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ABSTRACT thereby producing a nearly monotonic transition of 
flow properties through the shock Structure. 
Evidently, under these conditions, the dissipative 
terms in the modified governing equations are large 
in magnitude compared to the dispersive terms. 

The behavior of shock waves in transonic 
channel flow with varying Reynolds and Prandtl 
numbers is examined using analytical and numerical 
methods. It is shown that the location of the 
sonic line within the structure of a shock wave is 
independent of Reynolds number and is coincident 
with the location of the corresponding discontinuous 
wave in the limit as Reynolds number tends to 
infinity. Also, in a numerical solution, truncation 
errors and artificial viscosity produce a smeared 
shock wave which is similar to that found in a flow captured shock wave, normalized by L, is 0.1. 
at moderate Reynolds number. Thus, this research 
lends support to the commonly accepted supposition 
that the position of the sonic line within the 
structure of a numerical shock wave can be adapted 
as the location of the corresponding shock wave in 
inviscid flow. O(Rei (Mu-l) 1; for typical transonic flows at 

In general, the thickness of a captured shock 
wave may be characterized as occurring over 5 to 10 
grid points of a numerical solution containing 50 
to 100 streamwise grid points defining a character- 
istic body length, i. 
numerical estimate for the thickness, As, of a 

Hence, as an upper bound, a 

In a flow described by a pre-shock Mach number 
M 

wave has thickness', 6 $ ,  normalized by E, of 
and a Reynolds number, Rei, based on L, a shock 

U 
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high Reynolds number, the thickness of a shock is 
characterized by the mean-free-path of the gas 
molecules. Obviously, the thickness of a captured 
shock wave is much larger than that of a correspond- 
ing wave at high Reynolds number. That is, shock- 
capturing methods model the structure of a shack 
Wave corresponding to a flow at a much lower Reynolds 
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1. Introduction 

Computational techniques are emerging as use- 
ful research and engineering tools for conducting 
the aerodynamic analysis and design of aerospace 
vehicles. The use of computational techniques in 
these roles has resulted from improvements in 
algorithms coupled with new generations of comput- number, say ke- = O(A (M -1) ). Numerical solu- 
ers. The numerical simulation of transonic flows 
involving shock WaVeS is largely accomplished using 

methods. Such methods are advantageous far simu- numbers of 10' to IO3. Thus, ie- L is small in com- 
lating compressible flows since they allow a shock 
wave, whose location and strength are unknown in 
advance, to evolve as part of an initial value 
problem. However, these methods give rise to solu- 
tions exhibiting oscillations in the neighborhood 
of a captured shock wave, and the thickness of the 
captured wave is significantly larger than that of 
the physical shock wave at high Reynolds number. 
Unfortunately, because of the finite thickness of 
a captured wave, it is Presently difficult to de- 
termine the location of the shock wave with the 
desired measure of simplicity and accuracy. 

L s u  
tions of shock waves in transonic flows exhibit 

v shock-capturing finite-difference or finite-volume thicknesses corresponding to moderate Reynolds 

parison to the desired high Reynolds number yet 
large in comparison with unity. 

A shock wave at high Reynolds numbers, which 
appears as a discontinuity, should evolve as the 
Reynolds number tends toward infinity from a thick 
shock-wave structure corresponding to a moderate 
Reynolds number. It is clear that the thickness 

inversely with lleynolds number, but 
seems to he no known experimental or analytical 
evidence indicating the dependence upon Reynolds 
number of the position of the sonic line within the 
shock-wave structure. Numerical results3'4 have 
indicated that, for a practical range of computa- 

within a captured shock wave does not vary with the 
magnitude of the artificial viscosity. It has been 
Common practice (i.e. Ref. 3) to identify the posi- 
tion of the sonic line within the captured shock 
wave with that of the desired discontinuity. In 
light of these observations, several hypotheses are 
examined in this study. These are: 1) TO the 
accuracy desired, the location of the sonic line 
within the StrUCture of a shock 
flaw is independent of Reynolds number and so coin- 
cident with the 
continuous wave in the limit as Reynolds number 
tends to infinity. 2) In a numerical solution, 
truncation errors and added terms which introduce 
artificial viscosity produce a smeared shock wave 
which is similar to that found in a flow at moderate 

