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Abstract

A progressive damage growth model is de-
veloped for composite laminates under compression.
The mechanics of damage initiation and growth in
a single lamina is modeled in a 2D plane stress set-
ting, using a system of orthotropic nonlinear elastic
relations and a set of Internal State Variables. The
latter are associated with different damage mecha-
nisms that are unique to a fiber reinforced lamina.
A thermodynamically consistent set of equations
are formulated for the evolution of damage growth.
The formulation is numerically implemented using
the commercially available finite element package,
ABAQUS. The present method is applied to ana-
lyze the problem of damage growth in a compres-
sively loaded notched laminate. Predictions of the
model compared against available experimental data
are promising.
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1 Introduction

Development of computational methodolo-
gies for the prediction of progressive damage growth
in continuous fiber composite laminates is presently
an active area of research. Available predictive
methods are based on defining strength based cri-
teria at the lamina level. Based on critical val-
ues for tensile, compressive and shear ‘strengths’,
these methods compute pre-defined damage indices
that are expressed in functional form in terms of
the current stress state. When any of these in-
dices exceeds a predefined critical value, the mate-
rial is said to have failed [1]. Beyond initial fail-
ure, a consistent and rigorous methodology to ac-
count for progressive material deterioration has not
been investigated thoroughly. An exception to this
is the work by Schapery and co-workers[2], who car-
ried out lamina level tests, and validated the test
results by developing a thermodynamically based
progressive damage formation and growth model.
In these studies, Schapery and co-workers assumed
that the fiber direction response is essentially lin-
ear (slight elastic nonlinearity in the fiber direction
was accounted for), but, damage (microcracking and
transverse cracking) formation affect the response
in the transverse direction. Consequently, inter-
nal state variables that are related to the damage
mechanisms in the transverse direction were identi-
fied and evolution laws that specify the growth of
damage and hence its influence on the transverse
direction response were prescribed. In the present
paper, Schapery’s theory (ST) is extended to ac-
count for fiber direction damage (both, in tension
and compression) by identifying an additional inter-
nal state variable associated with the fiber direction
response. In contrast to the transverse direction, in
which damage accumulation results in progressively
decreasing but smooth variations in instantaneous
tangent moduli, damage accumulation in the fiber
direction leads to non-smooth abrupt changes in the
corresponding moduli. These changes must be prop-
erly captured if progressive damage growth in com-
posite laminates is to be modeled accurately. In the
present paper, we have shown, for the first time, that
it is possible to follow the progression of damage be-
yond first kinking in compressively loaded compos-
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ite laminates using the Extended Schapery Theory
(EST).

Tests in the fiber direction, transverse to
the fiber direction and off axis tests are com-
monly used to obtain material behavior at the lam-
ina level. These tests supply a complete response
(stress-strain) curve (usually non-linear) with valu-
able information beyond the proportional limit. The
present theory (EST) is based on input that uses
only these measured and available test data in con-
junction with the laminate stacking sequence and
geometry of the problem configuration. Thus, the
EST introduced here uses readily available funda-
mental experimental input leading to a method that
can find wide ranging utility, well beyond the exam-
ple problem addressed herein.

The methodology introduced can also be used
to predict damage growth in a general laminate.
The laminate is assumed to be built-up as a stack
of lamina. Each lamina is modeled as a nonlin-
ear elastic, homogenised, orthotropic layer that can
undergo damage. Nonlinear elastic behavior is de-
picted via three polynomial functions of strain. Two
of these functions describe the ratio of secant mod-
uli in fiber and transeverse directions with the ini-
tial values of the respective moduli, without dam-
age. The third function describes the behavior of
poisson’s ratio. Damage is incorporated via three
internal state variables (ISV). These ISV’s represent
the ‘thermodynamic forces’ to change the state of a
material system. Evolution laws of these ISV’s in-
corporate work considerations and thermodynamic
requirements, such as, increase in entropy.

2 Theoretical Development

2.1 Non-linear Constitutive Formula-
tion

Schapery [3] developed nonlinear elastic con-
situtive relations using a work potential approach
which accounted for the effect of microdamage. The
equations are,

01 Qi fier + Quafi2ls
o2 = Quafoli +Qafrer
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The functions, f1, f and fi2, introduce non-

linearity into the constitutive relations. They are
defined as,
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Function f;, expresses the ratio between the
fiber direction secant modulus (E°) with its initial
value (E11). This information is available from a
coupon level tensile or compressive test in the fiber
direction upto the point of first failure. First failure
is associated with fiber kinking (compression) and
fiber fracture (tension). Similarly, function f, ex-
presses the same in the transverse direction(E% vs
Ess,)- Function f12 expresses the evolution of pois-
son’s ratio, 12. This can also be characterized using
uniaxial tensile loading in fiber direction. f; and fio
are functions of €¢; and f> is a function of €s.

