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Control of Hypersonic Aerodynamic Forces with
Surface Blowing

M. D. Matarrese,* A. F. Messiter,t and T. C. Adamson Jr4
University of Michigan, Ann Arbor, Michigan 48109

Pressure forces are derived for laminar flow past a thin wedge at high Mach number and high Reynolds
number, with mass added at the surface according to a power-law velocity distribution strong enough that the
boundary layer is blown away from the wall as a free shear layer. Self-similar solutions are obtained for the
thin layer of blown gas adjacent to the surface, for the thin viscous shear layer, and for the outer inviscid-flow
region between the shear layer and the shock wave. Pressures obtained in the strong- and weak-interaction
regions are joined by a simple interpolation formula. Integrated pressure forces are shown for a range of Mach
numbers and altitudes, for various wedge lengths and vertex angles, and for different injected gases. Equilibrium
dissociation of oxygen in the shear layer is found to have only a small effect on the pressure forces.

Nomenclature
A = constant defined in Eq. (66)
C = constant defined in Eq. (13)
cp = specific heat at constant pressure
D = coefficient in expression for layer thickness
D^ = self-diffusion coefficient for undisturbed air
G = constant defined in Eq. (40)
H = atmospheric scale height
h = enthalpy
/„ = integral defined in Eq. (69)
j = exponent in Eq. (24)
KD = proportionality constant for mass diffusion, Eq.

(40)
Kp = equilibrium constant for jO2 ?± O, Eq. (51)
K^ = proportionality constant for diffusion of heat, Eq.

(42)
KID ~ proportionality constant for energy transfer by

mass diffusion, Eq. (54)
K^ = proportionality constant in viscosity law, Eq. (41)
k = constant defined in Eq. (13)
L = wedge length
M ~ Mach number
m = total mass flow of injected gas, per unit span,

defined in Eq. (24)
m - scaled mass flow of injected gas per unit area,

defined in Eq. (20)
mavg = scaled total mass flow of injected gas, per unit

span, defined in Eq. (24)
n = exponent in Eq. (9)
P = scaled pressure perturbation defined in Eqs. (61)

and (62)
Pr = Prandtl number, c ^JA^, defined following Eq.

(39)
p = pressure
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Q — scaled mass flow defined in Eqs. (61) and (62)
q = exponent in Eq. (43)
R = nondimensional gas constant for mixture, defined

in Eq. (35)
Re - Reynolds number, uJL/vx
r = function of x defined in Eq. (66)
Sc = Schmidt number, fjLj(pxDx)7 defined following

Eq. (39)
T = temperature
u, v = X and Y components of velocity, respectively
X, Y = coordinates along and normal to undisturbed

flow, respectively
Xr — reference length defined in Eq. (1)
x, y = nondimensional coordinates along and normal to

undisturbed flow, respectively
Yb = mass fraction of blown gas
Y0 = mass fraction of atomic oxygen
z = altitude
a = wedge vertex half-angle
p = shock-wave inclination angle
y — ratio of specific heats
A = layer thickness
AF = increase in normal force on wedge, above

inviscid-flow value
e = fraction of molecules that dissociate into oxygen

atoms, Eq. (50)
£ = similarity variable defined in Eq. (43)
£i = lower limit for f
A = thermal conductivity
fji = viscosity coefficient
v = kinematic viscosity
p = density
ab = ratio of molecular weight of blown gas to that of

air
<f) = defined in Eq. (63)
X = defined in Eq. (64)
^_ _ = nondimensional stream function
^h ^u = lower and upper limits of ̂  in Eq. (55)
CD = exponent in viscosity law

Subscripts
a = air
b = blown gas
5 = value at shock wave
w = value at wall
0 = (scaled) quantity in inviscid wedge flow
1 = coefficient in perturbation quantity
QO = undisturbed-flow value
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Superscripts
(s) = strong-interaction region
(w) = weak-interaction region

= nondimensional quantity in outer inviscid-flow
region

~ = nondimensional quantity in blown-gas layer
— = nondimensional quantity in viscous shear layer

Introduction

C ONTROL of flight vehicles at hypersonic speeds has
usually been achieved by means of moving control sur-

faces and/or by changing the magnitude and direction of the
thrust vector. As a possible alternative method of control, it
might be of interest to consider the use of boundary-layer
blowing to introduce desired modifications in pressure dis-
tributions over the surface and thus to provide control forces
on a specified part of a vehicle. Different injection patterns
would be possible, including distributed or strip blowing. In
the present study a simple blowing distribution is considered
for the simplest possible geometry, a thin wedge in two-di-
mensional hypersonic flow. If the mass rate of flow of injected
gas is sufficiently large, the boundary layer is completely blown
off from the surface; this is the case considered here. The
solutions can be useful in several contexts. First, they provide
a measure of the magnitudes of forces to be expected for a
given blowing rate at given flight conditions; second, they can
be used to check computer codes developed to handle more
complex flow problems1; finally, they may have some appli-
cation in the related problems of cooling hypersonic vehicles
by boundary-layer blowing, and of the introduction of fuel
into the combustion region of a scram jet.

Hypersonic flows of a perfect gas past simple shapes have
been studied extensively using inviscid-flow theory, and vis-
cous-interaction effects are also well understood. For a thin
wedge, the effects of small perturbations in surface shape
require solution of linearized equations.2 If the perturbations
are caused by the displacement thickness of a laminar bound-
ary layer, the equations for a constant-pressure boundary layer
at high Mach number allow a complete description of the flow
at points far enough from the leading edge. In a region closer
to the vertex where the boundary-layer thickness is large com-
pared to the wedge thickness (but streamline slopes are still
small), a self-similar solution is available,3'4 based on the hy-
personic small-disturbance equations5 for the shock layer and
boundary-layer equations for the viscous layer. The interac-
tions of the boundary layer with the external inviscid flow in
these two regions are, respectively, "weak" and "strong" in-
teractions.