The smearing Of a captured shock wave is the 
result of dissipative phenomena arising from both tional parameters, the the sonic line 
the truncation error of the numerical scheme and 
diffusive terms, referred to as the "artificial 
viscosity" terms, explicitly included in the 
difference equations. 
errors and artificial viscosity, the actual 
differential equations simulated by the difference 
equations are no longer the original governing 
equations but, instead, are a set of modified 
equations; they contain higher-order Spatial deriva- 
tives which introduce dissi ative and dispersive 
phenomena into the solution . A common practice is 
to diminish the oscillatory behavior of the solution 
by increasing the magnitude of the artificial 
viscosity in the neighborhood of the shock wave 
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Reynolds number such that the location of the sonic 
line corresponds to the position of the desired 
shock wave at high Reynolds number. 

The validation of these hypotheses is accom- 
plished by comparing analytical and numerical solu- 
tions for a transonic flow in a symmetric ahannel. 
First, known solutions for inviscid flow are extend- 
ed to include a relation for the position of the 
shock wave to first order. Second, nnalytical 
solutions for a viscous transonic flow in the 
channel are derived. These solutions include the 
location of the sonic line within the thick shock 
Structure which is compared with the location of the 
shock wave when the flow is inviscid. 
numeiical solutions of an inviscid transonic flow 
in the channel are found and the location and struc- 
ture of the captured shock wave are compared with 
the results found from the analytical solutions. 

Finally, 

11. Formulation of Problem 

The model problem chosen is that of a steady, 
transonic flow in a converging-diverging, symmetric, 
two-dimensional channel, Figure 1. Far upstream 
and downstream of the channel throat the walls are 
parallel and eventually connect to plenum chambers. 
The flow far upstream is uniform and subsonic; it 
accelerates through a sonic throat to supersonic 
speeds. The supersonic flow is terminated by a shock 
wave residing in the diverging portion of the 
channel. The subsonic flow downstream of the shock 
wave decelerates into that portion of the channel 
with parallel walls. 

Figure 1 

normal to the channel centerline, with x=O at the 
point o f  minimal width, are made-dimensionless by 
half the minimum channel width, L. The effective 
shape of the channel walls, which may include the 
boundary layer displacement thickness, is given by 

Geometry and Inviscid Flow Characteristics 

The coordinates x and y measured along and 

(1) 
2 

YW(X) = ?j(l + E f(x)) 

where f(0) = f'(O)=O and E c< 1. 
as the ratio of the channel half-width to the pro- 
duct of  the radius of curvature at the channel throat 
and f"(0). 

Here c 2  is defined 

The gas is assumed to obey the perfect gas law 
and have constant specific heats. The density, p ,  
pressure, p, and temperature, T, are made dimension- 
less with respect to their undisturbed critical 
values. The enthalpy, h, and internal energy, e ,  

are normalized by a while the entropy, s ,  is made 
dimensionlzss with respect to the specific gas 
constant, R. The x and y velocity components, u 

and v, respectively, are made dimensionless by a , 
Here an overbar denotes a dimensional quantity, 

-*2 

-* 

The equations governing the motion of the flow 

are the continuity, the Navier-Stokes, and the 
energy equations, written5 as 

( P d X  + (PV) = 0 ( 2 )  
Y 

( 3 )  

( 4 )  

1 1 
puu + ovu = - - P + - R(u) 

puvx + p w  = - - P + - R(v) 
1 puHx + pvH Y Re 

X Y y x Re 

Y Y Y  Re 
W 1 1 

= - {R(h) + uR(u) + vR(v)l (5) 

where H is the total enthalpy defined as 

H = h + L(u2 + v ), and y is the ratio of specific 

heats. The momentum transport terms, R(u) and R(v), 
are defined as 

2 
2 

2 
R(u) = [uRux-(j" 11-11 )V 1 + [ U ( U  + vJIy ( 6 )  B Y X  Y 

and 

2 
R(v) = IU(u + vx)lx + IURvy-(7 v-uB)uXly ( 7 )  Y 

and the thermal transport term, R(h), is 

where the coefficient of viscosity, !A, and the 
bulk viscositv coefficient. L. are used to define 

' E. . the longitudinal viscosity coefficient, uR,  as 
follows 

4 
)J R = - p +  3 'B 

Also, the Reynolds number, Re, and Prandtl number, 
Pr,  are defined as *-*- 

-* Re ~ paL 

UR 

- -* 
c u  

A 

and 

p = J 3  
r -  

in which is the specific heat at constant pres- 

sure and is the coefficient of thermal conductivity. 
The equation of state, in dimensionless form, is 

P 

P = oT ( 9 )  

Finally, the above equations can be combined to form 
the gas dynamic equation 

(10) 
1 - oRe [uR(u)  + vR(v) - (~-1)RCh)l 

which will be used extensively in the following 
sections. 

