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Recent results on the design of material 
propcrtics in the context of global structural 
optimization provide, in analytical form, a 
prediction of the optirnal muteriul retlsor 
distributions for two or three dimensional 
continuum structures. The model developed for 
that purpose is extended hcrc to cover the design 
of a structure and associated material properties 
for a system composed of a generic form of 
nodinear sojietiin~ nautcriul. As was established 
in  the earlier study on design with linear 
materials, the formulation for combined 'material 
and structure' design with softening rnaterials can 
be expressed as a convex problem. However. in 
contrast to the case with linear material, the 
optirnal distribution of material properties 
predicted in the nonlinear problern dcpcnds on 
the magnitude of load. Computational solutions 
are presented for an ex:unple problem, showing 
how the optimal designs vary with different 
values assigned to data that fix thc load and 
~nateriad parameters. 

Thc purpose hcre is to treat. in analytical form, 
the design problem for sirnultuneous prediction 
of material properties and structural layout. In 
thc present approach, this is accomplished 
simply by considering design to be characterized 

in the formulation via a free parametrization of 
the rigidity tensor of material. Formulations of 
this kind have been demonstrated recently for 
structures composed of linearly elastic material. 
in both a single purpose and multiple purpose 
design context 4 3  5 .  In these studies the rigidity 
tensor is allowed to rmge over all positive, semi- 
definite tensors, and the design resource (or total 
cost) is measured through invariants of thc 
msor .  The objective was taken to be 'design lor 
minimurn compliance'. Within this formulation a 
mureriul optimizurion problem can be identified, 
and thus the optirnal local form of the material 
tensor can be derived. Once the optirnal local 
material properties are determined, the original 
design problem can be expressed as a simpler 
equivalent design prol~lern statement involving 
only the global distribution of resource. In  this 
way the problem size is reduced considerably. 
For a single loading condition this auxi1iau.y 
problem takes on a simple form, one sirnilcar to 
that of a variable thickness sheet design problem. 

In the developments to follow we will dcscribe 
an extension of this free material design 
formulation to the design of a structure 
composed oP a generic form of rmlinemr 
softening muteriul. The relevant mechanics is 
represented in the new formulation in ternis of a 
generalized complementary energy principle 
developed recently for modelling the equilibrium 
analysis of such structures 14. For present 
purposes the design objective is likewise based 
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on complementary energy. Net material 
properties of the softening medium reflect a 
superposition of properties associated with each 
of a number of material constituents, and the 
collection of these properties, expressed through 
the rigidity tensors for each of these constituents, 
provides the problem with a set of design 
parameters. Analytical forms for the optimal 
material tensor and the global distribution of 
material can be derived, in much the same way 
as was indicated above for design with linear 
materials, 'and thus the design parameters can be 
removed from the problem. The reduced problem 
is then an equilibrium only problem, albeit with 
a nonlinear and non-smooth (optimal) 
complementary  energy  func t iona l .  
Alternatively,by solving analytically only for the 
optimal local properties, the resulting reduced 
problem is a smooth and convex problem 
combining equilibrium analysis and the 
determination of the optimal distribution of bulk 
resource. This problem is tractable, and a 
computational example is presented to show the 
form of results predicted for optimal material 
distribution. 

The work presented in this paper represents a 
natural extension of the recent developments on 
simultaneous design of material and structure [ 
see e.g. 4. 5]. It constitutes as well a natural 
progression of developments in modelling for 
optimal design with advanced materials, and 
from treatments of topology design using 
homogenization modelling (see, e.g., the 
collection of papers in lo). For models that 
employ the homogenization modelling for design 
parametrization, the optimal local material 
parameters can be related directly to a suitable 
microstructure, as demonstrated in 8 .  In the 
context of the present free design 
parametrization, a different form of 'local 
structure' is required for the realization of 
material tensors. Examples of microstructures 
suitable for this purpose are described in 9> 1 3 .  
These forms of local structure are not unique, nor 
rue they necessarily of significance here other 
than to establish the quality of 'realizability'. 

2. Problem statement. 

principle, is presented in detail in 14. It is 
described briefly here to set the stage for the 
subsequent extension to cover design. The 
portrayal of a general form of nonlinear 
softening material relies on a feature in the 
tnodel that has total stress expressed via a 
superposition of an arbitrary number of 
independent (constituent) fields. Each such 
constituent field is represented to be arbitrarily 
heterogeneous and anisotropic, and constituent 
stresses may be constrained to lie within a 
limiting surface. Overall material properties are 
determined through the model, once the 
parameters governing each of the the constituent 
fields are specified as data. 