Surface injection of a gas in the strong-interaction region,
for a suitable power-law velocity variation, still allows a self-
similar formulation but with modified boundary conditions.
Li and Gross6 obtained numerical results for strong interaction
using boundary-layer solutions with a nonzero normal velocity
component at the surface, over a range of prescribed surface
temperatures. If the blowing is strong enough, however, the
boundary layer is blown away from the surface. Kubota and
Fernandez7 considered a compressible free shear layer, with
prescribed power-law pressure gradient, and an additional
thin layer of inviscid flow adjacent to the wall. For still stronger
blowing velocities, the layer of blown gas is much thicker than
the free shear layer and the shear layer can be regarded as a
surface of discontinuity. Cole and Aroesty8 described the blown
gas by "inviscid boundary-layer equations" and the shock
layer again by hypersonic small-disturbance equations. A use-
ful summary of this and earlier related work was given by
Smith and Ste wart son.9

When the blowing velocity has suitable strength, as well as
an appropriate power-law variation, in the strong-interaction
region, the displacement effects of the blown gas and of the
shear layer are of the same order of magnitude.10 Solutions
in the strong-interaction limit can then be obtained inde-

pendently for the thin layer of blown gas, the viscous free
shear layer, and the inviscid shock layer, with certain con-
stants to be found by proper asymptotic matching. The shock
layer is described by the hypersonic small-disturbance equa-
tions,5 the viscous layer by the usual boundary-layer equa-
tions, and the blown gas by inviscid boundary-layer equa-
tions.8 The derivations of Ref. 10 were given primarily for a
flat plate, with an application to a thin wedge mentioned
relatively briefly. Since the temperature in the shear layer is
high, the scaled temperature in the shear layer should ap-
proach zero both above and below. Numerical solution of the
shear-layer equations was carried out by a continuation method
in which the mass flow entrained in the lower part of the shear
layer is varied until the proper asymptotic behavior is ob-
served.11 The weak-interaction region can also be described
by self-similar solutions; an approximate interpolation for-
mula was proposed in Ref. 10 for joining the surface pressures
found from the strong- and weak-interaction solutions.

The present study is concerned with pressure forces acting
on a thin wedge in the presence of mass injection at the surface
having a power-law dependence on distance from the vertex.
The derivations of Ref. 10 are extended in several ways: to
allow constant surface temperature rather than constant sur-
face density, as assumed in Ref. 10 to achieve some minor
simplifications; to allow arbitrary values of the hypersonic
similarity parameter instead of requiring that the normal Mach
number at the shock wave be large; to allow an injected gas
different from air; to allow for variable specific heats and
oxygen dissociation in the viscous shear layer, and to provide
a variety of numerical results for pressure forces caused by
blowing.

The main objective is to relate the pressure distribution at
the wedge surface to the prescribed surface conditions, ex-
pressed by the specified distribution of injected mass and
either a constant wall density or a constant wall temperature.
Solutions for the inviscid outer flow provide the relation be-
tween the surface pressure and the effective body shape; so-
lutions for the inviscid layer of blown gas give an expression
for the thickness of this layer in terms of the surface pressure
and the Mach number at the wall, here expressed in terms of
the surface mass flux and the temperature or density at the
wall; the solution for the viscous shear layer provides a re-
lation between the shear-layer thickness and the surface pres-
sure. Combining these results with the help of first-order
matching conditions then yields the desired results.

The following section summarizes the analysis, with em-
phasis on the new aspects. Numerical results for integrated
forces are then shown and discussed for a range of Mach
numbers and altitudes, for various wedge lengths and vertex
angles, and for different injected gases at different values of
surface temperature.

Analysis
A thin wedge having length L and small vertex half-angle

a « 1 is placed at zero incidence in a uniform hypersonic
flow with Mach number Mx » 1. A power-law viscosity-
temperature relation fji/^ = (TIT^ is assumed for air; if a
different gas is injected at the wedge surface, ju also depends
on the mass fraction Yb of the blown gas.

In the absence of surface blowing, an effective body shape
is found by adding the boundary-layer displacement thickness
to the location of the wedge surface Y ~ aX. At points suf-
ficiently far from the vertex (when L is large enough), the
boundary-layer thickness €>{M"a~l(vxX/uxy/2}, where vx =
fjijpx, is small in comparison with one-half the wedge thick-
ness aX, and the pressure is nearly the same as for inviscid
flow. At points closer to the leading edge, however, this is
no longer true. A reference length Xr is defined by equating
the two thicknesses, so that for X » Xr the boundary layer
has only a small effect on the external flow, and the interaction
is "weak," whereas for X « Xr the boundary-layer displace-
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ment effect is dominant, and the interaction is "strong."3-4

Nondimensional coordinates are then defined by

x = X/Xr, y = (Y - aX)/(aXr)

Xr = (1)

where a « \\y = 0 at the wedge surface (in the small-angle
approximation); and at the shock wave y = 0(1) when x =
0(1). The ratio LIXr is proportional to the Reynolds number
Re — u^Llv^ based on wedge length and freestream quan-
tities. For constant Mach number and an isothermal atmos-
phere, the length Xr increases exponentially with altitude; a
weaker dependence on temperature can be introduced by
assuming a standard atmosphere. At low altitudes Xr might
be small in comparison with L; at sufficiently high altitudes
Xr» L. The stream function, nondimensional with apx
is defined by