To complete the problem formulation, boundary 

2 



conditions must be specified for the flow far up- 
stream and downstream of the channel throat as well 
as  along the channel walls. Since it is only the 
details of the flow field external to the boundary 
layer which are desired, the boundary condition for 
v along the walls is written as 

(11) dYW 
V(X,YW) = 5 U(X.Yw) 

W 

where y is assumed to include the displacement 
thicknek of the boundary layer; i.e., the physical 
wall shape is such that after the displacement 
thickness has been accounted for, the resulting 
effective shape is given by Eq. (1). As will be 
seen, terms containing the viscosity, i.e., the 
Reynolds number, occur as known forcing functions 
at each order of approximation so that no boundary 
condition on u at the wall is needed to the order 
retained. The pressure in the channel far down- 
Stream of the shock wave is adjusted such that the 
wave resides in the diverging portion of the channel 
The pressure in the channel far upstream of the 
throat is determined from the condition that the 
flow is sonic at the throat. 

111. Inviscid, Transonic Flow With Shock Wave 

Analytical solutions for a steady, inviscid, 
transonic flow containing a shock wave in a two- 
dimensional channel have been obtained by Messiter 
and Adamson6. 
asymptotic expansions valid to second order; the 
location of the shock wave is obtained to zeroth 
order. Here, the solutions for the flow velocities 
are extended to third order while the location 
of the discontinuous shock wave, x (y) = 0(1), is 
found to first order. 

These solutions are in the form of 

The governing equations for this problem are 
those obtained from Eqs. ( 2 )  - (5) in the limit as 
the Reynolds number tends to infinity. With this 
assumption, the gas dynamic equation, (lo), becomes 

2 2  2 2  (u -a )u + uv(u +v ) + (v -a )v =O (12) 
X Y X  Y 

where the sound speed, a, is obtained from the 
energy equation 

2 2 2  - a + u+v Y+l 
Y-1 2 2(y-1) 

For a shock wave in transonic f l o w ,  the velocity 
components upstream and downstream of the wave are 
related by the transonic approximation6 ta the 
shock-polar equation given by 

where the subscripts u and d refer to values imme- 
diately upstream and downstream of the shock wave, 
respectively. 

Composite asymptotic expansions for the velocity 

2 
components may be written'as 

"(X,YtE) - 1+EUl(X) + E [U2(X,Y) + C-(Si,?)l 
X 

(16) 

where 5, 6 ,  tlnd q are potential functions repre- 
senting perturbation potentials for an adjustment 

region with length 0(e1l2) immediately downstream 
of the shock wave. Upstream of the shock wave these 
potentials are identically zero. Suitable coo=- 
dinates for the adjustment region are found to be 
; = (x-xS)/c1l2 and j = y. Asymptotic expansions 
valid for the temperature, density and pressure are 
similar in form to that for the u velocity component. 
The expansion for the position of the shock wave 
is found to be6 

3 + E [v3(x.y) + B..G,i)l+ ... Y 

indicative of a normal shock wave to O ( E ) .  Using 
these expansions one can show the flow is irrota- 
tional to O(c3), i.e., v - u = O f & .  Substitu- 
tion of these expansionsXintoYthe governing equa- 
tions, Eqs. (12) - (14), results in a sequence 
of differential equations which, together with the 
boundary conditions, are solved to give the results 

4 2  + - Y+1 (ulf")"(x 4 - 2 + I-) 60 
6 

2 
+ Y -12Y+9 u: + 3-zyc -1 e 

~ 36 3 2 90 u1 
L 

( 2 0 )  
c2 fV2 f2 c3 

3 6(Y+l)ul 2(Y+l)ul + 
1 2" 

for ul, u2 and u3, respectively. Also, the trans- 
verse VelDClty components are 

V2(X.Y) = f ' W Y  (21) 

v3(x,y) = (y+l)"lulxy 2 + (Y+1)(Ulf")(Y 2 Y  -1) 

