
A Simulation Technique for 2-D Unsteady Inviscid Flows
Around Arbitrarily Moving and Deforming Bodies of

Arbitrary Geometry

Sami A Bayyuk* and Kenneth G Powellt and Bram van LeerS
Department of Aerospace Engineering,

The University of Michigan,
Ann Arbor, MI 48109-2140

Abstract
A new technique for the time-accurate numerical simulation
of Euler flows around moving and deforming bodies in 2-D is
presented. The grid used is of the stationary, Cartesian, un-
structured, Quadtree-based type. The use of a stationary grid
is made possible by allowing bodies to move across grid-lines.
Use is made of the property that the cells in the immediate
vicinity of a moving or stationary body can always be merged
together to form combined cells that are topologically invari-
ant over a motion step. Without degrading the global order of
accuracy, this merging eliminates the CFL number constraint
imposed by cut cells of small area, and eliminates the need
for special handling of cells that, due to the motion of bod-
ies across grid-lines, are uncovered or swept-over. The flow
solver used is based on a finite-volume conservative formu-
lation, and Roe's approximate-Riemann-solver is used for the
computation of interface fluxes. 1-exact spatial reconstruction
is used in conjunction with a predictor-corrector explicit time-
marching scheme to obtain spatial and temporal second-order
accuracies. Gradient limiting is used to enforce monotonicity-
preservation near discontinuit,ies. In order to resolve flow fea-
tures economically and controllably the grid is adaptable to
both the geometry and and the flow solution. The computa-
tional resources required by this technique are shown to be
typical of unstructured-grid implementations. Two computa-
tions are presented to demonstrate the capabilities and valid-
ity of the technique.

1 Introduction and Motivation

1.1 A Perspective

In [l] we described a geometry-adaptive, solution-
a.daptive technique for solving the steady Euler equations
for flows around fixed bodies of (with minor restrictions)
arbitrary geometry. In [2] we described a n extension of
tha t method t o the unstea.dy Euler equations, still for
fixed bodies. This paper describes an extension of the
method t o the solution of the unsteady Euler equations

'Doctoral Candidate, Aerospace Engineering
t Associate Professor, Aerospace Engineering
!Professor, Aerospace Engineering

with arbitrarily moving and deforming bodies of arbitrary
geometry.

1.2 Background, And The Case For Grid-
Line Crossing

Algorithm development for the solution of flows around
moving and deforming bodies has received much atten-
tion lately. Practical applications are numerous and im-
portant . They include the improved simulation of fluid-
structure interactions (as in aeroelasticity), the simula-
tion of separation and approach problems, and the full
(as opposed t o t h e component-by-component) simulation
of problems involving continuous periodic relative motion,
as in rotor-stator and rotorcraft flows.

Most of the methods developed so far, as in
[3], for example, resolve the geometric-complexity issue
satisfactorily, typically with unstructured-grid or block-
structured-grid techniques. Except in a few cases, how-
ever, these methods have a notable geometric limitation:
the scale of motion (or deformation) of bodies must be
small in comparison with the scales of body-to-body and
body-to-outer-grid-boundary separation. Otherwise, rel-
ative motion, particularly of the shear type, can distort
the grid severely enough t o impair flow-solver perfor-
mance. T h e origin of this limitation can be traced t o the
use of grids having a fixed topology between boundaries.

Several strategies have been suggested or at-
tempted t o circumvent or counter this limitation. Re-
lying on grid redistribution t o relieve unwanted features
fails in all but the least severe grid deformations. In ad-
dition, the use of a moving grid suffers from the inherent
shortcomings tha t at tend continuous global dependence
of grid point positions on body positions (primarily up-
dating of the geometric d a t a for the entire grid after ev-
ery motion step.) Use of local insertion and deletion in
structured or block-structured grids, a s introduced in [4]
can effectively remove unwanted grid distortions but has
the disadvantage of possibly leading t o grid modification
in contra-indication t o the flow-features. This would de-
feat t he essential purpose of"%aaptivity. Therefore, the

