic analysis by Bretherton
1
 showed that at the limit 

of Capillary number approaching zero, the film thickness is 

proportional to Ca
2/3

 (Eq.(17)). Cox
28

 showed that the film 

thickness reaches a finite value for large Capillary numbers.  

 
2 / 3

1.3375h Ca=  (17) 

The Bretherton problem has been investigated numerically 

for intermediate values of Capillary number. Giavedonni and 

Saita
29

 and Heil
30

 studied the effects of inertia and showed that 

at a fixed Capillary number small the film thickness decreases with increasing Reynolds number for viscous 

dominating flows. This behavior is reversed at high Reynolds number. Heil
30

 showed that the formation of closed 

vortices at the bubble tip causes a significant increase in the pressure rise in that region. It is also concluded that this 

is most significant for flows at low Ca and high Re, which would cause a rupture
31

. Such a phenomenon can occur in 

the lungs during a medical treatment process, i.e. drug delivery. The liquid plug forms in the trachea just before 

inspiration. It propagates during the inspiration while leaving a trailing film thickness and may eventually rupture. In 

addition, the length of the liquid plug instilled in the trachea is shorter than the length of the trachea. As the plug 

propagates down the airway tree, the film thickness behind is usually thicker than the film ahead. In order to 

understand how liquid distributes in the airways throughout the lung, Fujioka and Grotberg
32

 studied the interaction 

of the effect of the plug propagation speed and plug length in both the Stokes flow limit and for finite Reynolds 

number. They concluded that the film thickness decreases as the plug length decreases below the channel width, and 

for sufficiently short plugs, there is a significant interaction between the leading and the trailing menisci and their 

local flow effects.  

Numerical investigations of the Bretherton problem have so far considered only the steady state using free-

surface boundary conditions while neglecting the viscous effects of the air finger
29, 30, 31

. These authors solved the 

governing equations using body fitted grids, which can deform on the bubble interface. Such an approach is referred 

to Lagrangian methods which are known to be ineffective at small deformations due to the difficulties in preserving 

mesh quality. Further investigations of the liquid plug dynamics for the practical purposes require a flexible 

interface tracking method that can handle the large deformations with a feasible computational cost, especially in the 

case of understanding the mechanisms of rupture and the interactions for liquid plug problem. Immersed boundary 

method is a very good candidate for such problems since it has more attractive features when compared to methods 

that use body fitted grids as it includes the effects of all the constituents in the flow field. 

Figure 16 illustrates the computational setup for the Bretherton problem, in which the bubble pressure drives an 

air-finger into the liquid. A mixed boundary condition is imposed at the inlet, where the constituents are separated 

by the interface. As the trailing film thickness remains constant further from the inlet condition, the marker point at 

the boundary is allowed to move only in the vertical direction setting the location for the mixed boundary 

conditions.  

The non-dimensional parameters of the flow are defined as in Eq. (17).  
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Figure 15. Illustration of the Bretherton problem. 
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UHρ
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= ,  

 
l

Ca U
µ
σ

= , (17) 

 
2

Re
l

l

H
We

Ca

ρ σ
µ

= =   

In Eq. (17), H is the half of the channel 

height, U is the velocity at which the bubble 

propagates, ρl and µl are the density and viscosity of the liquid and σ is the surface tension. As the solution of the 

lower and the upper half of the channel are identical, the study is carried on the upper half. 

 

1. Steady Propagation of a Liquid Plug 

At the steady state, the finger propagates at a speed of U and leaves a film thickness of h behind. Therefore, a 

frame of reference is chosen so that the computational domain moves at a constant speed of U. No-slip condition at 

the channel walls are applied as u=(-1,0). Far right from the bubble tip, open boundary condition is imposed by 

specifying the pressure gradient. A mixed boundary condition is used on the far left from the bubble tip by enforcing 

u=(0,0) for air and u=(-1, 0) for the liquid.  