Integrals I; appearing in (1) are defined as,

= / f2d62
0

These definitions of I; satisfy the reciprocity
condition,

€1
L E/ fiader, I
0
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2.2 Damage Modeling through Inter-
nal State Variables

In the existing literature on damage mechan-
ics as applied to fiber composite materials, the ef-
fect of damage is incorporated through the change
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in transverse young’s modulus Fs; and inplane shear
modulus G1;. For instance, Sun and Chen [4] pro-
posed a one parameter plastic potential in conjunc-
tion with orthotropic incremental plasticity theory
to study the evolution of Es> and G- in tension.
Schapery and Sicking [2], used ST to study the evo-
lution of F3» and G13. These previous studies were
not concerened with the state of the lamina beyond
first failure in the fiber direction. Yet, it is recog-
nized [5] that such damage is dominant for com-
pression loaded composite structures. Lamina level
coupon tests have shown that fiber direction modu-
lus, F11 and poisson’s ratio, 12 can be assumed to
be independent of microdamage that influence Es2
and G12. When the fiber direction strain exceeds the
fiber kinking strain, then the post kinking response
assumes that depicted in figure 2. In tension, fiber
fracture occurs and the resulting response is as indi-
cated in figure 3

2.2.1 Elements of Schapery Theory (ST)

In ref [2], Internal State Variables are used
to incorporate inelastic behavior in the material re-
sponse. Earlier, Schapery [6], introduced a more
general thermodynamic framework to study mate-
rials that undergo damage. In these developments,
the total work done in a mechanical process is as-
sumed to be composed of the inelastic work (W) and
the work of deformation (W).

WT:W+WS (2)

The irrecoverable portion of total energy
(Ws) can be determined from the material stress-
strain response as shown in figure 1. Internal state
variables or ISV’s are described through S;’s. Each
S; is associated with a particular damage mecha-
nism. To satisfy the path independence of total
work, these I5V’s have to satisfy the following rela-
tion,

oW,
fi= a5, (3)

Left hand side of equation 3 is called the ther-
modynamic force related to the i** ISV. An esti-
mate of the available thermodynamic force could be
obtained from the relation,

3
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fi= ~ 95, (4)

Schapery considered two I.SV’s. They were
the energies associated with matrix microcracks (S)
and of the transverse intra-ply cracks (S.), respec-
tively. Inelastic work is described as ,

W, =S +S5. (5)

These ISV’s are related to Foy and Gia
through (6)

E22
G12 =

E220 GS(S)GC(SC)
G12,9s (S)QC(SC)
(6)

Here, E», and G2, are transverse and shear
moduli of the virgin material, ie, at zero strain and
zero damage; es(S) and g5(S) are factors relating
these two moduli to microdamage ISV, S and e.(S.)
and g¢.(S.) are factors relating F2» and G12 to the
transverse cracking ISV, S..

The functions ey, e, gs and g, are expressed
as polynomial relations in respective ISV’s ([2]). As-
suming that the thermal expansion or contraction
strains are independent of damage, we obtain the
following form for the strain energy density (or work
of deformation) W.

G1271s

2
(7)

W = Quilii + Qaalas + v12Q2211 15 +

where,

€1
I11 = / €1f1d61
0

To incorporate geometric nonlinearities,
Greens’ strains and the second Piola Kirchoff
stresses need to be used in the expression for W.
For small strains, (7) would contain only the first
order terms in the strain-displacement relations.

Using equations (3)-(7), we obtain,
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Since the fiber direction stiffnesses are unaf-
fected by S and S,, the first terms in these equations
can be neglected. Also, v13v51 < 1. Thus the above
equations reduce to,

6E22 7122 6G12

(Ia2 + vi21 I) 35 + 5 59 1
8E22 ’)’122 8G12 _

(I2 + v121 1) as, + 5 99, 1

For an inelastic process the entropy produc-
tion rate is non-negative. Hence,

S+8,>0

The overdots represent temporal derivatives.
Physically, $ and S, are both non-negative because
healing (or reversible damage) is not allowed. Thus
S + 8. > 0 is strictly enforced.