( 2 2 )  
The constant c in Eq. (18) is set by the velocity 
at the channelwthroat; since the throat is choked 

1 W 
for the problem being considered, then u 2 ( 0 )  = c = 0 

The constants c2 and c3 in Eqs. (19) and ( 2 0 ) ,  

respectively, are set by specifying the channel 
inflow and outflow conditions. 
that for the present case, where u ( 0 )  = 0 ,  

c = 0 and c = fvr2(0)/9O. The upper and lower 

signs in Eq. (18) correspond to locally supersonic 
and subsonic flow conditions, respectively. 
perturbation potential S ( f ,  p) is given by 

It should be noted 

1 
2U 3u 

The 
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cos n ~ y  exp [-nn~IJ(y+l)u~~ll (23) 

which is that given by Messiter and Adamson6. 
notation yo is defined as u (x 

mined by equating the mass flow rates at locations 
upstream and downstream of the shock in a manner 
outlined by Messiter and Adamson'. 
bounded by surfaces at the channel throat, the 
channel wall and centerline and a convenient laca- 
tion, %, far downstream of the shock wave, where 
the flow is uniform, is considered; then, the 
requirement that mass be conserved gives 

The 
1. 1 so 

The location of the shock wave can be deter- 

A control volume 

using Eq. ( 2 8 ) .  The specification of the pressure 
to third order at the downstream flow boundary 
determines the constant c ~ ~ .  

shock-wave position, xsl, can be calculated explicit- 
ly, from Eq. (28) .  

Hence, the first order 

The results presented here are seen to be 'w 
extensions of the solutions obtained by Messiter and 
Adamsons to higher order terms. Specifically, the 
outer velocity solutions have been extended to 
include the third-order terms, u3 and v3, given by 

EqS. (20) and (22 ) ,  respectively, Also, the shock- 
wave location, x has been extended to include the 
first-order term, x given by Eq. (28).  Finally, 

the solutions presented here, i.e. Eqs. (15) and (16), 
may be used to validate numerical methods since the 
solutions describe a demanding nonlinear transonic 
flow. 

s '  
SI' 

IV. Viscous, Transonic Flow with Shock Wave 

where yw(%) is given by Eq. (I). 
property equation and the energy equation may be 
used to relate p and u, yielding the equation 

The thermodynamic 

2 p u  - 1 - E 2  + (y+l)ul 
+ E 3 (y+l) [6(3-2Y)ul 1 3 - u u 1 1 2  

4 1 2 1 2  
1 2  2 u2 + E (Y+1) [~(3-2Y)u u - u1u3 - - 

where s 

shock wave given by6 

- su is the entropy increase across the 

s --s - e3 2yo " 3  
3 1" d u  

By expanding each term in Eq. (25) in a Taylor 
series about x -x so + sxsl + .,. and integrating, 
one finds, as s+O, the results 

(27) 2Y u3 
CZd = CZu - ?- 10 

and 

2Y2 4 2 
C3d = c3u + - Ul0 - 2YX u " 3 sl 10 1x0-2~u10c2u 

(28) 

The position of the shock wave to lowest order, 
xso, is determined from Eq. (27) .  
for example, of the pressure to second order at the 
downstream flow boundary is equivalent to setting 
CZd. Hence, Eq. (27) can be used to calculate 

ul(xso) from which xso can be determined using Eq. 

(18). 

The specification, 

In a similar manner, xsl can be calculated 

The structure of a weak normal shock wave was 
described by Taylor* for a perfect gas with Constant 
transport coefficients. Higher-order approximations, 
in which the Taylor solution appeared as the first 
approximation, were presented by Szaniawski9. The 
structure of two-dimensional shock waves was describ- 
ed by Sichello as a solution to the viscous-transonic 
equation. Similarity solutions for shock waves in a 
transonic channel flow at moderate Reynolds number 
were also presented by Sichel". These solutions, 
while clearly showing the influence of Reynolds 
number on the structure, lacked generality in that 
only special wall shapes could be considered. These 
restrictions were removed by Adamson and MessiterlZ 
who obtained solutions, in the form of asymptotic 
expansions, for a shock wave in a channel flow at 
moderate Reynolds number and constant Prandtl number. 
The work resented here extends that of Adamson and 
Messiter" to include third order solutions with 
variable Prandtl number, which are then used to find 
the location of the sonic line within the viscous 
shack wave t o  first order. 