Figure 17 is an illustration for the adaptively refined grid at Re=0 and Ca=0.05. The film region, between the 

channel wall and the interface at the inlet, is required to contain minimum of 10 cells to be able to resolve the flow 

field. Grid in Fig. 15 is obtained using a base grid of 50x10 and three levels of refinement. 

Inflow 

zero mass flux 

Outflow 

No-

slip 

Symmetry axis 

Markers adjust 

to yield κ = 0 

Markers adjust 

for symmetry  
Figure 16. Illustration of computational setup for Bretherton 

problem. 

 
Figure 17. Snapshot of adaptively refined grid (at 3 levels) for Re=0 and Ca=0.05 at steady state. 

 

 
Figure 18. Pressure drop at the bubble tip for various 

Ca. 

 

 
Figure 19. Film thickness at various Ca. 
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Figures 18 and 19 illustrate the variation of the film thickness and the pressure drop at the bubble tip for various 

Capillary numbers. Flow conditions explored in the present study include Ca=0.01, 0.05, 0.1, 0.25, 1.0, and 5.0. 

Figure 16 illustrates that our results are in good agreement with the prior studies of prior numerical studies
29,30,33,32,34

. 

Variation from the theory
27

 is due to an increase in the capillary number as the approach is applicable to small 

Capillary numbers. The corresponding 

bubble shapes at the steady state are also 

presented in Fig. 20. 

Reynolds number at a given Capillary 

number is also investigated at the steady 

state. Figure 21 shows that the results 

obtained using the immersed boundary 

method are in good agreement with the 

benchmark solutions of Heil when 

Ca=0.05. In this figure, pressure contours 

are shown with colors and streamlines are 

presented via white lines. Similar to their 

observations, IBM solutions also captured 

the formation of a closed vortex field in the 

vicinity of the bubble tip for finite 

Reynolds numbers. This vortex field is not 

observed when the fluid inertia is not 

considered as in the case of Re=0 and it is 

observed to increase with Reynolds 

number. 

Film thickness variation with Re at Ca 

=0.05 is shown in Fig. 22 comparing the 

results with the numerical study of Heil
30

. 

In the steady state simulations, the initial 

thickness is usually chosen to be close to 

the thickness suggested by the analytical 

theory or earlier numerical studies in order 

to avoid extensive computation time. 

However, the steady state solution is 

independent from the initial conditions and 

the simulations recover the trailing 

thickness value regardless of the choice of 

h0. 

Figure 23 illustrates results of a 

numerical experiment, in which two 

different initial values are used for h0. Film 

thickness at the steady state for the case 

Re=100 and Ca=0.05 is studied on a base 

grid of 50x10 with two levels of 

refinement. The film thickness is known to 

be around 0.137 and the two values for 

initial thickness are set to 0.1 and 0.2. 

These values are chosen to approach the 

steady state value from different directions. 

The first point is at a closer point to the 

wall than the steady state, whereas the 

second choice of initial film thickness is 

further away from the wall. As it can be 

observed from Fig. 23, film thickness at the 

steady state is obtained regardless of the 

initial film thickness value. The variation 
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0 0.5 1 1.5 2 2.5
 

Ca=0.1 

0 0.5 1 1.5 2 2.5
 

Ca=0.25 

0 0.5 1 1.5 2 2.5
 

Ca=1.0 

 
Ca=5.0 

X
0 0.5 1 1.5 2 2.5

  
Figure 20. Steady state shapes of the air-finger for various 

Capillary numbers.  

 
Figure 21. Pressure contours and streamline traces of the steady 

propagation of liquid plug (Ca=0.05). 
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from the initial stage to the steady state is derived by the pressure difference due to the boundary conditions. When 

the marker at the boundary adjusts itself to a new cell, the inlet velocity is readjusted in order to account for the 

change in the boundary conditions. The effect of this adjustment appears in the time history figures as flat regions, 

where the change in film thickness is small. 