= pu (2)

with ̂  = 0 along the streamline from the vertex of the wedge.
If mass is added to the flow by surface blowing, here taken

as directed normal to the surface, the effective body thickness
is increased further, and for sufficiently strong injection the
boundary layer is blown away from the surface as a free shear
layer. The equivalent body now includes the effects of both
blowing and viscous diffusion. The sketches in Fig. 1 suggest
the qualitative features of the flow in the strong- and weak-
interaction regions, for weak blowing when the boundary layer
is still attached and for strong blowing; in each case, the
speckled region is the viscous layer. For the "strong" blowing
considered here, three thin flow layers can be distinguished:
a nearly inviscid thin layer of blown gas; a viscous free shear
layer where mixing (assumed laminar) of the blown gas and
freestream gas takes place; and an outer inviscid flow between
the shear layer and the shock wave. Qualitative sketches of
the mass-fraction, velocity, temperature, and pressure profiles
for x = 0(1) are shown in Fig. 2 for the entire region of
disturbed flow between the wedge surface and the shock wave.
Strong and weak interactions occur for x « 1 and x » 1,
respectively, and in general the flow variables will have dif-
ferent orders of magnitude in the different flow regions. The
injectant temperature at the surface will be taken to have the
same order of magnitude (other choices of course are possible)
as the temperature in the undisturbed air, whereas the tem-
perature in the viscous layer is larger by a factor 0(M|). The
mass flow in the blown layer is small because the flow veloc-
ities are small there, and in the viscous layer the mass flow
is still smaller because the density is low; the first approxi-
mation to the pressure is a function only of x in both regions.
The amount of injected mass is chosen such that the blown-
layer thickness is of the same order of magnitude as the wedge
thickness when x = 0(1). The thickness of the viscous layer

is likewise of this order when x = 0(1); if, however, the mass
flow is increased further, the viscous-layer thickness can be
neglected.

Inviscid Outer Flow
The location y — A(JC) of the equivalent body surface, flow

variables in the region between this surface and the shock
wave, and the stream function can be written as

A(JC) =

= p(x,y)

(3)

where A(JC) and A(*) describe the contributions of the blown
gas and the shear layer, respectively. The pressure at the
displacement surface y = A(JC) can be found in terms of A(;c)
in both the strong- and weak-interaction limits, for suitably
specified mass injection rates.

For x « 1, a self-similar solution describes strong viscous
interaction. The surface of the equivalent body and the pres-
sure at this surface have the form

where p^ is a constant to be determined; the required form
for surface blowing is shown below. The flow in the inviscid
shock layer is described by the self-similar form of the hy-
personic small-disturbance equations, with appropriate ex-
ponents. Numerical solution of these equations, for y^ = 1.4,
gives a relation10 between the coefficients in Eqs. (4):

= 0.945 (5)

The numerical value agrees with that of Ref. 6. The repre-
sentation given by Eqs. (4) requires that streamline slopes be
small and that the pressure be small in comparison with the
dynamic pressure in the undisturbed flow. Thus, the solution
fails for very small jc, in the "merged-layer regime" for x =
0(a4), or X - ®(M%>vJu^)\ boundary-layer approximations
fail here as well, as noted later.

Blowing
Velocity

Strong
Blowing

Weak
Blowing

L0(a4)
Merged
Layer

Strong
Interaction

-0(1)- -x/xr
Weak

Interaction

Fig. 1 Qualitative sketch of wedge flowfield with weak or strong
blowing and weak or strong interaction, (Speckled regions are viscous
layers.)

Fig. 2 Qualitative profiles of blown-gas mass fraction Yb9 velocity
component u, temperature T, and pressure p.



DECEMBER 1991 HYPERSONIC AERODYNAMIC FORCES WITH SURFACE BLOWING 2097

If Xr « L, the strong interaction is confined to a small
fraction of the wedge length. Further downstream, for the
portion of the wedge where x » 1, the boundary layer causes
only small disturbances to the outer in viscid flow. In the hy-
personic small-disturbance approximation, the shock-wave jump
conditions can be combined in the form

Jk_ = _ A* = Ps ~ P- = 1 - 1
(6)

The flow variables for x » 1 have the form:

p/px = Mla2{pQ + p[w\x,y) + ••

p/px = po + .-

j8 = aft

= a[l + t?\x,y) + •••}

(7)

The values for turning through a small angle a are given by

y. + 1
~ ~

y. + 1
~ ~

The product M^a is the usual similarity parameter of hyper-
sonic small-disturbance theory.

For the weak-interaction region x » 1, the surface y =
A(#) of the equivalent body lies very close to the wedge sur-
face. The body shape and the linearized boundary condition
are

A(JC) = (9)

where the value of n < 1 depends on the choice of prescribed
conditions at the surface. The shock-wave jump conditions
given by Eqs. (6) provide a relation between the perturbations
p^ and VIH') at the linearized shock position Y = apQX or y
= (ft - l)x:

K
& - (y. + l)/4

(10)

Each of the f unctions p^ and v$w) must satisfy a wave equation
in the x, y coordinates, and the boundary conditions require
that each have a self-similar form. The solutions satisfying
these conditions are

= c,(x + May)"-1 + c2(x -

o)^ = c,(x + MQyY~l - c2(x -

where the constants are defined by

(11)

(12)

£i - C2 _ p0nAiH;)

C " F77" " (A:1-" - C)M0'
k = 1 - M0(ft - 1)

_

1 + M0(ft - 1)

JoQBo - 1) - [ft - (y« + l)/4]
M0ft(ft - [ft - l }

The pressure at the surface of the equivalent body and the
shape of the body are related by

C)
(14)

Thus, D(w) depends on y^, n, and M^a. The results are equiv-
alent to those of Ref. 2.