From experiments ([2]), it has been observed
that for small strains, S behaves as €3. Thus to ex-
press the moduli, Fs2 and G153 in terms of a polyno-
mial of S, a reduced variable S, can be used,

S, = Sv3
(8)
The equation to determine S, now becomes,
0Ez | 71 9G12 2
I LI == = —
(Ira + vy I3) a8, + 2 38, 35,
(9)

The effect of transverse inter-ply cracking is
not as easily measurable as the effect of microdam-
age due to matrix microcracking. An estimate can
be obtained using equation 9 to approximate S, and
then using the following relation,

S.=Wr—-W-8 (10)

In the present study, we assume that matrix
microcracking is the only responsible mechanism for
transverse property degradation. A detailed discus-
sion of obtaining S, is provided in ref [2].

4
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2.3 Fiber Direction Damage - Ex-
tended Schapery Theory (EST)

The theory presented upto now is for a con-
tinuous evolution of the strain functions, f;, fo and
fi2. In its present form it is inadequate to incor-
porate post-kinking response (compression) or post-
fracture response (tension). The salient features of
the fiber direction response are shown in figures 2
and 3.

A new ISV associated with fiber direction
damage is introduced to incorporate response be-
yond kinking (compression) and fiber fracture (ten-
sion). It has been observed in laboratory tests that a
material behaves differently for tensile and compres-
sive loading along the fiber direction. While, local
fiber microbuckling/kinking due to the presence of
local imperfections is the main mode of failure in
compression([7],[8],[9], [10]), tensile failure is due to
fiber fracture, appearing as cracks perpendicular to
the loading direction.

The tensile response shows a clear loss of stiff-
ness at failure and the residual strength goes to zero
immediately after failure. The compressive response
shows the presence of residual strength after failure
giving an impression of transforming into a different
new material. We note that Rajagopal et al, [11]
have established a general thermodynamic frame-
work to address material microstructure evolution
in finite strain setting.

With a new ISV introduced, equation 5 be-
comes,

Ws=8,+S+ S (11)

The ISV S, represents the inelastic behavior
in the fiber direction due to compressive kinking or
fiber fracture. Hence, Sy, is not present in the initial
elastic regime. It can be computed from the mate-
rial stress-strain curve under compressive loading in
fiber direction (figure ??. Once kinking or fiber frac-
ture occurs, 9, takes a finite jump. The finite jump
in Sy in compression is termed the kinking tough-
ness and is a material property that is unique to a
fiber reinforced lamina and is a measurable quantity.
Sw is related to the fiber direction secant modulus,
FEy1 via relations similar to the moduli in other di-
rections.

American Institute of Aeronautics and Astronautics



Ei1 = E11,h(Sw) (12)

Using equations ( 11, 3 and 4) we can obtain
Sw at every state of strain as,

Q11

I, 5.,

=-1

(13)

3 Application of EST
3.1 Plate with a hole

The EST introduced in the previous section
was implemented in the commercially available fi-
nite element package ABAQUS, and results were ob-
tained for a unidirectional notched plate with a cen-
tral circular hole under compressive loading. The
analysis incorporated geometric nonlinearity. Due
to symmetry, only a quarter of the plate is analysed.
The problem geometry is shown in figure 6. The
plate was stressed until the damage zone initiating
at the edge of the notch reached the boundary of the
plate simulating a test program in which the plate
is stressed to complete failure.

3.2 Modeling in ABAQUS

3.2.1 Geometry

The geometry depicted in figure 6 was meshed
using plane stress 2-D continum elements, CPS4.
End loading was provided by specifying displace-
ment boundary conditions at the edge of the plate.
Symmetric boundary conditions were enforced on
the two sides adjacent to the hole.

3.2.2 Material Model

In the commercially available FE code
ABAQUS, it is possible to introduce user defined
material behavior through user written subroutines.
To that end, the user need to provide the incremen-
tal stress-strain relationships or the material jaco-
bian (J) and update the stress and /or any internal
state variables to their values at the end of each in-
crement. This user subroutine would be called by

5
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ABAQUS at every material point, where the user
defined material is included.