The formulation for equilibrium analysis is stated 
here in terms of stress fields. With the 
superposition of P softening components and one 
strictly linear basis component to make up the 
total stress, the problem has the form: 

subject to: 
- a - a l O  

P 

Here EJk, are the rigidity tensors for the P 

softening components and Fijkr is the rigidity 
tensor for the strictly linear component. Factor o! 
provides for the description of loads in the form 
of proportional loadirig. The stresses for the 
softening components are denoted 06. The 
structure is subject to body force f and surface 

As indicated in the introduction, availability of traction t on part rT of boundary aQ. Finally, 
an extremum problem formulation for the the convex sets of admissible stresses o$ for the 
analysis part of the problem is what makes it 
possible to treat the design of nonlinear materials softening components are denoted by K, . 
conveniently. The type of formulation used in the 
following development, which amounts to a Problem (A) is written for a given material, and 
generalized form of complementary energy for the analysis problem which it models the 



combined rigidity tensors, and the information 
that serves to define sets K, altogether 
comprise the data which govern overall material 
properties. For the 'design of material properties' 
problem to be considered below, one or more of 
these material property tensors are treated as 
design variables. Also, since the solution of (A) 
implies that CX = h, this result will be used 
bellow. 

Following the recent studies on design of optimal 
material parameters cited in the introduction, it 
is natural to consider here the extension covering 
design of the nonlinear material. Using the 
rigidity tensors as free design variables, this 
design problem has the form: 

p=l  1 
subject to: 

Here the design is to be optimal with respect to 
all positive definite rigidity tensors, and 'material 
resource' is measured in terms of invariants 
(symbolized by Y in problem statement (P)) of 
these tensors. In the statement (P) we take the 
supremum over the rigidity tensors, as we are 
using a stress based formulation; this is inherent 
to the analysis case under study. For pure 
displacement based formalations [see e.g., 51, the 
design optimization can be performed over all 
positive semi-definite rigidity tensors. The 
difference in approach is not reflected in the 
solution, but rather relates to the matter of having 
the problem expressed in a well posed form. 

We choose here to use either the trace or the 
Frobenius norm to measure resource for all 
tensors in the formulation, and this means that 

the invariants Y(F) ; y(EP) in (P), hereafter 
represented as 'resource densities p ', are given 
as: 

for the trace measure and 

for the Frobenius norm. Note that these measures 
are homogeneous of degree one. Thus comparing 
to the conventional 2D problem for the design of 
material distribution in a sheet (where total cost 
is proportional to the volume of material), the 
above 'cost measures' correspond in their role to 
the sheet thickness. 

In the fonnulation above it is assumed that the 
sets K p  of admissible softening components 

flP of the total stress are design independent.. 
Thus the solution to problem (P) predicts the 
optimal distribution of rigidities within these 
specified softening limits (Optimal design with 
the limits themselves as design variables is 
treated for arbitrary trussed structures in 15). 

In the case of truss structures modelled as above, 
design for maximum load carrying capacity 
using member cross-sxtional areas as design 
variables has been studied in for the case of an 
elasto-plastic formulation. Truss design for the 
general softening material is reported in 1 5 7  17 .  

3. Analytical reduction of the problem. 

For the case where no softening constituents are 
present, problem (P) is precisely a 
complementary energy based formulation of the 
minimum compliance design problem with free 
material design; this problem is described in 
detail in 5 .  Along the lines of the mode,lling used 
in that study, parameters that describe the 
structure are now divided into two groups, 
namely those parameters that measure the 
amount of resource assigned to each point of the 
domain, and a second set that delineates how this 
resource is used to form the local material tensor. 



This provides for the following multi-level 
formulation of the problem: 

in f inf 

subject to: 

( y l j  +C a;:').~ = & t  on r,, 

Here the statical admissibility conditions of the 
inner problem are independent of the design 
variables. Thus minimi~ation with respect to the 
pointwise variation of the rigidity tensors can be 
represented in the form: 

P 

F.,,,-' yLj y,, + C E;~,-' a; 0; 
E P > O ,  F>O, 

p=l  

This characterization is consistent with the 
assumption of pointwise independent variation of 

the tensors within fixed values Po,(), of 
resource. This in turn justifies minimization of 
the local measure in (P2) at each point of the 
structure. Problem (P2) has been studied in , 
represented there in a strain formulation, and 
from the results of that reference or by direct 
inspection we can conclude that 

for any stress field and any rigidity tensor. This 
result applies for both the trace and Frobenius 
nonn measures of resource. Note that the optimal 
energy expression in (P3) coincides with the 
energy of a linearly el:istic, zero-Poisson-ratio 

material of density p .  The infimum in (P3) is 
not achieved, as the optimal rigidity tensor is 
given by: 

This corresponds to a singular orthotropic 
material, with axes of orthotropy co-aligned with 
the direction of principal stresses for the field 
pi, and with only one non-zero eigenvalue. 

With the introduction of (P3) into (P2). the 
problem (PI) can now be reduced to the convex 
problem: 

subject to: 

In (P4) the energy measure for each constituent 
corresponds to the complementary energy of a 
linear elastic, zero-Poisson-ratio material of 
density equal to the locally assigned resource 
value . 