\if&. 

The steady, transonic flow of a viscous and 
thermally conducting perfect gas in a symmetric 
channel, Fig. 2, is described by Eq. (IO). For 
simplicity, the Stokes relation between che first and 
the second coefficients of viscosity is assumed 
thus implying that che bulk viscosity is 
The viscosity coefficient. u, is assumed to be 

de~crihed'~ by the power law relation u = T , 
where k = O(1). 

V 
in which the Reynolds number, based on E ,  is taken 
as Re-' = ksE2, where ks = O(1). With this Reynolds 

number scaling it will be found that the flow to 
lowest order is inviscid. 

kV 

The problem to be examined is one 

4 k 0lr%1 

region 

flow Pegion 3 
Centerline ..._._.......____ x 

2 Figure 2 Flow Regions for E R = O(1) 



outer Composite ex ansions for the velocity 
components are given by s 

2 
u(x,y;E,k ) - 1 + EU (x) + E [u2(x.y;ks) + E;] S 1 

3 + s 5 I 2  8- t E Iu3(x,y;ks) + TI-]+. X . . (29) 
X 

;er" and 
v(x,y;s,ks) - E 2 v2(x,y) + E 512 5; 

+ E Iv (x,y) + 6-I+ ... (30) 
3 

3 Y 

where E , ,  5 and 11 are perturbation potentials arising 
in an adjustment region of extent Z = (x-x )/E 112 

=0(1) and p = y = O(1) occurring immediately down- 
stream of the shock-structure region; upstream of 
the Structure region the perturbation potentials 
are zero as found by Messiter and Adamsd. The 
thermodynamic variables have expansions similar to 
the u velocity component. 

In the outer camposite region, it is found that 
R(u) = O(E), R(v) = o ( E z )  and R(h) = O(E) so that 

H = T (Y+l)l(Y-l) + O ( e 3 )  but the term O(z3) and 
its counterpart in the expansion for the entropy 
are both functions of x alone, so the flow is 
irrotational to O(c4). 
tions into the gas dynamic equation, (lo), and the 
vorticity relation Y -u = o ( ~ ' )  results in six dif- 

ferentia1 equations which, when combined with the 
wall boundary conditions, allow the determination 
of the velocity components. 
ul, v2 and v3 remain unchanged from those found for 
the inviscid flow, Eqs. (18), (21) and ( 2 2 ) ,  
respectively. Additionally, the perturbation poten- 
tial E, remains unchanged and is given by Eq. (23). 
It is the higher-order velocity components u and 

u3 which are modified by viscosity; these components 

are given by 

1 

Substitutim of these rels- 

X Y  

The velocity components 

2 

(31) 1 3-2y u2 
u,(x,y) = f"(X)(+ - z) + - 6 1  

c2-lx +- 
u1 

7u1f" u1 3 ,, 2 
Y -1ZV+9 3 

36 ul + (Y+l)[--- - -1 + 360 18 

+ - . c  3-2y - - [ -+ -  1 f2 
3 2 UT Z(y+l). 

(32) 

respectively. Here m is defined as 

(33) 

and is O(1). 
tion of the total enthalpy and is defined by 
B = u (0). 
in Eq. (32) must be consistent with the integration 
constants cz  and c 

The constant B arises from the evalua- 

The lower limit of integration xI found 
IX 

3 '  

Just as was found in the inviscid flow, an 

adjustment region of 0(s1") in extent downstream 
of the shock structure is required in order to 
match successfully the outer solutions with the 
structure solutions. 

tion potential, m(%,p), so that 

If one defines a perturba- 

*(Z,p) = s5'2E,(a,p) + C36(%,P) + C7'2"(%3+... 
(34) 

then the gas dynamic equation becomes 

+ e.. + Q- = 0 ,  2 > 0 (35) YY r 
where 

and 9; is composed of known lower-order velocity 
components at each order of approximation'. The 
wall and centerline boundary conditions become 
m-(%,l) = @ - ( % , O )  = 0, respectively, while matching 

to the outer downstream solutions requires 
Y Y 

m - - 0  as s + m .  
Application of the divergence theoremi5 to ~ q .  (35) 
results in the equation 

(36) am -de = - 4 Q-dS I 
e an 

where amlan is the directional derivative of 
m in the direction of the outward normal to the 
closed path 2 which bounds the area S given by 
G > 0 and 0 5 7 c 1. 
tiFns for m, one-finds that', for ~ 4 ,  Eq. (36) 
gives the relations 

By using the  boundary cundi- 

which can be used to complete the specification 
of the boundary-value problem for m. 