The material data for the present study was
obtained from [5]. The material is modeled as
homogenised orthotropic nonlinear elastic material
obeying EST. With a view to extending the present
work to model stringer stiffened notched panels in
compression ([5]), we were interested in obtainingthe
complete material response curves for AS4/3501-6.
Hence the data given in [2] for AS4/3502 was used
to approximate the relevant functional parameters
f1, f2, fi2, es(Sr) and gs(S;). Available param-
eters were scaled down by the ratio of moduli of
AS4/3501-6 and AS4/3502. A typical coefficient A;;
was modified as,

E3501
A3502

i 13502

3501 _
AT =

The modified set of parameters for the 0-layer
are given in table 2.

As stated earlier, in the present work only
Sw and S, are used as damage parameters since the
mechanisms of damage that are considered are ma-
trix microcracking and fiber direction damage.

4 Results

Two meshes (figures 7 and 8) with different
mesh densities were used to generate the finite ele-
ment results. From the results, we obtain the varia-
tion of reaction force against the applied end short-
ening. We also plot the fraction of undamaged ma-
terial remaining in the system against applied end
shortening. Figures are provided to show the growth
of damage through different loading positions for the
finer mesh.

5 Discussion

Initially the response of the plate is elastic.
Therefore the reaction force against the applied end
shortening (P — A) curve is linear (slight elastic non-
linearity is incorporated through the f;;’s, however,
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this does not show a visible effect on the P — A
curve)- see figure 10. When the material elements
adjacent to the hole reaches a critical strain corre-
sponding to fiber kinking a damage zone is found to
initiate at the edge of the hole. This is depicted in
figure 13 where we show the progression of damage
as darkened elements on the finite element grid (this
is shown only for the finer mesh, however, the salient
features of the damage progression were very simi-
lar for the coarser mesh as well). The corresponding
P — A curve shows softening due to the kink band
formation and propagation away from the edge of
the hole. In figure 9 we show results for both meshes.
Clearly the P — A curve does not show an apprecia-
ble change between the meshes, lending confidence
to the choice of the finer mesh. In figures 11 and
12, we have plotted the area fraction correspond-
ing to undamaged material against the applied end-
shortening. As is evident, as damage progresses, the
rate at which the kink band engulfs more and more
material, increases. We note that the present results
are remarkably in good agreement with previous ex-
perimental results ([12]), on uniply model composite
plates with a circular hole, where it was observed
that fiber kink banding initiated and propagated in
the manner that has been simulated in the present
work.

We also studied the effect of the plateau stress
magnitude on the residual strength. We did this by
lowering the plateau stress to 25% of the kinking
stress (case 2) (earlier, the plateau stress was 50% of
the kinking stress (case 1) )- see figure 5. The P—A
curve, corresponding to this latter case, is shown
in figure 10 where we have also shown the P — A
curve corresponding to the earlier (plateau stress=
50% of the kinking stress) results. The lowering of
the plateau stress leads to a drastic reduction (al-
most 50%) in the maximum load carrying capabil-
ity of the notched panel. Thus, both the kinking
stress and the plateau stress are important material
properties associated with the compressive charac-
terization of a fiber reinforced lamina. In fact, as
discussed earlier, the area under the fiber direction
compressive stress-strain curve upto the point of the
initiation of the plateau stress is termed the kinking
toughness and this parameter is an experimentally
measuarable quantity. Alternatively, micromechan-
ics modeling can be used ([9]) to extract the kink-
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ing toughness from the fiber and matrix non-linear
properties and the fiber volume fraction. Extension
of the present methodology to analyse the experi-
mental data on stringer reinforced stiffened compres-
sively loaded notched panels ([5]) is presently being
carried out and results will be reported in the near
future.

6 Conclusion

A non-linear elastic/damage methodology
has been presented and numerically implemented to
study progressive failure in fiber reinforced compos-
ite materials. The usefulness of the present method-
ology has been demonstrated by examining the com-
pressive response of a unidirectional notched com-
posite plate. The numerical results capture the
experimental observations that have been reported
before in the open literature. The present work
has succesfully addressed the important problem
of modeling unstable local material response (fiber
kinking) in a global setting, where the structure is
still stable. That is, we have provided a macro-
scopic methodology to analyze compressively loaded
composite structures in the presence of locally un-
stable material response. The usefulness of know-
ing the compressive kinking toughness of a fiber re-
inforced lamina (measured experimentaly or mod-
eled and extracted using micromechanics) has been
demonstrated. The utility of the present work is far
reaching in the analysis and design of damage toler-
ant composite structures.
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Figure 1:
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