Copyright 0 1 9 9 3 by The Regents ofI'he University of Michigan.
~uiiisl;ed Gy the ~ m e r i c a n ~nsti tute of Aeronautics and
Astronautics, Inc. with permission. 1013

technique does not hold promise for extension to the gen-
eral moving body problem. The use of overlaying grids,
as in [5] , for example, suffers from the usual penalties
that attend duplication of data and the need for continu-
ous conservation-violating data interpolation across grid
boundaries. The local-remeshing strategy employed in,
for example, [6], [7], and [8] is perhaps the wisest in that it
directly tackles the cause of the problem. Moreover, since
the remeshing is performed only around bodies, economy
is inbuilt into the technique. Perhaps the major disad-
vantages of this class of technique is its use of a moving
grid and the difficulty of correcting its violation of con-
servation.

Allowing bodies to move across grid-lines also at-
tacks the problem a t its root by decoupling grid motion
from body motion. Consequently, the density distribution
of the grid will, as it should, only have locallized depen-
dence on the surface geometry and positions of bodies.
Grid modification for geometric changes still requires up-
dating the grid data after every motion step, but only
for cells in the immediate vicinity of bodies. In addition,
since body and grid motions are decoupled, the use of a
stationary grid, and the economic advantages therefrom,
become possible. These incentives justify further explo-
ration of this approach.

2 Algorit hrn Description

2.1 Design Strategy

Finite-volume-based, explicit flow-solvers, such as Roe's
approximate-Riemann-solver, have little dependence on
the geometric form of the computational cells. In addi-
tion, they employ only local operat,ors. While the flow-
solver-associated tasks of reconstruction and gradient-
limiting significantly increase the required amount of
connectivity-information retrieval, it still seems advisable
to allow the choice of the data-structural and geometric
form of the grid to be dictated primarily by geometric
and implementation-efficiency (i.e. computational effort
and storage) requirements.

Regarding choices for the data-structural form of
the grid, the geometric and implementation-efficiency re-
quirements have traditionally been viewed as favoring op-
posite strategies. On the one hand, it is becoming gener-
ally accepted that complex geometries are better negoti-
ated by unstructured grids, or, in the least, by grids that
are not fully-structured. On the other, unstructured grids
have lower implementational efficiency. While the geo-
metric difficulties in grid generation are proving largely
insurmountable with fully-structured grid techniques, the
implementation-efficiency issue for unstructured grids is
an area in which much progress can be made by good
design and new ideas.

These considerations determine the contemporary
framework within which subsequent choices should be
made. Within that framework, our final objective gives
the arbitrary-geometry capability precedence over the
implementation- efficiency criterion and so favors the
use of an unstructured grid. The requirements for a
geometry-adaptive, flow-adaptive grid imply a continu-
ously changing grid. Thus, one performance criterion for
the grid data-structure must be its modification speed.
The other performance criterion is the memory require-
ments, and hence the connectivity-information require-
ments. The design task can therefore be reduced to the
problem of designing a data-structure which jointly sat-
isfies these two criteria as far as possible.

2.2 Grid Data-Structure and Grid Gen-
eration

2.2.1 The Basic Q u a d t r e e Da ta -S t ruc tu re

The data-structural form of the grid is Quadtree-based,
as briefly described in, for example, [I]. The Quadtree is
a tree type data-structure with a branching ratio of four:
except for the leaf (or ultimate) nodes every node is linked
to four other nodes, which are viewable as hierchically
subordinate. To facilitate tree traversal and connectivity-
information retrieval, it is common to also link each node
to its hierchical superior. In that case each interior node
will have five links, while the root node will have only
four, and leaf nodes only one link. This tree structure
can be turned into a grid data-structure if, in addition
to the connectivity data bourne by the nodes, additional
data is attached to them.

2.2.2 Represen t a t i on Of D a t a I n A Q u a d t r e e
A n d Efficiency Issues

In the Quadtree representation of a 2-D grid, the physi-
cal space, typically a polygonal region is represented by
the root node. The physical space is divided into four
pairwise disjoint areas and each is represented by one of
the four nodes immediately subordinate to the root node.
Each of the quadrants of the original space can now be
regarded as a starting point for further subdivision, with
the node representing that quadrant being considered as
the local root of the descendant tree. Subdivision can
now proceed recursively to obtain any refinement level
at any desired location in the original space. If the tree
is required to represent a grid with varying levels of re-
finement, then the minimal tree will have branches that
terminate a t different levels.