In problem (P4) we can solve for the resource 
densities, facilitated by the fact that the statical 
admissibility conditions of the inner equilibrium 
problem are independent of the design variables, 
and that resource constraints are active. The 
resulting resource densities are: 



With the insertion of this result in problem 
statement (P4) , the equivalent but now design 
independent problern takes the form: 

subject to: 
I 

This (convex) problem is a generalized minimum 
complementary energy staternent that is 
applicable for a linear-softening material with a 
non-smooth energy functional, one that is riot 
simply quadratic. However, the energy 
functional is homogeneous of degree two, 
meaning that the energy functional under 
proportional loading resembles the energy of an 
elastic-softening material with linear material 
components. 
This probletn constitutes a generalization of the 
clxsical plastic design formulations for truss 
structures, the extension here covering linear- 
sofrcning ~nuterials in ;I continuum setting. Its 
counterpart for truss structures with linear- 
softening material can be stated in the form: 

subject to: 
P 

This corresponds to a 'fully stressed' design 
formulation. In (PG), a, and 1, denote the bar 
area and bar length, respectively, for the i th truss 
member, and the softening constraint is 
represented as a simple stress bound which is 
symmetric with respect to tension and 
compression. A derivation of (P6) through 
convex duality arguments is presented for the 
linearly-elastic case, expressed via a 
displacements based minimum compliance 
formulation, in 2. 

The computational results presented in this paper 
are obtained using a code for smooth 
optitnization problems, to solve examples that 
are interpreted in the form of the (convex and 
smooth) problem (P4). The smoothness is 
obtained at the expense of an increased number 
of variables. 

4. Cornnutational example of design with 
softening material 

The computational results presented here 
demonstrate the design of material properties for 
an example within plane stress modelling of the 
continuum. The optimization problem (P4) is 
transformed into a finiie-dimensional nonlinear 
programming problem statement via a finite 
clement discretization of stresses, deformations, 
and resource densities. The discretiziation model 
used is the simplest one possible, namely 
triangular elements with constant values for both 
element stresses and densities, and with 
equilibrium enforced in the weak sense at 
element corner nodes. A sequential quadratic 
programming subroutine W P Q L ,  in 12] is used 
to solve the inner minimization in (P4). This is 
coupled with an optirnality criterion updating 
procedure applied to predict the resource density 
variables. An alternative and equally 
straightforward approach is to operate on the 
transformed version of (P4) directly, thus 
minimizing simoultaneously on stresses and 
resource densities. Details regarding features of 
the solution procedures are given in l l .  

We note here thal there is considerable 
possibility for improvLng the efficiency of the 
computational solution procedure. Given the 
convexity property of problem (P4). the problem 
could be solved usi-lg recently developed, 
efficient interior point methods. The FEM model 
is basic and unrefined, its purpose here being 
simply to serve for the production of example 
applications of our problem formulation. Results 



from these computations show the checkerboard 
type patterns usually associated with equal order 
approximations of the equilibrium and density 
fields, as discussed in and in *. In the Figures 
presented below, the pattern has been smeared 
out using a straightforward scheme for 'density 
averaging at nodal locztions'. Finally, we note 
that the FEM discrelized versions of problem 
(P4) will exhibit extensive sparsity, which could 
be exploited in order to improve computational 
efficiency. 

The example presented here is the problem of a 
sy~nmeuically loaded sheet with a central hole as 
shown in Figure 1. The discretization for the 
quarter section analyzed is also shown in the 
figure. The material in this structure is 
represented by the linear stress component plus 
one softening constituent. The softening of the 
latter constituent is defined by the simple 
convex constraint 
o?~+ &+2 Oh-1.05 0 

The resource limit on each constituent is set at a 
value 0.3 times the resource value corresponding 
to a uniform distribution with p = 1.0 . Lower 
and upper bounds on p , with values 0.001 and 
1.0 , are enforced as well. Results are presented 
for two values of the load parameter alpha, a = 
0.1 and a = 10.0 . We display the total 
(combined po,  p l  ) density distribution for the 
two load levels, and a representative principal 
stress plot (for the total ?tress state at the higher 
load) in Figures 2 and 3. 

5. Conclusions. 

We have demonstrated that the design of 
material can be extended to a general class of 
analysis situations encompassing structures made 
of elastic/softening or elastic/stiffening materials. 
The optimal material properties can be derived 
analytically, and this provides for a considerable 
simplification in the analysis and a 
commensurate reduction in problem size. The 
analysis applies as well in two and three- 
dimensions, with the reduction in problem size 
being especially important in the three- 
dimensional setting, particularly to render the 
computational problem into tractable size. 
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Figure 1 - Layout and discretization for design 
example 



Figure 2 - Total resource distribution for load 
a =0.1 

Figure 3 - Total resource distribution for load 
a = 10.0 



Figure 4 - Principal directions and relative 
magnitudes of total stress at load level a = 10.0 


