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Abstract 
A new technique for the time-accurate numerical simulation 
of Euler flows around moving and deforming bodies in 2-D is 
presented. The grid used is of the stationary, Cartesian, un- 
structured, Quadtree-based type. The use of a stationary grid 
is made possible by allowing bodies to move across grid-lines. 
Use is made of the property that the cells in the immediate 
vicinity of a moving or stationary body can always be merged 
together to form combined cells that are topologically invari- 
ant over a motion step. Without degrading the global order of 
accuracy, this merging eliminates the CFL number constraint 
imposed by cut cells of small area, and eliminates the need 
for special handling of cells that, due to the motion of bod- 
ies across grid-lines, are uncovered or swept-over. The flow 
solver used is based on a finite-volume conservative formu- 
lation, and Roe's approximate-Riemann-solver is used for the 
computation of interface fluxes. 1-exact spatial reconstruction 
is used in conjunction with a predictor-corrector explicit time- 
marching scheme to obtain spatial and temporal second-order 
accuracies. Gradient limiting is used to enforce monotonicity- 
preservation near discontinuit,ies. In order to resolve flow fea- 
tures economically and controllably the grid is adaptable to 
both the geometry and and the flow solution. The computa- 
tional resources required by this technique are shown to be 
typical of unstructured-grid implementations. Two computa- 
tions are presented to demonstrate the capabilities and valid- 
ity of the technique. 

1 Introduction and Motivation 

1.1 A Perspective 

In [l] we described a geometry-adaptive, solution- 
a.daptive technique for solving the  steady Euler equations 
for flows around fixed bodies of (with minor restrictions) 
arbitrary geometry. In [2] we described a n  extension of 
tha t  method t o  the  unstea.dy Euler equations, still for 
fixed bodies. This  paper describes an  extension of the  
method t o  the  solution of the  unsteady Euler equations 
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with arbitrarily moving and  deforming bodies of arbitrary 
geometry. 

1.2 Background, And The Case For Grid- 
Line Crossing 

Algorithm development for the  solution of flows around 
moving and  deforming bodies has received much atten- 
tion lately. Practical applications are numerous and im- 
portant .  They include the  improved simulation of fluid- 
structure interactions (as in aeroelasticity), the  simula- 
tion of separation and approach problems, and the full 
(as opposed t o  t h e  component-by-component) simulation 
of problems involving continuous periodic relative motion, 
as in rotor-stator and rotorcraft flows. 

Most of the  methods developed so  far, as in 
[3], for example, resolve the  geometric-complexity issue 
satisfactorily, typically with unstructured-grid or block- 
structured-grid techniques. Except in a few cases, how- 
ever, these methods have a notable geometric limitation: 
the  scale of motion (or deformation) of bodies must be 
small in comparison with the  scales of body-to-body and 
body-to-outer-grid-boundary separation. Otherwise, rel- 
ative motion, particularly of the  shear type, can distort 
the  grid severely enough t o  impair flow-solver perfor- 
mance. T h e  origin of this limitation can be  traced t o  the 
use of grids having a fixed topology between boundaries. 

Several strategies have been suggested or at- 
tempted t o  circumvent or  counter this  limitation. Re- 
lying on grid redistribution t o  relieve unwanted features 
fails in all but  the  least severe grid deformations. In ad- 
dition, the  use of a moving grid suffers from the  inherent 
shortcomings tha t  at tend continuous global dependence 
of grid point positions on body positions (primarily up- 
dating of the  geometric d a t a  for the  entire grid after ev- 
ery motion step.) Use of local insertion and deletion in 
structured or block-structured grids, a s  introduced in [4] 
can effectively remove unwanted grid distortions but  has 
the  disadvantage of possibly leading t o  grid modification 
in contra-indication t o  the  flow-features. This  would de- 
feat t he  essential purpose of"%aaptivity. Therefore, the 
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technique does not hold promise for extension to  the gen- 
eral moving body problem. The use of overlaying grids, 
as in [ 5 ] ,  for example, suffers from the usual penalties 
that attend duplication of data and the need for continu- 
ous conservation-violating data interpolation across grid 
boundaries. The local-remeshing strategy employed in, 
for example, [6], [7], and [8] is perhaps the wisest in that it 
directly tackles the cause of the problem. Moreover, since 
the remeshing is performed only around bodies, economy 
is inbuilt into the technique. Perhaps the major disad- 
vantages of this class of technique is its use of a moving 
grid and the difficulty of correcting its violation of con- 
servation. 