For each node of the tree sufficient geometric and
connectivity data must be stored to fully define the spatial
region represented by the node. T k efficiency advantages
of the Quadtree structure are best realized, however, if the

original space is a square and all subdivisions results only
in squares. In that case, for example, no coordinate or
geometric data whatsoever needs to be stored except for
the root node. The geometric properties of any quadrant
would be deducible from the root's and the position in
the tree of the quadrant's node. The position in the tree
of any node can be retrieved by analyzing the path of an
upward-traversal of the tree all the way to the root. This
compactness is a propert,y that not even structured body-
fitted grids can enjoy, since these (except for simple ge-
ometries) must have areas or other geometric data stored.
Morever, for such a choice of geometry (i.e. squares) it
is possible to choose any level of intermediate (internal)
node at which to store geometric data. Such a choice of
level corresponds to a choice, regarding the computation
of geometric data, between the extremes of:

1. maximum effort and minimum storage, and,

2. minimum storage and maximum effort.

The nodes of the tree can be used to represent any
required attribute. Particularly, the gasdynamic proper-
ties on which the flow-solver operates can be stored as
for the geometric attributes. However, in this case, the
attribute need only be assigned at the leafs since only the
leafs of the tree are used to represent computational cells.

The resulting structure is one that contains all the
required grid data at the leafs with the remaining tree
structure used only for connectivity-information retrieval.
The exponential nature of this data-structure makes for
efficient storage. Since the interior nodes are only used for
connectivity-information retrieval, they may be regarded
as a memory overhead. The interior-to-leaf node ratio,
v , may be deduced by observing that whenever a node is
subdivided the number of interior nodes is increased by 1
while the number of leaf nodes is increased by 3. After,
say, m subdivision operations starting with the root node,
the total number of interior nodes will be (0 + m) while
the number of leaf nodes will be (1 + 3m). Therefore,
Vm E N,

This result holds regardless of the location of the subdi-
vision operations, i.e., it holds for any grid of any density
distribution.

The Quadtree is also a very efficient structure in
terms of connectivity-information retrieval. In particu-
lar, the expected value for the number of tree ascents and
descents required for a face-neighbor retrieval is upper-
bounded by 2. The corresponding figure for vertex-
neighbor retrieval is upper-bounded by 813.

In both cases the retrieval procedure consists of as-
cending the tree from the required node to a node that
satisfies certain conditions and then descending from the
latter down a path (which is some mirror image of the
ascent path) to the sought neighbor. These ascent and

descent operations are equivalent to memory access oper-
ations, but some computation is necessary to determine
the paths. It turns out that the access times are theoret-
ically of the same order as the array-element access times
(which require integer arithmetic computation and mem-
ory access operations too) for structured grids. Unlike
in the structured-grid case, however, these operations do
not vectorize.

2.2.3 The Grid Generation Algorithm

The stepwise basic grid generation follows this procedure
for fixed bodies:

1. Subdivide the physical domain to a prespecified level
(the back-ground refinement level).

2. Examine the resulting leafs for intersection with any
bodies in the grid and recursively subdivide each cell
that is neither interior nor exterior until one of three
conditions is met:

(a) The resulting leaf cell is exterior to all bodies.

(b) The resulting leaf cell is interior to a body.

(c) The resulting leaf cell has reached a prespec-
ified maximum depth (the intersection refine-
ment level) in the tree.

3. Recursively subdivide or coarsen exterior cells ac-
cording to the current flow-variable gradients. This
step may be considered part of the solution-
adaptivity.