Inviscid Blown-Gas Layer
At the wedge surface, gas is injected in a direction normal

to the wall at a low Mach number Mw — 0(a). For the blowing
rates considered here, most of the injected gas occupies a thin
layer adjacent to the surface; the flow in this blown-gas layer
is nearly inviscid, and only a small fraction of the injected
mass is entrained in the mixing layer. In the layer of blown
gas, the scalings for the flow variables are essentially the same
as suggested by Cole and Aroesty,8 and are found from the
boundary and matching conditions, thermodynamic relations,
and the conservation laws to have the form

p/px = Mia2p(x)

r/r. =
= Mia2ahp(x,y)

+ - (15)

(16)

The pressure is a function of x in the first approximation since
the layer is thin and the gas velocity is low. The stream func-
tion ̂  is then

(17)

The streamline, total-enthalpy•, entropy, and state equa-
tions become

- JL 1-2 f _ fw
y* ' pu 2" + yb - 1 " yb - 1

^ \ I/YO
Pw, P = pf (18)

This is the set of equations studied by Cole and Aroesty,8 The
wall values pw,vw,Tw, and pw are understood to be functions
of ^f and can be expressed instead in terms of a coordinate
xw that identifies the location at which a streamline leaves the
surface. Thus,

pw = p(xw,Q), vw = v(*,v,0), pw = ^(jcj (19)

where xw(*$?) is defined by

The Mach number of the injected gas is also expressed as a
function of jc •

Mw = (21)

From Eqs. (18) and (20), the streamline equation can be
written as

(22)

The contribution A(JC) to the shape of the equivalent body is
found by integration over xw, at a given jc, from a point on
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the surface up to the zero streamline:

AW = ?** = _ * [ . * ,
J ~pu J dxw

(23)

where ^ = tyw(x), the stream function at the wall, is the
inverse of x = xw(V). The choice Mw = C(a) gives A = 0(1);
i.e., for this choice the thickness of the blown-gas layer is of
the same order of magnitude as the wedge thickness when x
= 0(1).

The average mass flow per unit area equals the integral of
pwvw divided by the length L. If pwvw is proportional to a
power of x, the scaled mass flow m can then be written in
terms of a scaled average raavg, which is proportional to the
integrated dimensional mass flow ra per unit span:

x
r

x {= -f rh(x)
L

dx

number are

Since pressure changes are small for x » I , the Mach number
remains small throughout the blown-gas layer, and the stream-
line shape is found from the incompressible form of Eq. (22).
Integration then gives the constant D(w) in Eq. (28) for the
thickness of this layer:

dy=- Mwdxw = 2(2yh)m (32)

If instead the surface density pw is taken to be constant,10 the
exponent in m = pwvw is / = 1/2 and the mass flux is
proportional to x~l/2. It is shown in Ref. 10 that the expres-
sions obtained for D(s) and D(w} are the same as those given
by Eqs. (30) and (32).

ma (24)

The mass flow m is taken to have the same form for all x. In
the strong-interaction region, for ;c « 1, self-similarity re-
quires that the pressure and the blowing Mach number have
the form

p = Mw = (25)

These conditions can be achieved, for example, if either the
wall density pw or the wall temperature Tw is constant, with
the other of these quantities following a power-law variation
found from the equation of state. In the weak-interaction
region, the scaled pressure and the blowing Mach number are

P = Po + Mw = (26)

It is then found from Eq. (22) that the contributions of the
blown-gas layer to equivalent body shapes for the strong- and
weak-interaction regions are, respectively,

(27)

(28)

and the exponents / and n are related by n = (3 - 2/)/3.
If the wall temperature tw is specified to be constant, the

density pw and the velocity vw at the surface are ©(#~172) and
G(;t~1/4), respectively, for x « 1. The exponent; appearing
in m = vwplfw is 3/4, and the injected mass flux is propor-
tional to jc~3/4. The coefficient for the blowing Mach number
in Eq. (25) is

(29)

Substitution in Eq. (27) then provides a relation between
p{*> and Ap. Integration of Eq. (22) gives the constant Dw

for the streamline shape in the strong-interaction region as

- 1U1/2 - - i))
(2yb - - 1))

(30)

In the weak-interaction region, again for constant wall tem-
perature, the density and the coefficient in the blowing Mach

Viscous Shear Layer
In the high-temperature separated free-shear layer, the ve-

locity and the thermodynamic variables have the form

u/ux = u(x,V) + • • • , p/p*> = Mla2p(x) + •••

h/h» = Mlh(x$F) .+ - (33)

where the stream function and the streamline equation are

^ = II (pu) (34)

If the shear layer is treated as a binary mixture of ideal
gases, the equation of state is

P = R = 1 - Yh (35)

where Yb is the mass fraction of blown gas and (1 - Yb) is
the mass fraction of air; real-gas effects will be considered
later. With each constituent modeled by the same "point-
center-of-repulsion" potential-energy function, the transport
coefficients for mass, momentum, and heat are all propor-
tional to T™.12 For a chemically insert mixture with negligible
thermal diffusion, the concentration, momentum, and energy
equations are then (e.g., Ref. 13)

(36)

(37)

(y. - i]
(38)

The specific heats appearing in Eq. (38) are

, (i - n)cp = cPbYb

, = (39)
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where cp has been made nondimensional with the gas constant
for undisturbed air, and the (dimensional) species specific
heats cpb and cpx have been assumed independent of temper-
ature. The Prandtl number Pr and Schmidt number Sc are
defined by Pr = cpxpj\x and Sc = pJ(pxDx), where A,, is
the thermal conductivity and D^ is the self-diffusion coeffi-
cient, for undisturbed air. The proportionality factors in the
diffusion coefficients are given by14

y^> __

- Yhi - n + GYH - Yb)

- Yh Eun T- 1/2 TVrh j i h

- Yb GYb

(40)

(41)

(42)

where / = 1 or / = (Eux)~l for an injected diatomic or
monatomic gas, respectively. The Eucken correction Eu is
approximated15 by Eua^ = 0.115 + 0.354cpax. With the spe-
cific heat of air assumed constant, Eua - Eu^\ otherwise
cpa is the specific heat of air evaluated at the local temperature.