Allowing bodies to  move across grid-lines also at- 
tacks the problem a t  its root by decoupling grid motion 
from body motion. Consequently, the density distribution 
of the grid will, as it should, only have locallized depen- 
dence on the surface geometry and positions of bodies. 
Grid modification for geometric changes still requires up- 
dating the grid data after every motion step, but only 
for cells in the immediate vicinity of bodies. In addition, 
since body and grid motions are decoupled, the use of a 
stationary grid, and the economic advantages therefrom, 
become possible. These incentives justify further explo- 
ration of this approach. 

2 Algorit hrn Description 

2.1 Design Strategy 

Finite-volume-based, explicit flow-solvers, such as Roe's 
approximate-Riemann-solver, have little dependence on 
the geometric form of the computational cells. In addi- 
tion, they employ only local operat,ors. While the flow- 
solver-associated tasks of reconstruction and gradient- 
limiting significantly increase the required amount of 
connectivity-information retrieval, it still seems advisable 
to  allow the choice of the data-structural and geometric 
form of the grid to  be dictated primarily by geometric 
and implementation-efficiency (i.e. computational effort 
and storage) requirements. 

Regarding choices for the data-structural form of 
the grid, the geometric and implementation-efficiency re- 
quirements have traditionally been viewed as favoring op- 
posite strategies. On the one hand, it is becoming gener- 
ally accepted that complex geometries are better negoti- 
ated by unstructured grids, or, in the least, by grids that 
are not fully-structured. On the other, unstructured grids 
have lower implementational efficiency. While the geo- 
metric difficulties in grid generation are proving largely 
insurmountable with fully-structured grid techniques, the 
implementation-efficiency issue for unstructured grids is 
an area in which much progress can be made by good 
design and new ideas. 

These considerations determine the contemporary 
framework within which subsequent choices should be 
made. Within that framework, our final objective gives 
the arbitrary-geometry capability precedence over the 
implementation- efficiency criterion and so favors the 
use of an unstructured grid. The requirements for a 
geometry-adaptive, flow-adaptive grid imply a continu- 
ously changing grid. Thus, one performance criterion for 
the grid data-structure must be its modification speed. 
The other performance criterion is the memory require- 
ments, and hence the connectivity-information require- 
ments. The design task can therefore be reduced to the 
problem of designing a data-structure which jointly sat- 
isfies these two criteria as far as possible. 

2.2 Grid Data-Structure and Grid Gen- 
eration 

2.2.1 The Basic  Q u a d t r e e  Da ta -S t ruc tu re  

The data-structural form of the grid is Quadtree-based, 
as briefly described in, for example, [I]. The Quadtree is 
a tree type data-structure with a branching ratio of four: 
except for the leaf (or ultimate) nodes every node is linked 
to four other nodes, which are viewable as hierchically 
subordinate. To facilitate tree traversal and connectivity- 
information retrieval, it is common to also link each node 
to  its hierchical superior. In that case each interior node 
will have five links, while the root node will have only 
four, and leaf nodes only one link. This tree structure 
can be turned into a grid data-structure if, in addition 
to  the connectivity data bourne by the nodes, additional 
data is attached to them. 