The actual procedure differs slightly from that de-
scribed above. For example, an important deviation from
the Quadtree data-structure occurs when interior cells
have their representing nodes deleted from the tree (to
save memory). Another difference from the above pro-
cedure is that any subdivision is not carried out if it vi-
olates a neighborhood refinement-level difference of one.
Instead, the would-be violated node is recursively divided
first. This ensures that the grid maintains three desirable
properties: one topological, one geometric, and one im-
plementational. These, respectively, are:

1. The number of neighborhood patterns remains small
and hence neighbor accessing remains fast and rela-
tively logic-free.

2. The grid area variation remains boundedly smooth
throughout (i.e. the area ratio between any two
neighbors is no less than f rac l4 and no more than

4.)

3. The global variations in the grid density maintain
some local dependence and hence the motion of a
body across a grid does not result in refinements and
coarsenings that t e l e scop~c ros s several levels of the
tree.

Examples of the resulting geometric forms of the
grid can be seen in Figures (3)-(10).

For moving bodies, the procedure is expanded as
follows:

1. Generate the grid for the current body positions.

2. Coarsen the grid (by one level) only around the bod-
ies.

3. Move the points defining the bodies in accordance
with the required trajectories over the coarsened grid
and hence obtain the new body shapes.

4. Rebuild the grid down to the required intersection
refinement level around the bodies, recomputing all
intersection points and updating the local geometric
variables.

This procedure makes its strengths and weaknesses
self-evident. It is simple and general, making no dis-
tinction between body deformation and gross motion.
It allows the grid to remain fixed and hence makes for
more economical flow-solver and grid-related computa-
tions. Only the grid in the immediate vicinity of a mov-
ing body is directly affected, leaving the propagation of
the local changes to be transmitted to the remainder of
the grid by the one-level-refinement-difference rule; no
separa.te checking for global suitability and no global-
modification operation are required. This contrasts with,
for example, advancing-front grid generation. The major
detraction of the strategy is the necessity to recompute all
intersection points and geometric variables around bodies
after each motion step.

2.3 Representation And Definition Of
Bodies

The most general and challenging input for geometric def-
inition of bodies for CFD purposes is the one based on

- -

a set of points on the body surfaces. This is the case in
both 2- and 3-D. If bodies are given by a set of surface
points, parametric cubic spline interpolation is used to
reconstruct the surface initially, and, after each motion
step. Thus deformation and gross motion are made indis-
tinguishable. If bodies are given by sets of equations, then
these equations are used instead of the spline equations
to compute any required intersections.

2.4 Motion Control Of Bodies

Pointwise displacement and velocity control options are
available for independent control of the trajectory of each

control point of each body. This gives total control over
the gross motion and the deformation of bodies. The mo-
tion of bodies may be coupled to the pressure distribution
on the body surfaces for fluid-structure interaction prob-
lems provided the density distribution or other equivalent
data is given for the bodies.

2.5 Flow-Solver

2.5.1 General

The flow solver is based on a finite-volume discretization
of the unsteady Euler System. In conservation form, the
Euler System for a time-varying control volume is given
by

where V is the volume of the space, @, is the flux ten-
sor, appropriately modified to account for control-surface
velocities, and 6 the state-vector.

Since the volumes of the boundary cells will in gen-
eral vary with body motion, the discretization must be ap-
plied t o the true conserved variables (not their volumetric
densities.) The discretization of the above equation for
deforming volumes may be expressed in the form

faces

-
where en is an appropriate time-average of the flux tensor
over the deforming area.

The interface fluxes are computed in accordance
with Roe's approximate-Riemann-solver. In order to ob-
tain second-order spatial accuracy away from discontinu-
ities, 1-exact reconstruction is carried out within cells.
The reconstruction procedure employs least-squares min-
imization t o obtain the 1-exact cell-centroidal estimates
of the reconstructed variable gradients. The variables
chosen for reconstruction in the computations presented
herein are the primitive variables, namely p, u, v , p .