 

2. Time Dependent Plug Propagation 

Capabilities developed by the current study enable us to 

further investigate the evolution of the interface for the liquid 

plug problem. In this section, we focus on the growth of the 

air finger to capture the bubble shapes. Boundary conditions 

are chosen to be the same as the ones used in the steady state 

computations. Representation of the computational domain is 

shown in Fig. 24. On the other hand, computational frame is 

stationary and does not follow the bubble to observe the 

changes at the bubble tip. Imposition of the boundary 

conditions of unsteady computations is modified for its 

consistency with the steady state cases. Mixed inflow 

conditions are given on the left boundary where the liquid 

velocity is set to u=(0,0) and air to u=(1,0). No-slip condition 

is used at the top channel wall by enforcing u=(0,0). Outflow 

and symmetry conditions are imposed for the right and 

bottom boundaries. 

Inlet condition brings extra mass into the computational 

domain. This condition will cause bubble volume to increase, 

which is computed using the area and velocity at the inlet. 

Volume conservation routine accounts for this change when it 

is required to conserve the mass enclosed by the interface. 

Bubble shapes are also studied for Re=100 and Ca=0.05 

for its development in a channel flow. Snapshots from the 

computations are shown in Fig. 24. As the air finger elongates 

in time, the liquid plug starts developing a neck between the 

tip of the air finger and the inlet conditions. This is due to the 

pressure rise at the film region. 

Figure 25 shows the pressure contours at an instant, t = 

0.8. As the pressure at the film region builds up, the interface 
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Figure 23. History of trailing film thickness for 

different initial conditions, i.e., h0 = 0.1 and h0 = 

0.2 until steady state is achieved. 

 
Figure 22. Comparison of the trailing film 

thickness at Ca=0.05 for various Reynolds 

number. 
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Figure 24. Evolution of air finger in a 2D 

channel for Re=100 and Ca=0.05. 
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forms a neck by balancing the 

pressure drop with interfacial 

forces. If the air finger reaches a 

certain length, this mechanism 

would cause rupture as shown in 

the experiments by Cassidy et 

al.
35

. 

Having capabilities of 

handling complex solid 

geometries opens up the 

possibilities to further 

investigate the unsteady 

behavior of liquid plug flows in 

practical applications. One relevant example occurs in the medical treatment in the lung. Liquid plugs are 

transported through the airways in drug delivery applications. This process relies heavily on the liquid distribution in 

the lung, which has many branching airways. In order to understand the liquid distribution, it is important to 

understand the nature of liquid plugs at these airway bifurcations. Developed methodology is utilized to initiate the 

computational approach that can be directly applied to such a practical problem. Bifurcation point and branches at a 

predefined angle can be included in the computations via marker points. These markers are tagged as solid points to 

enforce the boundary conditions at these geometries. Another group of markers, tagged as fluid points, is utilized to 

define the interface between the air and the liquid phases. 

Figure 26 shows snapshots of the air-finger shapes in the channel before its bifurcation point. The development 

of the air-finger during the initial stages occurs in a similar fashion to the liquid plug in the horizontal channel. 

However, air bubble, in contrast to the referred case, doesn’t create a neck during elongation process.  

This is because the bubble shape is affected by the existence of the bifurcation point. As a result, the film 

thickness gets smaller than the steady state solutions for the same flow parameters while the bubble tip region 

becomes more flat. Film thickness development in the 

branching channel is compared with the steady state 

solutions of Heil
30

. Figure 27 illustrates the variation of film 

thickness in time before the bifurcation point. According to 

Fig. 27, the present case study determines thickness to be 

0.107 whereas steady state solution predicts the thickness to 

be around 0.129. 
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Figure 25. Pressure contours at t = 0.8. The cutoff values are limited to ±5 in 

order to highlight the pressure developing at the film region. 