2.2.2 Represen t a t i on  Of D a t a  I n  A Q u a d t r e e  
A n d  Efficiency Issues 

In the Quadtree representation of a 2-D grid, the physi- 
cal space, typically a polygonal region is represented by 
the root node. The physical space is divided into four 
pairwise disjoint areas and each is represented by one of 
the four nodes immediately subordinate to  the root node. 
Each of the quadrants of the original space can now be 
regarded as a starting point for further subdivision, with 
the node representing that quadrant being considered as 
the local root of the descendant tree. Subdivision can 
now proceed recursively to  obtain any refinement level 
at any desired location in the original space. If the tree 
is required to  represent a grid with varying levels of re- 
finement, then the minimal tree will have branches that 
terminate a t  different levels. 

For each node of the tree sufficient geometric and 
connectivity data must be stored to  fully define the spatial 
region represented by the node. T k  efficiency advantages 
of the Quadtree structure are best realized, however, if the 



original space is a square and all subdivisions results only 
in squares. In that case, for example, no coordinate or 
geometric data whatsoever needs to  be stored except for 
the root node. The geometric properties of any quadrant 
would be deducible from the root's and the position in 
the tree of the quadrant's node. The position in the tree 
of any node can be retrieved by analyzing the path of an 
upward-traversal of the tree all the way to the root. This 
compactness is a propert,y that not even structured body- 
fitted grids can enjoy, since these (except for simple ge- 
ometries) must have areas or other geometric data stored. 
Morever, for such a choice of geometry (i.e. squares) it 
is possible to  choose any level of intermediate (internal) 
node at which to  store geometric data. Such a choice of 
level corresponds to  a choice, regarding the computation 
of geometric data,  between the extremes of: 

1. maximum effort and minimum storage, and, 

2. minimum storage and maximum effort. 

The nodes of the tree can be used to represent any 
required attribute. Particularly, the gasdynamic proper- 
ties on which the flow-solver operates can be stored as 
for the geometric attributes. However, in this case, the 
attribute need only be assigned at the leafs since only the 
leafs of the tree are used to represent computational cells. 

The resulting structure is one that contains all the 
required grid data at the leafs with the remaining tree 
structure used only for connectivity-information retrieval. 
The exponential nature of this data-structure makes for 
efficient storage. Since the interior nodes are only used for 
connectivity-information retrieval, they may be regarded 
as a memory overhead. The interior-to-leaf node ratio, 
v ,  may be deduced by observing that whenever a node is 
subdivided the number of interior nodes is increased by 1 
while the number of leaf nodes is increased by 3. After, 
say, m subdivision operations starting with the root node, 
the total number of interior nodes will be (0 + m) while 
the number of leaf nodes will be (1 + 3m). Therefore, 
Vm E N, 

This result holds regardless of the location of the subdi- 
vision operations, i.e., it holds for any grid of any density 
distribution. 

The Quadtree is also a very efficient structure in 
terms of connectivity-information retrieval. In particu- 
lar, the expected value for the number of tree ascents and 
descents required for a face-neighbor retrieval is upper- 
bounded by 2. The corresponding figure for vertex- 
neighbor retrieval is upper-bounded by 813. 

In both cases the retrieval procedure consists of as- 
cending the tree from the required node to  a node that 
satisfies certain conditions and then descending from the 
latter down a path (which is some mirror image of the 
ascent path) to  the sought neighbor. These ascent and 

descent operations are equivalent to  memory access oper- 
ations, but some computation is necessary to determine 
the paths. It turns out that the access times are theoret- 
ically of the same order as the array-element access times 
(which require integer arithmetic computation and mem- 
ory access operations too) for structured grids. Unlike 
in the structured-grid case, however, these operations do 
not vectorize. 

2.2.3 The Grid Generation Algorithm 

The stepwise basic grid generation follows this procedure 
for fixed bodies: 

1. Subdivide the physical domain to  a prespecified level 
(the back-ground refinement level). 

2. Examine the resulting leafs for intersection with any 
bodies in the grid and recursively subdivide each cell 
that is neither interior nor exterior until one of three 
conditions is met: 

(a) The resulting leaf cell is exterior to  all bodies. 

(b) The resulting leaf cell is interior to  a body. 