Second-order time-accuracy is obtained by the
use of Heun's method, which may be interpreted as a
predictor-corrector method. The formulation must be ap-
plied to the conserved variables and so takes the form:

2.5.2 Ini t ia l Condi t ions A n d Wall A n d O t h e r
B o u n d a r y Condi t ions

Spatially second-order boundary conditions are applied
at the moving solid boundaries. This is done by defining
the flux vector at a solid boundary (w) by direct use
of:

where p is the extrapolated value of the pressure
a t the boundary's mid-point as determined from the re-
construction. It should be noted that such an expression
for boundary flux computation is quite desirable since it
only involves one gasdynamic unknown; the remaining
unlrnowns are all geometric variables.

The conditions at the outer boundaries of the grid
may be chosen arbitrarily, but special precautions must
be taken to avoid the unstable interaction, if applicable, of
the reconstruction procedure with von Neumann bound-
ary conditions. The initial conditions may be arbitrarily
specified.

2.6 Cell Merging

2.6.1 T h e Small-Cell P r o b l e m

Each body cuts out its boundary from the Cartesian cells
it intersects. Invariably, some cut cells will have smaller
areas than others. Particularly, the area ratio for the
smallest cut cell to the smallest uncut cell in the grid
may be arbitrarily close to zero. Meanwhile, the CFL
stability constraint

applies to all cells. It turns out that variations in gasdy-
namic states are far outweighed by variations in areas and
consequently the smaller-area cells are always the ones
that determine the global time-step, and hence the overall
pace of the computation for a Quadtree-based Cartesian
grid. This could imply a code several orders of magnitude
slower than a code based on the smallest uncut-cell area.

It must be noted that cut cells do not contribute
to the global accuracy of the solution. On the contrary,
even if permitted to pace the computation, these cells
are invariably numerically decoupled from the rest of
the flow field. This is a finite-arithmetic consequence of
their residual (a small quantity) being computed from the
fluxes (near-cancelling relatively much larger quantities.)

The small-cell problem is one of the major incon-
veniences of using grids with cut cells.

2.6.2 T h e Vanishing- A n d T h e Newborn-Cell
Problems, A n d M o r e General ly T h e
Moving-Body P r o b l e m

Examine cell A in Figure (1). As indicated therein, the
motion increment of the body will sweep across the ex-
ternal part of the cell. The usual finite-volume procedure
cannot be applied to this cell over the given motion step:
there is no guarantee that the final conserved-variable
vector in the cell will vanish. If this does not happen,
the implication is that mass, momentum, or energy has
entered through the body's surface, or, even worse that
the cell has negative mass or energy. One possibility is to
compute the time at which the state-vector vanishes, and
then consider this to be the instant at which the cell is
completely swept out, regardless of whether this coincides
with the geometric crossing. This approach is not promis-
ing. For one it has the defect of requiring special checking
for cells experiencing this phenomenon and then special
handling. Moreover, all the surrounding cells will require
individual computations over subintervals of the global
time-step in order to preserve conservation in space.

Now examine cell B. The motion increment ex-
poses part of this previously interior cell, however, no
well-founded flux computation across the interface is pos-
sible since no state-vector is available on which to base
the computations. In addition, it would be necessary to
compute the exposure time of this cell from the motion of
the body and to break up the gasdynamic computations
in the surrounding cells into each subinterval over which
the topology of each cell is invariant. Other than the
fact that this involves expensive geometric computations,
such an approach again introduces exceptional handling
for exceptional cells with all the attendant penalties.

As Figure (1) shows, throughout the vicinity of the
body there will in general be cells with large variations
in area, as well as cells with small initial or final areas or
both. These are all undesirable phenomena.

A solution to all the problems outlined above can
be achieved simultaneously by cell-merging.

2.6.3 Basic Concept A n d S o m e Implementa t ion
Cons idera t ions

The basic idea of merging is the combination of adjoining
cells so that any boundaries between them are ignored
for discretization purposes, thus forming new, combined,
larger cells.

Under certain restrictions on the curvature of the
surface of a body (relative to the dimensions of the in-
tersected cells) and on the body's minimum width, the
following can be proved:

All the cells intersected by the surface can be com-
bined with other cells lying within an appropriate enve-
lope around the surface to f o r 5 new cells such that the
following criteria are simultaneously satisfied:

Figure 1: The Vanishing- and Newborn-Cell Problems

Figure 2: The Data-structural Implementation of Merg-
ing

1. Both the initial and final areas of combined cells are
no smaller than the smallest uncut cell in the grid
or some (less severe) fraction thereof. Note that this
criterion constrains, indirectly, the proportional atea
change within a combined cell.