If the pressure is proportional to a power of jc, the equations
have self-similar solutions and can be reduced to ordinary
differential equations. The pressure p and the similarity var-
iable £ are

p = jl/2yq/2 (43)

For strong interaction q = 1/2, in agreement with Eq. (4) for
the shock layer and Eq. (25) for the blown layer, and Pl =
/?P; for weak interaction the pressure is nearly constant, and
so q = 1 and pl = p0. Now u, T, and Yb are functions only
of I. The differential equations, Eqs. (36-38), become

(44)

For strong and weak interaction, respectively, the shear-layer
thicknesses are

A^(jt) = A^jc374 + • • • , A55) = (p[s)) ~ 1/2D(S) (48)

A(w)(jt) = ~K(w)xl/2 + • • • , ^1"° = pvl/2D(w) (49)

where D(s) and D(H;) are numbers found by integrating the
appropriate_solutions for RTIu from & to oo. These integrals
exist since T-» 0 sufficiently rapidly js f-* o°, as can be seen
by_deriving the asymptotic form for T. For strong interaction
«A(iS)(jt) = €(ax3/4), and the shear-layer thickness remains
small in comparison with x when x » a4; i.e., as anticipated,
the boundary-layer approximation fails in the merged-layer
regime x = 0(a4).

The analysis may be extended to include real-gas effects
that occur at high temperatures. For air, the specific heats
begin to vary when T ^ 600 K, and O7 begins to dissociate
when T ^ 2000-2500 K, for p « 0.01-1 atm. Self-similar
solutions may still be computed when the gas is chemically
reactive provided the pressure is nearly constant, as in the
weak-interaction region, and chemical equilibrium will be
closely approached sufficiently far downstream.

To provide a measure of the extent by which the ideal-gas
results will change, the analysis of the weak-interaction region
is repeated for the case of air injection, with air treated as a
real gas in chemical equilibrium. Following Hansen's analy-
sis,16 it is assumed that, for a given pressure, the peak tem-
perature remains low enough that, to a good approximation,
only the dissociation of oxygen occurs. (For pressures of the
order of 0.1 atm, this assumption limits the temperature to
values below approximately 4000 K; the limit increases with
increasing pressure.) Air is then composed of N2, O2, and O,
with the mass fraction of O given by Y0 = 2(16/29) £, where
16/29 is the approximate ratio of the molecular mass of O to
that of undissociated air. The fraction s of molecules that
dissociate into oxygen atoms may be written16

e = {-0.8 + [0.64 + 0.8(1 + 4p/K2
p)]l/2}/(l + 4p/K*) (50)

Iqfu' - 2 - = -
"

(45)

- cJYiT (46)

Numerical integration of these equations is carried out for &
< £ < oo, where £ < 0 and |f/|/7}/V2 is the (scaled) amount
of mass entrained in the part of the shear layer below the zero
streamline. The boundary conditions as £—» o° require that u
-» 1, J-» 0, and Yb -» 0, and as f-> £, it is required that u
-* 0, T^> 0, and Yb-* 1; moreover, the asymptotic form as
f —> £/ is known, and the solutions for u and Tmust approach
zero in the proper way. The computational scheme is a con-
tinuation method in which the value of £ at the lower boundary
is taken to be a small negative number that is gradually in-
creased in magnitude until the correct asymptotic behavior is
achieved.11 Since the numerical scheme in Ref. 11 does not
appear to converge for q = 1, the weak-interaction solutions
are found by linear extrapolation from solutions computed
for q close to 1 (e.g., q = 0.98 and 0.99).

The streamline equation is found from Eq. (34) as

= Pi (47)

The equilibrium constant Kp for iO2 <^ O is given to within
4% of the values listed in Ref. 17 over the temperature range
1500-4000 K (with K2 and p expressed in atmospheres) by

Kp = 40.68 T/2 exp{-29,685/r} (51)

where T is expressed in degrees Kelvin; the quantity 29,685
is, in degrees Kelvin, the formation enthalpy of O at absolute
zero divided by the universal gas constant. With R = 1 -1- e,
the equation of state remains as written in Eq. (35),16 and the
scaled enthalpy h is approximately related to the temperature
by

3390/T
7 exp(3390/r) - 1

29,685 (52)

where the sensible enthalpy of O2 has been equated with that
of N2, and sensible enthalpies in the term proportional to s
have been neglected in comparison with the formation en-
thalpy of O. Since only air injection is considered, the species
conservation Eq. (44) may be dropped. If dissociated air is
approximated as a binary mixture of "air molecules" and O
atoms in evaluating the viscous fluxes, then treatment of the
transport properties as before leaves the momentum equation
(with q = 1) unchanged, and the energy equation may be
written more conveniently in the form

' = (7=0 -

l/Pr{(K, + (53)
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The proportionality factor KXD for energy transfer by mass
diffusion is given by

r- - 1 Pr „ 29,685
Sc D T

2(1/2 + 29,685/r)
lie + 0.5/(0.2 - e) - 0.5/(1

(54)

where sensible enthalpies have been neglected, and the term
in brackets [similar to Hansen's16 Eq. (43a)] is proportional
to TdY0/dT. The quantity K^ is taken to be unity (considering
the current level of approximation), and Kx, KD are given by
Eqs. (40), (42), respectively, with ab = 16/29, Yb = Y0, and
/ = 1; the Eucken correction Eua for "air molecules" is eval-
uated with cpa = 7/2 + {3390/(2r)}/sinh2{3390/(2r)}, the non-
dimensional specific heat of N2.16 The boundary conditions
remain the same as before, and Eqs. (45) and (53) are solved
following the same numerical procedure as described earlier;
the pressure-gradient term, — {(y^ — l)/yx}(q —-1)RT, is
added to the left-hand side of Eq. (53) for computational
purposes, with q approaching 1. Unlike the ideal-gas case,
the frestream conditions and wedge angle must be specified
before computing a solution since real-gas behavior is explic-
itly dependent on dimensional temperature and pressure.