(c) The resulting leaf cell has reached a prespec- 
ified maximum depth (the intersection refine- 
ment level) in the tree. 

3. Recursively subdivide or coarsen exterior cells ac- 
cording to the current flow-variable gradients. This 
step may be considered part of the solution- 
adaptivity. 

The actual procedure differs slightly from that de- 
scribed above. For example, an important deviation from 
the Quadtree data-structure occurs when interior cells 
have their representing nodes deleted from the tree (to 
save memory). Another difference from the above pro- 
cedure is that any subdivision is not carried out if it vi- 
olates a neighborhood refinement-level difference of one. 
Instead, the would-be violated node is recursively divided 
first. This ensures that the grid maintains three desirable 
properties: one topological, one geometric, and one im- 
plementational. These, respectively, are: 

1. The number of neighborhood patterns remains small 
and hence neighbor accessing remains fast and rela- 
tively logic-free. 

2. The grid area variation remains boundedly smooth 
throughout (i.e. the area ratio between any two 
neighbors is no less than f rac l4  and no more than 

4.) 

3. The global variations in the grid density maintain 
some local dependence and hence the motion of a 
body across a grid does not result in refinements and 
coarsenings that t e l e scop~c ros s  several levels of the 
tree. 



Examples of the resulting geometric forms of the 
grid can be seen in Figures (3)-(10). 

For moving bodies, the procedure is expanded as 
follows: 

1. Generate the grid for the current body positions. 

2. Coarsen the grid (by one level) only around the bod- 
ies. 

3.  Move the points defining the bodies in accordance 
with the required trajectories over the coarsened grid 
and hence obtain the new body shapes. 

4. Rebuild the grid down to the required intersection 
refinement level around the bodies, recomputing all 
intersection points and updating the local geometric 
variables. 

This procedure makes its strengths and weaknesses 
self-evident. It is simple and general, making no dis- 
tinction between body deformation and gross motion. 
It allows the grid to  remain fixed and hence makes for 
more economical flow-solver and grid-related computa- 
tions. Only the grid in the immediate vicinity of a mov- 
ing body is directly affected, leaving the propagation of 
the local changes to  be transmitted to the remainder of 
the grid by the one-level-refinement-difference rule; no 
separa.te checking for global suitability and no global- 
modification operation are required. This contrasts with, 
for example, advancing-front grid generation. The major 
detraction of the strategy is the necessity to  recompute all 
intersection points and geometric variables around bodies 
after each motion step. 

2.3 Representation And Definition Of 
Bodies 

The most general and challenging input for geometric def- 
inition of bodies for CFD purposes is the one based on 
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a set of points on the body surfaces. This is the case in 
both 2- and 3-D. If bodies are given by a set of surface 
points, parametric cubic spline interpolation is used to  
reconstruct the surface initially, and, after each motion 
step. Thus deformation and gross motion are made indis- 
tinguishable. If bodies are given by sets of equations, then 
these equations are used instead of the spline equations 
to compute any required intersections. 

2.4 Motion Control Of Bodies 

Pointwise displacement and velocity control options are 
available for independent control of the trajectory of each 

control point of each body. This gives total control over 
the gross motion and the deformation of bodies. The mo- 
tion of bodies may be coupled to  the pressure distribution 
on the body surfaces for fluid-structure interaction prob- 
lems provided the density distribution or other equivalent 
data is given for the bodies. 

2.5 Flow-Solver 

2.5.1 General 

The flow solver is based on a finite-volume discretization 
of the unsteady Euler System. In conservation form, the 
Euler System for a time-varying control volume is given 
by 

where V is the volume of the space, @, is the flux ten- 
sor, appropriately modified to  account for control-surface 
velocities, and 6 the state-vector. 

Since the volumes of the boundary cells will in gen- 
eral vary with body motion, the discretization must be ap- 
plied t o  the true conserved variables (not their volumetric 
densities.) The discretization of the above equation for 
deforming volumes may be expressed in the form 

faces  

- 
where en is an appropriate time-average of the flux tensor 
over the deforming area. 