2. No corner vertex of a combined cell is crossed by the
surface during the motion step, if there is motion of
the surface.

3. No combined cell is formed from the merging of more
than eight cells.

The first criterion alone eliminates the small cell
problem for both moving and stationary boundaries. For
a moving boundary, the second criterion implies that
the combined cells have an invariant intersection topol-
ogy over the given motion step. Thus, the criterion en-
sures that combined cells have their intersection status
preserved: cut cells remain cut, interior cells remain in-
terior, and exterior cells remain exterior. consequently,
both the vanishing and newborn-cell problems are elimi-
nated. These two criteria are essential for the viability of
merging. The second criterion has an important conse-
quence for the temporal order of accuracy of the overall
technique. It can be shown that length-averaging of the
interface fluxes for cells with varying area does not, of it-
self, lead to loss of second-order time-accuracy in equation
(2) if this criterion is satisfied. Finally, the last criterion,
while not affecting the order of accuracy, places a limit
on the loss of resolution due to merging.

As an example, referring to Figure 1, the cells
marked A and B will be merged with the cells marked
X and Y respectively, eliminating a vanishing-cell and
newborn-cell problem respectively.

From the data-structural point of view, merging
cells is very elegant and simple. Before a merging op-
eration, each participating cell will have its individual
gasdynamic and geometric attributes. A single new set
of gasdynamic and geometric attributes is created for the
merged group and has its variables computed from the in-
dividual attributes. The new set is then assigned to each
participating cell. The individual attributes are there-
after discarded (to release memory for future use.) In
computing the group attribute values, adherence to con-
servation is the only restriction. For example, the group
state-vector must be obtained by volume-averaging of the
participants' state-vectors.

Figure (2) shows how the merging data-structure
is attached to the Quadtree backbone. The particular fig-
ure shown demonstrates how merged cells (which must be
neighbors) could lie far apart in terms of the tree struc-
ture.

In the actual implementation, all cells in the grid
are merged into merging groups (which will have only one
cell for exterior cells.) This arrangement gives a uniform
representation that allows mergingto remain invisible to
most flow-solver operators.

2.6.4 T h e M e r g i n g A l g o r i t h m

Given that merging will solve all the problems listed
above by combining cells together till all undesirable fea-
tures are eliminated, the remaining problem can now be
reduced to identifying the cells tha t are to be merged to-
gether as efficiently as possible. The algorithm developed
for this purpose follows the following procedure:

1. For eac l~ body in the grid, a suitable initiation point
for merging is found. Start ing a t tha t point, the sur-
face is traversed in one direction visiting each cut cell
along the way. For each such cell, the intersection
pattern of the grid lines in the neighborhood is ana-
lyzed. Depending on the outcome, cells are merged
into groups of up to eight cells. The merged cells
a t the end of this step satisfy the second and third
criteria above.

2. For each merged group the initial and final areas are
co~npu ted . If the first merging criterion fails, ad-
ditional unmerged cells chosen along a direction as
perpendicular as possibIe to the local body surface
are merged with the group. At the end of this step
all merged groups satisfy all three criteria.

3. All remaining unmerged cells in the grid are self-
merged. This is done for the reason explained above.
At the end of this procedure all cells in the grid sat-
isfy all three merging criteria and the data-structure
is ready for the gasdynamic operators.

After the merging is coniplete and the gasdynamic states
hake heen updated and the bodies have moved through
their latest motion increments, the cells around the bodies
are unmerged. This is the reverse operation of merging.
Thus cells must be reidentified as separate entities and
their individual state-vectors must be recomputed from
the merged group state-vectors and the final areas of the
i n d i ~ i d u a l cells. T h e loss of resolution resulting f r o ~ n this
operation when applied to groups of more than one cell is
~n~rlimizetl by use of the gradients already computed for
the merged cells. Clearly, interior cells must be assigned
zelo s ta te vectors, in upholdance of conservation.