Results
The location of a streamline in the shock layer can be ex-

pressed by writing the integral of the streamline equation in
three parts:

r«2*/dx[r f«**«d¥ /•* d^y = pocWoo — + p^iin — + pxux — (55)
JVw PU JctVl pU J«2<j,u pU ^. '

where u becomes small as Mf decreases _tpward ^; tyw =
^(M^a2) is the value of ̂  at the wall; and ̂ u is still arbitrary.
Then

p*//M. ̂  p^dW P d^
= — + •— + _ —

JVw pU J^l pU Ja^u pU
(56)

where b = (<rbyb/y»)-l/2. For a«l and ¥M » 1 such that
a2Wu « 1, the first integral approaches A(;c) as define^ by
Eq. (23); the second integral approaches a finite value A(x)
since p —» oo rapidly enough as *P —» o°; and the third integral
approaches zero if also V —» 0. Then the left-hand side ap-
proaches the equivalent body shape y = A(JC), and so Eq.
(56) approaches the first of Eqs. (3). For strong and weak
interactions, respectively, the coefficients in the equivalent

body shapes defined by Eqs. (4) and (9) include contributions
from both the thin layer of blown gas and the viscous free
shear layer:

Af> = A{J) + A$5), A^) = A^ + A$M'} (57)

The pressures are found in terms of these quantities from
Eqs. (5), (27), and (48) for strong interaction, and from Eqs.
(14), (28), and (49) for weak interaction. As indicated by the
notation, the pressures in the blown-gas layer and the viscous
layer are equal to the pressure in the outer inviscid flow eval-
uated at y = A(;c) if x « 1 and at y = 0 if x » 1.

The constants D(s) and D(w) introduced in Eqs. (5) and (14)
are given in Table 1 for yx = 1.4 and, in the case of D(w\
for n = l/2 (fw = const) or n = 2/3 (pw = const) and a
representative value Mxa = 1. The constants D(s} and £KM)

defined for the blown-gas layer in Eqs. (27) and (28) are
functions only of yb\ the values for yb = 7/s and yb = 5/3 found
from the solutions in Eqs. (30) and (32) are shown in Table
2. Some ideal-gas results for the viscous shear layer are listed
in Table 3 for injected gases having a wide range of molecular
weights. The constants Z)(5) and Z)(vv) defined in Eqs. (48) and
(49) are shown, along with the lower limit £, for the similarity
variable in both the strong- and weak-interaction solutions.
The scaled maximum temperature Tmax is seen to be a small
number in each case; to find the actual maximum temperature
in the shear layer, the value of Tmax is to be multiplied by
MiT^. For example, with air injection the maximum in the
strong-interaction region is about 0.03^/^7^, implying that
significant levels of O2 dissociation (which, as noted earlier,
begin when the local temperature is about 2000-2500 K for
p > 0.01-1 arm) will not occur until M^ > 15-17 if T» « 300
K; for helium injection, cooling of the viscous layer increases
this Mach number to M^ ^ 26-29. The ideal-gas results are
understood to be applicable when the Mach number is low
enough (or the shear layer thin enough) that dissociation ef-
fects are not appreciable. A comparison between the ideal-
and real-gas results for the shear layer is presented in Table
4 for the case of air injection on a 6-deg wedge at an altitude
of 30 km with M^ = 15 or 20. It may be seen that the real-
gas analysis yields values for the maximum temperature Tmax
that are lowerjhan the ideal-gas values, as would be expected;
the values of D(w\ which are proportional to the layer thick-
ness, are likewise reduced. For the conditions considered,
however, real-gas effects do not greatly alter the values^of
Z)(H° and £,; for example, there is only a 5% decrease in D(vv)

when Mx = 20. The differences would of course be greater
if higher Mach numbers and temperatures had been consid-
ered.

If the density of the gas at the wall is constant, the pressures
are found, using the definitions of Mw and mavg, in an explicit

Table 1 Shock-layer data

Case D(s) D(w) a

fw
Pw

, = constb

= const0
0.945
0.945

0.5675
0.4150

aEquation (14) with Mxa = I.
bn = 1/2.
cn = 2/3.

Table 2 Data for blown-gas layer3

7/5
5/3

3.501
3.604

Injectant

aEither Tw or pw is a constant.
Equation (30).
Equation (32).

Table 3 Shear-layer dataa

Strong interaction, q = 1/2 Weak interaction, q - 1
£>(vv) -L f .

H2
He
Ne
Air
Ar

7/5
5/3
5/3
7/5
5/3

0.0690
0.1379
0.6897
1.0000
1.3793

0.1103
0.1796
0.3515
0.3669
0.4604

0.9623
1.4262
3.2133
3.8154
4.5670

0.0047
0.0098
0.0258
0.0280
0.0356

0.1259
0.2157
0.4384
0.4331
0.5896

0.6107
0.8101
1.6391
1.9665
2.1818

0.0079
0.0168
0.0437
0.0447
0.0594

= 0.75, Pr = 0.72, and Sc = 0.74.

3.347
3.651
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Table 4 Comparison between ideal- and real-gas results for shear layer3

M,
15b

20C

£><H)

0.4331
0.4331

Ideal

-£,
1.9665
1.9665

Trnax, K

2326
4135

D(H)

0.4099
0.4131

Real

-£,
1.9825
1.9949

^max, K

2082
3662

ayx = 1.4, w = o.75, Pr = 0.72, Sc = 0.74, a = 6 deg, and z = 30 km (Tx = 231.2 K,
atm).
bM2 Tx = 52,020 K and p = 0.07131 atm.

= 92,480 K andp = 0.10991 atm.