The interface fluxes are computed in accordance 
with Roe's approximate-Riemann-solver. In order to  ob- 
tain second-order spatial accuracy away from discontinu- 
ities, 1-exact reconstruction is carried out within cells. 
The reconstruction procedure employs least-squares min- 
imization t o  obtain the 1-exact cell-centroidal estimates 
of the reconstructed variable gradients. The variables 
chosen for reconstruction in the computations presented 
herein are the primitive variables, namely p, u,  v , p .  

Second-order time-accuracy is obtained by the 
use of Heun's method, which may be interpreted as a 
predictor-corrector method. The formulation must be ap- 
plied to  the conserved variables and so takes the form: 



2.5.2 Ini t ia l  Condi t ions  A n d  Wall  A n d  O t h e r  
B o u n d a r y  Condi t ions  

Spatially second-order boundary conditions are applied 
at the moving solid boundaries. This is done by defining 
the flux vector at a solid boundary (w) by direct use 
of: 

where p is the extrapolated value of the pressure 
a t  the boundary's mid-point as determined from the re- 
construction. It should be noted that such an expression 
for boundary flux computation is quite desirable since it 
only involves one gasdynamic unknown; the remaining 
unlrnowns are all geometric variables. 

The conditions at the outer boundaries of the grid 
may be chosen arbitrarily, but special precautions must 
be taken to  avoid the unstable interaction, if applicable, of 
the reconstruction procedure with von Neumann bound- 
ary conditions. The initial conditions may be arbitrarily 
specified. 

2.6 Cell Merging 

2.6.1 T h e  Small-Cell  P r o b l e m  

Each body cuts out its boundary from the Cartesian cells 
it intersects. Invariably, some cut cells will have smaller 
areas than others. Particularly, the area ratio for the 
smallest cut cell to the smallest uncut cell in the grid 
may be arbitrarily close to zero. Meanwhile, the CFL 
stability constraint 

applies to all cells. It turns out that variations in gasdy- 
namic states are far outweighed by variations in areas and 
consequently the smaller-area cells are always the ones 
that determine the global time-step, and hence the overall 
pace of the computation for a Quadtree-based Cartesian 
grid. This could imply a code several orders of magnitude 
slower than a code based on the smallest uncut-cell area. 

It  must be noted that cut cells do not contribute 
to the global accuracy of the solution. On the contrary, 
even if permitted to pace the computation, these cells 
are invariably numerically decoupled from the rest of 
the flow field. This is a finite-arithmetic consequence of 
their residual (a small quantity) being computed from the 
fluxes (near-cancelling relatively much larger quantities.) 

The small-cell problem is one of the major incon- 
veniences of using grids with cut cells. 

2.6.2 T h e  Vanishing- A n d  T h e  Newborn-Cell 
Problems,  A n d  M o r e  General ly T h e  
Moving-Body P r o b l e m  

Examine cell A in Figure (1). As indicated therein, the 
motion increment of the body will sweep across the ex- 
ternal part of the cell. The usual finite-volume procedure 
cannot be applied to this cell over the given motion step: 
there is no guarantee that the final conserved-variable 
vector in the cell will vanish. If this does not happen, 
the implication is that mass, momentum, or energy has 
entered through the body's surface, or, even worse that 
the cell has negative mass or energy. One possibility is to 
compute the time at which the state-vector vanishes, and 
then consider this to be the instant at which the cell is 
completely swept out, regardless of whether this coincides 
with the geometric crossing. This approach is not promis- 
ing. For one it has the defect of requiring special checking 
for cells experiencing this phenomenon and then special 
handling. Moreover, all the surrounding cells will require 
individual computations over subintervals of the global 
time-step in order to preserve conservation in space. 