Unrnerging must be carried out because the crite-
rion of topological invariance for merged cells has a life-
cycle of only one motion step in general; the intersection
pattern around any moving body must be reanalyzed to
tlcterinine the new merging groups.

2 . G . G A n A c c u r a c y C o n s i d e r a t i o n

ITnl ing est al~lished that coarsening, whether due t o di-
rect coarsening or to merging, does not change the or-
der of accuracy, the effect of merging on accuracy can
be loolied a t from anotlier point of view. Since the ul-
t imate purpose of grid adaptation is economic optimiza-

tion, it is more meaningful to express the loss of resolu-
tion in terms of a cost-benefit analysis. In tha t context,
i t can be stated tha t if the resolution level a t the body
surfaces corresponds t o what is available a t the penulti-
ma te nodes, the extra refinement level (which typically
accounts for a small proportion of the total number of
cells in the grid) can be viewed as an extra overhead of
sacrificial cells required to make the algorithm work. In
actuality, the resolution is higher than tha t afforded by
the penultimate nodes since the gradient information a t
the leafs is averaged and stored a t the penultimate nodes
and subsequently used in the prolongation t o the rebuilt
leafs.

2.6.7 A n U n d e s i r a b l e C o n s t r a i n t

The current merging algorithm indirectly introduces a re-
striction on the motion-step of the body: the merging
algorithm requires the cells t o be highly refined around
sharp corners and a t the same t ime requires the motion
step magnitude t o be less than the smallest uncut-cell
length. These two requirements together imply that the
permissible motion step for a solid body must decrease
with the smallest radius of curvature on the body. This
constraint can be eliminated.

2.7 Solution Adaptat ion

As explained previously, this procedure amounts to refin-
ing or coarsening cells in accordance with the resolution
sought a t the cell's location.

Much freedom exists in choosing a criterion to
quantify the desired level of resolution. Unfortunately,
however, only the vaguest guidelines, e.g., the concept
of equidistribution, have been developed to guide such
choice. In [I] a particular choice was described, and in
[2] another. Currently, the code is using a criterion based
on a weighted average of the velocity divergence and the
magnitude of the velocity-curI. T h e weights may be var-
ied to impart different relative sensitivities t o shear- and
shock- type features.

3 Computational Requirements

T h e storage requirements of the technique with second-
order accuracy are approximately thirty words per cell
for moving bodies and twenty words per cell for station-
ary bodie;. These requirements can be reduced to about
haIf the quoted values but only a t the expense of pro-
cessing time. There are additional storage requirements,
most notably for postprocessing. T h e maximum storage
requirement a t any t ime during a run does not exceed
thirty-five words (i.e. 140 b y t e s h e r cell for moving bod-
ies.

The total processing time with second-order ac-
curacy is currently about three milliseconds per cell per
iteration on a DECstation 5000/200. However, the code
is not configured for maximum speed. For the examples
shown herein more than 70% of the computational ef-
fort was consumed by the flow-solver, while the geometric
computations' share was about 15% during body motion.
The remainder is consumed mainly in the data-structural
modifications and grid adaptation. Since geometric com-
putations are only necessary for intersected cells, the rel-
ative effort required for geometry-related operations de-
creases with the ratio of intersected to unintersected cells.

over, unlike Delaunay triangulation, the technique pre-
sented here generalizes to 3-D without the introduction
of additional grid-generation difficulties.

Regarding extension to unsteady viscous flows, the
technique promises some potential but many important
issues await more study, particularly with regard to the ef-
ficient handling of length scale disparities of flow-features
in a Quadtree-based data-structure.

Acknowledgements

This work was funded in part by a grant from the McDon-
nell Aircraft Company, monitored by Dr. August Verhoff.

4 Demonstrative Results

The attached figures show a sequence of successive solu-
tions to two unsteady problems. In the first, an ellipse
instantaneously attains a constant horizontal speed, con-
tracts as it passes between two stationary ellipses, then
expands to its original shape as it leaves the ellipses. The
example demonstrates that the technique can be used to
simulate an approach problem, a separation problem, and
a problem in which the dominant relative motion across
a small separation is of the shear type.