= 0.1174

form equivalent to the results of Ref. 10:

DM ft*) i /L\m
nO) — ————— I ————— _————— jZ, I ——— I

*

£><"•>
D1/3
rw

(58)

(59)

In this case, the viscous shear layer for x » 1 has thickness
G(;t1/2) that is of higher order than the blown-layer thickness,
which is 0(jc2/3), and so the shear layer does not affect the
first approximation for the pressure. If, instead, the temper-
ature of the gas at the wall is constant, the thickness of the
viscous and blown layers are of the same order of magnitude
for weak interaction as well as for strong interaction. Now
the pressures are obtained from solution of the cubic equation

(Pi/2)3 _ 3(pi/2) _ 2Q = 0 (60)

where P and Q are defined for strong interaction by

f)(5) 71/2 / r \ 3/4 7 " '̂-^ x 3/2

55>~fUJ ^- = 21 Q (61)

and for weak interaction by

W I I ~ O^-rly) »w=2 Q (62)

The relevant root of the cubic equation is found from

P1'2 = 2 cosc£, cos3<£ = Q , 0 < <£ < ir/2 (63)

P1'2 = 2 cosh*, coshS* = Q (64)

It is seen that P = 3 when Q - 0 and that P increases
monotonically as Q increases. For Q sufficiently large (^16
for less than 10% fractional error), P « (2<2)2/3. This may be
regarded as an inviscid-flow limit, since Q is proportional to
(L/J!Q3/4mavg and LIXr is proportional to the Reynolds number
Re = M^L/iv, thus, for fixed values of the other parameters,
large Q implies that Re and/or the blowing rate mavg are large,
and that the viscous-layer thickness may therefore be ne-
glected.

The pressures for x » 1 and x « 1 have the forms given
by Eqs. (25) and (26), respectively. Because of self-similarity,
these require solving only ordinary differential equations,

whereas a solution for x = 0(1) would be much more difficult
to obtain and is not attempted here. Instead, since the nu-
merical values ofp{s) and p\w) are not greatly different, inter-
polation between the strong- and weak-interaction results would
be expected to provide an approximate representation that is
fairly accurate. The interpolation formula chosen is

P ~ Po = r(x)pPx-lt2 + {1 -

A = cosh-J2

(65)

(66)

For x « 1, r(x) ~ 1 and Eq. (25) for strong interaction is
recovered; for x » 1, r(x) « 0 and Eq. (26) for weak in-
teraction is recovered; and A is defined such that r(x) = l/2
when x = 1. [The definition of r(jc) differs slightly from that
in Ref. 10.] The interpolated pressure is shown by the solid
curves in Fig. 3 for air injection at three different blowing
rates with fw = const. The differences from the asymptotic
solutions derived for x » 1 and x « 1 are seen to remain
small, even if the asymptotic solutions are used (incorrectly)
at* = 1.

The increase AF in the (dimensional) normal force above
the inviscid-flow value is found by integration of Eq. (65):

MM)
71/2 = itan-1{sinh(>l(L/^)"2)}

(67)

(68)

Tw = const., = 1

8.0
— - - - strong interaction
— — weak interaction
—— interpolated

P--PQ

1.00 2.00

Fig. 3 Surface pressure p — p0 vs x for various rates of air injection.
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2.00

1.00-

4.06.0

Fig. 4 Strong-interaction solutions for scaled total displacement
thickness A?', thickness A(/> of blown-gas layer, and the ratio of shear-
layer to total-displacement thickness AfVA^ vs blowing-rate param-
eter mavgf H2(L/Xr)3/4 for air injection with constant wall temperature.

Ajfo/ft.)1/2

M&tfpcoL

Fig. 5 Scaled dimensionless force change
scaled dimensionless mass flow rate m(
for various cases.

sech(As) ds (69)

where n = % if pw is constant and n = l/2 if fw is constant.
When the blowing rate is sufficiently large, for given values

of the other parameters, the viscous-layer thickness is small rela-
tive to the total displacement thickness and can be neglected
in a first approximation. The displacement effect is then caused
entirely by the layer of blown gas, and is described by the
inviscid-flow model of Cole and Aroesty.8 The approach to
this limiting case is illustrated in Fig. 4, where the scaled total-
displacement thickness &{s\ scaled blown-layer thickness A{s),
and the ratio of viscous-layer to total-displacement thickness
AfVA^ are plotted against the scaled blowing rate mavg(L/
Xr)3/4T1^2 for air injection at constant wall_temperature. As
the blowing rate increases, it is seen that A^VAP decreases,
falling to less than 10% for mavg(L/Xr)3/4P^2 ^ 7.2.

It should also be noted in Fig. 4 that the solutions do not
remain valid if mavg(L/Xr)3/4P^2 is taken to be too small. It is
assumed in the present theory that the blowing rate is large
enough to generate an inviscid blown layer with a thickness
at least of the same order of magnitude as that of the viscous
free shear layer, a condition that is not met if mavg(L/
Xr)3/4Ty2-* 0. (A somewhat weaker assumption can be shown
to suffice, namely that the amount of injected mass is large
in comparison with the mass in the viscous layer.) For the
results presented below, the blowing rate has been chosen
arbitrarily to be large enough that A(J) ^ A(5); for air injection
this implies mavg(L/Xr)3/4f^ > 0.34.

In Fig. 5, the scaled change in force kF(LIXr)l/2l
(Mict2pJL) is plotted vs the scaled total mass flow rate m(TJ
T^)l/2(L/Xr)3/4/(Mxa3pxu^L) for various cases, all with con-
stant wall temperature. Two limiting cases are shown for air
as the injectant. For L/Xr —> 0, the strong-interaction limit,
the viscous-layer thickness is so large compared to the wedge
thickness that the magnitude of Mxa is irrelevant, and the
force change depends on p{s\ For LIXr -» °° and either Mxa
—» 0 or Mxa —» <», the force change depends onp{w)\ the larger
force change is found for Mxa -» °° and the smaller for Mxa
—» 0, as might be expected since for Mxa -» 0 the wedge
thickness tends to zero in comparison with the total thickness
of the region of disturbed flow between the wedge surface
and the shock wave.