Now examine cell B. The motion increment ex- 
poses part of this previously interior cell, however, no 
well-founded flux computation across the interface is pos- 
sible since no state-vector is available on which to base 
the computations. In addition, it would be necessary to 
compute the exposure time of this cell from the motion of 
the body and to break up the gasdynamic computations 
in the surrounding cells into each subinterval over which 
the topology of each cell is invariant. Other than the 
fact that this involves expensive geometric computations, 
such an approach again introduces exceptional handling 
for exceptional cells with all the attendant penalties. 

As Figure (1) shows, throughout the vicinity of the 
body there will in general be cells with large variations 
in area, as well as cells with small initial or final areas or 
both. These are all undesirable phenomena. 

A solution to  all the problems outlined above can 
be achieved simultaneously by cell-merging. 

2.6.3 Basic Concept  A n d  S o m e  Implementa t ion  
Cons idera t ions  

The basic idea of merging is the combination of adjoining 
cells so that any boundaries between them are ignored 
for discretization purposes, thus forming new, combined, 
larger cells. 

Under certain restrictions on the curvature of the 
surface of a body (relative to  the dimensions of the in- 
tersected cells) and on the body's minimum width, the 
following can be proved: 

All the cells intersected by the surface can be com- 
bined with other cells lying within an appropriate enve- 
lope around the surface to  f o r 5  new cells such that the 
following criteria are simultaneously satisfied: 



Figure 1: The Vanishing- and Newborn-Cell Problems 

Figure 2: The Data-structural Implementation of Merg- 
ing 

1. Both the initial and final areas of combined cells are 
no smaller than the smallest uncut cell in the grid 
or some (less severe) fraction thereof. Note that this 
criterion constrains, indirectly, the proportional atea 
change within a combined cell. 

2. No corner vertex of a combined cell is crossed by the 
surface during the motion step, if there is motion of 
the surface. 

3. No combined cell is formed from the merging of more 
than eight cells. 

The first criterion alone eliminates the small cell 
problem for both moving and stationary boundaries. For 
a moving boundary, the second criterion implies that 
the combined cells have an invariant intersection topol- 
ogy over the given motion step. Thus, the criterion en- 
sures that combined cells have their intersection status 
preserved: cut cells remain cut, interior cells remain in- 
terior, and exterior cells remain exterior. consequently, 
both the vanishing and newborn-cell problems are elimi- 
nated. These two criteria are essential for the viability of 
merging. The second criterion has an important conse- 
quence for the temporal order of accuracy of the overall 
technique. It can be shown that length-averaging of the 
interface fluxes for cells with varying area does not, of it- 
self, lead to  loss of second-order time-accuracy in equation 
(2) if this criterion is satisfied. Finally, the last criterion, 
while not affecting the order of accuracy, places a limit 
on the loss of resolution due to  merging. 

As an example, referring to Figure 1, the cells 
marked A and B will be merged with the cells marked 
X and Y respectively, eliminating a vanishing-cell and 
newborn-cell problem respectively. 

From the data-structural point of view, merging 
cells is very elegant and simple. Before a merging op- 
eration, each participating cell will have its individual 
gasdynamic and geometric attributes. A single new set 
of gasdynamic and geometric attributes is created for the 
merged group and has its variables computed from the in- 
dividual attributes. The new set is then assigned to each 
participating cell. The individual attributes are there- 
after discarded (to release memory for future use.) In 
computing the group attribute values, adherence to  con- 
servation is the only restriction. For example, the group 
state-vector must be obtained by volume-averaging of the 
participants' state-vectors. 

Figure (2) shows how the merging data-structure 
is attached to the Quadtree backbone. The particular fig- 
ure shown demonstrates how merged cells (which must be 
neighbors) could lie far apart in terms of the tree struc- 
ture. 

In the actual implementation, all cells in the grid 
are merged into merging groups (which will have only one 
cell for exterior cells.) This arrangement gives a uniform 
representation that allows mergingto remain invisible to 
most flow-solver operators. 