In the second problem, a cylinder imparts, in rapid
succession, by purely radial deformation, a compressive
and an expansive wave to the surrounding gas. This ex-
ample was chosen to give the reader a graphical sense of
the extent to which the strong directional allignment of a
Cartesian grid distorts an axisymmetric problem.

5 Concluding Remarks

\Ire have presented an approach for the simulation of Eu-
ler flows around arbitrarily moving and deforming bodies
of arbitrary geometry. The approach differs from other
approaches developed so far primarily in that a station-
ary grid is used and body motion across grid lines is al-
lowed. We have shown how grid-line crossing in conjunc-
tion with a Quadtree-based Cartesian grid can eliminate
the grid distortion problem simply and neatly and can in-
trinsically ensure the global smoothness of the grid. We
have shown how the flow-solver-related problems of small
cells, vanishing cells and swept-over cells arising from cell
cutting and grid-line crossing can be solved by exploiting
the flexibility of the data-structure and without sacrific-
ing the order of accuracy, as verified in [9]. Finally, we
have demonstrated that the technique has computational
requirements consistent with an unstructured-grid tech-
nique.

From the long-term perspective, the technique has
demonstrated that Cart,esian grids can be used t,o solve
the moving and deforming body problem in 2-D. hlore-

References

[I] D. D. Zeeuw and K. G. Powell, "An adaptively-refined
cartesian mesh solver for the euler equations," AIAA
Paper 90-0000, 1990.

[2] Y. L. Chiang, B. van Leer, and K. G. Powell, "Simula-
tion of unsteady inviscid flow on an adaptively refined
cartesian grid," AIAA Paper 92-0443, 1992.

[3] J . T . Batina, "Unsteady euler algorithm with unstruc-
tured dynamic mesh for complex aircraft aeroelastic
analysis," AIAA Paper 89-1189., 1989.

[4] A. Evans, M. Marchant, J . Szmelter, and N. Weath-
erill, "Adaptivity for compressible flow computations
using point embedding on 2-d structured mutli-block
meshes," International Journal fo r Nummerical Meth-
ods in Engineering, vol. 32, pp. 895-919, 1991.

[5] J . Benek, P. Buning, and J.L.Steger, "A 3-d chimera
grid-embedding technique," AIAA Paper 85-1523-CP,
1985.

[6] R. Lohner, "Adaptive remeshing for transient prob-
lems," Computational Methods in Applied Mechanical
Engineering, vol. 75, pp. 195-214, 1989.

[7] L. Formaggia, J . Peraire, and I(. Morgan, "Simula-
tion of store separation by the finite element method,"
Applied Mathemetics Modelling, vol. 12, pp. 175-181,
1988.

[S] E. Probert, 0. Hassan, K. Morgan, and J . Peraire,
"An adaptive finite element method for transient com-
pressible flows with moving boundaries," Interna-
tional Journal for Nummerical Methods in Engineer-
ing, vol. 32, pp. 751-765, 1991.

[9] W. Coirier, K. Powell, and 14. Berger, "An accuracy
assessment of cartesian mesh approaches for the euler
equations," AIAA Paper 93-3335, 1993.

ac

Pressure Line Contours.

Figure 3: Initial Positions and Geometry.

Pressure Line Contours.

6'00

Figure 4: Final Positions and Geometry.

Pressure Line Contours.

0.74
Frnin 9999.

Figure 5: After 100 Time Units

Pressure Line Contours.

Figure 6: After 200 Time Units

Pressure Line Contours.

0.75
Fmin

0.25

-0.25

- 0 . 7 5 0 4
0.65 1.15 1.65 2.15

Figure 7: After 300 Time Units

Pressure Line Contours.

rnin

Figure 8: After 650 Time Units

Pressure Line Contours.

Fmin 1716.

76

Figure 9: After 50 Time Units.

Pressure Line Contours.

1 1 1 1 1 1 1 1 n

9 11 Fmin 1925

Figure 10: After 150 Time Units.