 
Figure 26. Time-dependent development of the 

bubble shape in branching channels. 
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C. The Simulation of Liquid Fuel Tank in Micro-gravity 

The dynamics of the fuel delivery at micro-gravity conditions are of interest for spacecraft applications. Some of 

the many parameters that influence the draining process include interfacial forces, mass flow rate, and tank’s 

geometry.  According to Symons
36

, these conditions can be classified into three main categories; inertia-dominated, 

transition, and capillary-dominated regimes. These regimes depend on the draining parameter, which is the ratio of 

Weber number and Bond number as given in Eq. (18).  

 

2

2 3
Weber Number, 

Q
We

R

ρ
π σ

= , 

2

Bond Number, 
gR

Bo
ρ

σ
= , Draining Parameter

1

We

Bo
=

+
  (18) 

In Eq. (18), ρ  is the density of the liquid, Q  is the volume flow rate, σ  is the surface tension of the interface 

between gas and liquid phases, g  is the gravitational acceleration, and R  is the characteristic length of the fuel 

tank, here chosen as the radius for cylindrical geometry, shown in Fig. 28.  Accordingly, non-dimensional time is 

defined as: 

 
*

3

tQ
t

Rπ
=  (19) 

The draining parameter characterizes the interplay between the various 

operating factors, including the inertial and imposed pressure, gravity and 

capillary effects. The inertia-dominated regime is observed when the 

draining parameter is larger than unity. A main fluid flow feature of the 

inertia-dominated regime is that the interface centerline height moves 

towards the bottom of the tank at close to uniform velocities, which 

decrease away from the draining hole due to curved interface shape. On the 

other hand, when draining parameter becomes less than one, which 

corresponds to the transition regime, a few slosh waves with substantial 

amplitudes are present, causing the interface shape to be influenced by the 

wave propagation. Further reduction of the draining parameter to less than 

0.11, many more slosh waves, with smaller amplitudes than those in the 

transition regime, appear. This regime is called the capillary-dominated 

regime.  

In this study, we employ the adaptive grid and multigrid-based 

immersed boundary algorithm to investigate the draining flow characteristics in a hemispheric tank. First, we 

perform a validation study based on the experiments conducted by Simons
36

. The geometry of the tank utilized in 

the experiments is shown in Fig. 28, in which the ratio between the outlet radius, r, and the tank radius, R, is 1/10 

and the height is 4R. Among the test cases at different regime conditions that the experiments are conducted by 

Simons, he presented data relevant to interface geometry in the transition regime, with the draining parameter is 

0.18, with We=1.06 and Bo=5. Based on these parameters, we have performed simulations to validate the solutions 

and to probe the physical implications. In addition, we have conducted a simulation to the inertia-dominated flow 

regime by increasing We to 28.3 with other parameters unchanged. Under this flow conditions, the draining 

parameter becomes 4.72. For both cases, the initial fuel volume is set to fill 75% of the total tank height as the case 

was for the experiments. The initial interface geometry is approximated to yield an ellipsoidal shape as the condition 

for the experiment states the static conditions at the corresponding gravity level based on the zero-contact angle. In 

the experiment, the air reservoir pressure is determined by the desired flow rate, whereas we specify the same flow 

rate in the numerical simulations. . 

Figure 29 shows the time dependent interface locations at the centerline and on the tank wall for both the 

transition and inertia-dominated regimes. In the initial draining stage, the interface height at the centerline shows a 

linear decrease in both regimes. At t*=0.4, large amplitude sloshes start to form for the transition regime case, 

indicating the active role played by the capillary effect, whereas the interface in the inertia-dominated regime case 

continues its motion at the same speed until the vapor ingestion occurs. Comparison between the present numerical 

and Symons’ experimental results for the transition regime case is shown in Fig. 29. Good agreement between 

experimental and numerical simulations is obtained. On the other hand, it is noted that no direct experimental 
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Figure 28. Geometric configuration 

of the fuel tank. 
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measurement data of the time history of the interface locations was reported in Symons’ experiment in regards to the 

inertia-dominated regime cases. 