Also shown in Fig. 5 is a comparison between air and helium
as injectants, for LIXr = I and M^a = 1, again for fw =
const. As in the inviscid-flow case considered by Cole and
Aroesty,8 it is seen that strong blowing of a gas lighter than

air, in this case helium, yields higher induced surface pressures
and thus larger force changes for a fixed mass flow than when
air (or a gas heavier than air) is the injectant. Interestingly,
this trend appears to become reversed when the strength of
the blowing decreases. Introduction of a light gas increases
the specific heat for the mixture and thus cools the viscous
layer, as indicated by the maximum temperatures listed in
Table 3. The average density is therefore increased and the
transport coefficients are decreased. As a result, the thickness
of the viscous layer is reduced and thus the force changes are
also reduced. The curves for air and helium in Fig. 5 would
therefore be expected to cross if they were extended to smaller
values of mass flow.

To establish numerical orders of magnitude for the change
in force and the associated mass flow rate of the injected gas,
dimensional values of AF and m for Tw — const have been
computed for a range of parameter values and for various
injectants, using the properties of the standard atmosphere.
The solutions depend on several parameters that may be di-
vided conveniently into three groups. Parameters related to
flight regime are M*, and altitude z; those characterizing wedge
geometry are a and L; and those representing properties of
the injected mass are m, Tw, ab, and yb, (The solutions also
depend on o>, the exponent in the viscosity law, taken here
as 3/4.) Air injection on a wedge having length L = 3 m and
half-angle a = 6 deg, for Mx = 15 and z = 30 km, is selected
as a baseline case in each part of Fig. 6, where Mx and z (Fig.
6a), a and L (Fig. 6b), and injectant type (Fig. 6c) have been
varied. Note that large changes in force per unit span of order
1000 N/m (68.5 lb/ft) are achieved with seemingly moderate
injection rates per unit span of order 0.1 kg/m-s (0.067 Ibm/
ft-s).

In Fig. 6a, it is seen that, for given injectant rates, the force
changes increase with flight Mach number at a given altitude
and decrease with increasing altitude at a given flight Mach
number, as expected. Also presented is a comparison between
the ideal-gas and real-gas results for Mach 15 and 20, where
differences between the solutions are seen to be small. (Since
the real-gas analysis was for weak interaction only, the real-
gas curves were computed using the ideal-gas results for the
strong-interaction region, which extends over a negligibly small
portion of the wedge for the conditions considered.) As shown
in Fig. 6b, at a given flight Mach number and altitude, the
force changes increase with wedge angle for a given length
and increase with length for a given wedge angle. Finally, in
Fig. 6c, it is shown that the force change increases with de-
creasing molecular weight of the injected gas, at higher in-
jectant mass flow rates. At lower injection rates, the opposite
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effect occurs and the crossover of the curves anticipated above
is seen for argon, air, and neon. It is also observed that the
crossover occurs at lower injectant rates as the molecular
weight of injectant decreases. For all of the calculations in
Fig. 6, the wall temperature Tw is constant.

8000.'
(M00,z[fem]) = (15, (20,30)

AF [N/m]

4000.-

0.

a = 6 deg, L = 3 m

0.00 0.40
m [kg/sec - m]

(15,30)

(10,30)
(15,40)

0.80

Fig. 6a Force change AF vs mass flow rate m for various flight
regimes. (Dashed lines are real-gas results.)

8000.-

AF [N/m]

4000.-

0.-

Air inj., Tw = 3QQK
MOO = 15, z = 30 km

0.00 0.40
?7i [kg/sec - m]

(12,3)
(6,3)
(3,3)

(6,1.5)

0.80

Fig. 6b Force change AF vs mass flow rate m for various wedge
geometries.

8000.-
injectant: H^, He

AF [N/m]

4000.-

0.

Ne

Air
Ar

= 15, z = 30 km
a = 6 degy L = 3 m

0.00 0.800.40
rh [kg/sec - m]

Fig. 6c Force change AF vs mass flow rate m for various injectants.

If a simple isothermal model for the atmosphere is adopted
and the weak dependence on yb is neglected, then the force
change for injection with completely inviscid flow over a wedge
with predominantly strong or weak interaction (for M^a —»
oo), and constant wall temperature, may be written in the form

AF = const (Ml e~zlH Lm2TJah)l/3 (70)

where H is the atmospheric scale height. This simple expres-
sion shows the trends indicated in Fig. 6, although not the
proper quantitative values. For a fixed mass rate of injected
flow, it is seen that AF increases with increasing M| e~z/H, a
factor proportional to the freestream dynamic pressure, and
also increases as the wedge length L increases; the depend-
ence on L implies that it would be most efficient to distribute
a given amount of blown mass over a large surface area.
Increasing the ratio of the injectant temperature Tw to its
molecular mass will cause greater displacement of the outer
flow and thereby also increase the force change. The de-
pendence on wedge angle a, not present in the above expres-
sion, is seen in Fig. 6b to be small for the conditions considered
there.

Conclusions
From the results of this analysis, it is concluded that rela-

tively large pressure forces can be achieved with relatively
small amounts of gas injected at the surface of a vehicle trav-
eling at hypersonic speeds. Hence, it appears that boundary-
layer blowing is a possible alternative to the use of moveable
surfaces and/or vectored thrust for control of such a vehicle
in the atmosphere, and should be investigated further. Al-
though only the very simple case of two-dimensional wedge
flow with a power-law distribution of injected mass is consid-
ered in this study, the magnitudes of the surface forces found
for relatively small mass flow rates of the blown gas indicate
that it is worthwhile to analyze more complex blowing patterns
with various injectant gases, in order to obtain desired force
distributions, and finally to consider more complex geome-
tries. A numerical code presently under development will be
used to accomplish the first of the above extensions to this
work.
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