2.6.4 T h e  M e r g i n g  A l g o r i t h m  

Given that  merging will solve all the  problems listed 
above by combining cells together till all undesirable fea- 
tures are eliminated, the  remaining problem can now be 
reduced to identifying the cells tha t  are to  be merged to- 
gether as efficiently as possible. The  algorithm developed 
for this purpose follows the following procedure: 

1. For eac l~  body in the  grid, a suitable initiation point 
for merging is found. Start ing a t  tha t  point, the sur- 
face is traversed in one direction visiting each cut cell 
along the way. For each such cell, the intersection 
pattern of the grid lines in the  neighborhood is ana- 
lyzed. Depending on the outcome, cells are merged 
into groups of up  to  eight cells. The  merged cells 
a t  the end of this step satisfy the second and third 
criteria above. 

2. For each merged group the initial and final areas are 
co~npu ted .  If the first merging criterion fails, ad- 
ditional unmerged cells chosen along a direction as 
perpendicular as possibIe to  the  local body surface 
are merged with the group. At the end of this step 
all merged groups satisfy all three criteria. 

3. All remaining unmerged cells in the  grid are self- 
merged. This is done for the reason explained above. 
At the end of this procedure all cells in the  grid sat- 
isfy all three merging criteria and the data-structure 
is ready for the gasdynamic operators. 

After the merging is coniplete and the gasdynamic states 
hake heen updated and the bodies have moved through 
their latest motion increments, the cells around the bodies 
are unmerged. This  is the  reverse operation of merging. 
Thus  cells must be reidentified as separate entities and 
their individual state-vectors must be recomputed from 
the merged group state-vectors and the  final areas of the  
i n d i ~ i d u a l  cells. T h e  loss of resolution resulting f r o ~ n  this 
operation when applied to  groups of more than one cell is 
~n~rlimizetl  by use of the  gradients already computed for 
the merged cells. Clearly, interior cells must be assigned 
zelo s ta te  vectors, in upholdance of conservation. 

Unrnerging must be carried out because the crite- 
rion of topological invariance for merged cells has a life- 
cycle of only one motion step in general; the  intersection 
pattern around any moving body must be reanalyzed to  
tlcterinine the  new merging groups. 

2 . G . G  A n  A c c u r a c y  C o n s i d e r a t i o n  

ITnl ing est al~lished that  coarsening, whether due t o  di- 
rect coarsening or to  merging, does not change the or- 
der of accuracy, the  effect of merging on accuracy can 
be loolied a t  from anotlier point of view. Since the ul- 
t imate purpose of grid adaptation is economic optimiza- 

tion, it is more meaningful to  express the  loss of resolu- 
tion in terms of a cost-benefit analysis. In tha t  context, 
i t  can be stated tha t  if the  resolution level a t  the body 
surfaces corresponds t o  what is available a t  the penulti- 
ma te  nodes, the  extra refinement level (which typically 
accounts for a small proportion of the  total number of 
cells in the grid) can be viewed as an  extra overhead of 
sacrificial cells required to  make the  algorithm work. In 
actuality, the  resolution is higher than  tha t  afforded by 
the penultimate nodes since the  gradient information a t  
the  leafs is averaged and stored a t  the  penultimate nodes 
and subsequently used in the  prolongation t o  the rebuilt 
leafs. 

2.6.7 A n  U n d e s i r a b l e  C o n s t r a i n t  

The  current merging algorithm indirectly introduces a re- 
striction on the  motion-step of the  body: the merging 
algorithm requires the  cells t o  be highly refined around 
sharp corners and a t  the  same t ime requires the  motion 
step magnitude t o  be less than the  smallest uncut-cell 
length. These two requirements together imply that  the  
permissible motion step for a solid body must decrease 
with the smallest radius of curvature on the  body. This 
constraint can be eliminated. 

2.7 Solution Adaptat ion 

As explained previously, this procedure amounts to  refin- 
ing or coarsening cells in accordance with the resolution 
sought a t  the cell's location. 