Instantaneous interface shapes at different time steps are 

presented in Fig. 30(a) and Fig. 30(b) for inertia-dominated and 

transition regimes, respectively. In both regimes, the interface 

location on the centerline moves at approximately constant 

velocity until it approaches the tank-outlet.  On the other hand, 

the wall attachment location moves in quite different manners between the two cases. In the inertia-dominated 

regime, the interface on the wall moves slowly, causing the interface to continue to deform and elongate, as shown 

in Figs. 29 and 30(a). The exact location of the wall attachment is influenced by the contact angle, which is assigned 

to be 0
o
 here. With a different contact angle, the interface shape and location can behave differently in time

37
. 

Furthermore, with a dynamic contact angle, as is often observed in reality
38

, the situation is more complicated. These 

aspects will be investigated in the future. For the transition regime case, the interface location on the wall moves 

from time to time significantly at different speeds in comparison to that of the center line. Consequently, the 

interface in this case tends to vary between curving up and flattening out, as illustrated in Fig. 30(b). The same 

characteristics in both regimes were observed in the prior studies
36,39

.  

The pressure variation and streamlines are presented at t
*
=1,69 (marked as E* in Fig. 29), which is just before 

vapor ingestion for inertial regime in Fig. 31(a), and at t
*
=2,00 (marked as F in Fig. 29) for the transition regime in 

Fig. 31(b). In the transition regime, a vortex is observed around the interface and affects the draining speed of the 

interface. This vortex is first formed near the wall attachment point and travels as a wave between the wall and the 

centerline creating the sloshes as a result. Such feature is not observed at inertia-dominated regime, where the fluid 

flow essentially follows the tank geometry. 

D. Summary and Conclusions 

In this paper, we have presented a marker based multiphase front tracking algorithm that utilizes grid refinement 

and multi-domain methods to aid the computational cost that it comes with. The multi-domain technique utilizes 

space filling curves to partition the physical space into sub-regions considering the objectives of parallel computing; 

i.e. load balancing, reduced communication to computation ratio. Furthermore, solution procedure for pressure 

 
Figure 29. Non-dimensional height at the 

centerline and on the tank wall at inertia-

dominated (We/(Bo+1)=4.72) and transitional 

regime (We/(Bo+1)=0.18). The experimental 

data was available only for transition regime. 

Capital letters indicate the time of snapshots of 

the interface shapes.  

 
 (a)  (b) 

Figure 30. Snapshots of interface shape during draining. 

(a) Inertia-dominated regime (We/(Bo+1)=4.72) , E* 

indicates before vapor ingestion, (b) Transition regime 

(We/(Bo+1)=0.18) , F* indicates before vapor ingestion.  
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Poisson equation is analyzed for its 

performance when multi-grid and conjugate 

gradient solvers are utilized.  Single domain 

study compared both methods’ convergence 

rate, total computational time on uniform and 

non-uniform grids. Its application with 

additive Schwarz domain decomposition 

method is found to satisfy another objective 

of parallel computations by achieving 

convergence rates independent of the number 

of sub-domains. 

The present algorithm is practiced for 

problems of two diverse engineering 

applications, both of which need to resolve 

the location of the multiphase front within the 

computational domain. These are namely, 

liquid plug problem and the draining process 

of a fuel tank at micro-gravity conditions.  

In the liquid plug problem, interactive 

boundary conditions due to the marker points 

at the inlet and the symmetry line are used to obtain the steady state solution field.  These results are verified using 

the prior numerical studies. Furthermore, unsteady propagation of the liquid plug is studied in horizontal and 

branching channels.  Since the branching channel flow simulation involves both solid and fluid interfaces, our 

computations demonstrate the method’s capability of handling solid, liquid and gas objects all together. 

In addition, two draining flow problems, motivated by the spacecraft fuel tank operation, are investigated and 

validated with the experimental results. Distinct flow characteristics and interface shapes are observed and 

reproduced satisfactorily by the numerical simulation.  
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