Much freedom exists in choosing a criterion to  
quantify the  desired level of resolution. Unfortunately, 
however, only the  vaguest guidelines, e.g., the concept 
of equidistribution, have been developed to  guide such 
choice. In  [I] a particular choice was described, and in 
[2] another. Currently, the  code is using a criterion based 
on a weighted average of the  velocity divergence and the 
magnitude of the  velocity-curI. T h e  weights may be var- 
ied to  impart  different relative sensitivities t o  shear- and 
shock- type features. 

3 Computational Requirements 

T h e  storage requirements of the  technique with second- 
order accuracy are approximately thirty words per cell 
for moving bodies and twenty words per cell for station- 
ary bodie;. These requirements can be reduced to  about 
haIf the  quoted values but only a t  the  expense of pro- 
cessing time. There are additional storage requirements, 
most notably for postprocessing. T h e  maximum storage 
requirement a t  any t ime during a run does not exceed 
thirty-five words (i.e. 140 b y t e s h e r  cell for moving bod- 
ies. 



The total processing time with second-order ac- 
curacy is currently about three milliseconds per cell per 
iteration on a DECstation 5000/200. However, the code 
is not configured for maximum speed. For the examples 
shown herein more than 70% of the computational ef- 
fort was consumed by the flow-solver, while the geometric 
computations' share was about 15% during body motion. 
The remainder is consumed mainly in the data-structural 
modifications and grid adaptation. Since geometric com- 
putations are only necessary for intersected cells, the rel- 
ative effort required for geometry-related operations de- 
creases with the ratio of intersected to unintersected cells. 

over, unlike Delaunay triangulation, the technique pre- 
sented here generalizes to 3-D without the introduction 
of additional grid-generation difficulties. 

Regarding extension to  unsteady viscous flows, the 
technique promises some potential but many important 
issues await more study, particularly with regard to  the ef- 
ficient handling of length scale disparities of flow-features 
in a Quadtree-based data-structure. 
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4 Demonstrative Results 

The attached figures show a sequence of successive solu- 
tions to two unsteady problems. In the first, an ellipse 
instantaneously attains a constant horizontal speed, con- 
tracts as it passes between two stationary ellipses, then 
expands to its original shape as it leaves the ellipses. The 
example demonstrates that the technique can be used to 
simulate an approach problem, a separation problem, and 
a problem in which the dominant relative motion across 
a small separation is of the shear type. 

In the second problem, a cylinder imparts, in rapid 
succession, by purely radial deformation, a compressive 
and an expansive wave to the surrounding gas. This ex- 
ample was chosen to give the reader a graphical sense of 
the extent to  which the strong directional allignment of a 
Cartesian grid distorts an axisymmetric problem. 

5 Concluding Remarks 

\Ire have presented an approach for the simulation of Eu- 
ler flows around arbitrarily moving and deforming bodies 
of arbitrary geometry. The approach differs from other 
approaches developed so far primarily in that a station- 
ary grid is used and body motion across grid lines is al- 
lowed. We have shown how grid-line crossing in conjunc- 
tion with a Quadtree-based Cartesian grid can eliminate 
the grid distortion problem simply and neatly and can in- 
trinsically ensure the global smoothness of the grid. We 
have shown how the flow-solver-related problems of small 
cells, vanishing cells and swept-over cells arising from cell 
cutting and grid-line crossing can be solved by exploiting 
the flexibility of the data-structure and without sacrific- 
ing the order of accuracy, as verified in [9]. Finally, we 
have demonstrated that the technique has computational 
requirements consistent with an unstructured-grid tech- 
nique. 

From the long-term perspective, the technique has 
demonstrated that Cart,esian grids can be used t,o solve 
the moving and deforming body problem in 2-D. hlore- 
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Pressure Line Contours. 

Figure 3: Initial Positions and Geometry. 

Pressure Line Contours. 
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Figure 4: Final Positions and Geometry. 
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Figure 5: After 100 Time Units 
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Figure 6: After 200 Time Units 
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Figure 7: After 300 Time Units 
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Figure 8: After 650 Time Units 
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Figure 9: After 50 Time Units. 
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Figure 10: After 150 Time Units. 