V. Inner Shock-Structure Region 

Since the problem chosen is that of a tran- 
sonic flow in a dissipative gas with a Reynolds 
number O ( E - ~ ) ,  it is expected that a shock wave will 
appear as a region, With thickness O ( s ) ,  in which 
the f l o w  undergoes a rapid transition. 
speed downstream of the shock wave is taken as 
subsonic so that a sonic line, located at xa.(y), 
is within the shock-wave structure. The sonic 
line certainly remains within the structure of 
the shock wave with increasing Reynolds number, 
thus permitting x (y) to represent the location of a. the shock-structure region. In the limit as 
Reynolds number goes to infinity, x (y) must be 
coincident with the location of the'discontinuous, 
inviscid-flow shock wave; i.e., x,(y) + x (y) 3 s  
Re-. Evidently then, a suitable expans?on for 
x Lis 

The gas 

e 

The characteristic lengths associated with the shock- 
structure region are the shock-wave thickness, 
6 = O ( E ) ,  in the streamwise direction and the 

+ cgannel width, y (xi) = 0(1), in the ttlansv$rse 
direction. Hencx, independent variables, x and y , 
suitable for this inner region are taken as  

.-.,(y) + 

(41) x+ = __ E . Y  = Y  

where x,(y) is given by E q .  (40) 

The forms of expansions for the velocity c o w  
ponents in the inner structure region are found by 
expanding Eqs. (29) and (30) for the outer velocity 
components in Taylor series about the sonic line, 
x,(y). 
velocity components in the inner shock-structure 
region are given by7 

It is found that proper expansions for the 

+ + 5'2u;/2 + E 3 +  u + ... 
u - l + E U 1 + s U  2 + E  3 

( 4 3 )  - + "5/2v;/2 + E 3 +  v + . . . 2 3 

The pressure, density and temperature expansions 
for this inner region are similar in form to Eq. 
( 4 2 ) .  

The transport terms appropriate for the struc- 
ture region are found by substituting the above ex- 
pansions into E q s .  ( 6 )  to 18) to give R(u) - O ( E - ' ) ,  
R(v) " O(1) and R(h) - O ( E  I). 
the total enthalpy in the structure region is given 
by H - - (y+l)/(y-l) + o(E*), while the entropy 
variation within the Structure region is S - O(sZ). 
Finally, one finds the variation of  vorticity in 
the region is O ( S ~ / ~ ) .  
for the velocity components are found from the gas 
dynamic equation, (10) and the vorticity relation 

v -u - O ( S ~ / ~ ) .  Thus, one finds that u1 1s governed 

The expansion for 

1 
2 

The governing equations 

+ .  
X Y  
by 

+ +  + ( 4 4 )  u1ulx+ = mu + + 1x x 
+ 

Using this solution in 
which has a solution u+ = gl(y) tanh r where 

rt = fz(y) - 7 g,(y) x /m. 
1 1 

the vorticity relation, one finds by matching to the 

outer flow that v (y ) = f'y 

constants, say c1 and c 2 ,  respectively. 
+ 

matching the inner solution for u, to the outer com- 

+ +  + 
and g and f2 are + 2 +  0 1 

Finally, 

-+ pmite solutions, both upstream (x 3 --) and down- 

stream (x + -, +-), leads to the result that \wrJ 

+ +  + ul(x ) = ul0 tanh r (45) 

where 

.+=.+ex 10 + 
2m ( 4 6 )  

and ul0 = ul(xeo). 

+ + Here c 2 ,  which determines the origin of the r 
dinate, may he found from higher-order relations 
which locate the sonic-line position to O(s). 

solution for u+ given by Eq. ( 4 5 )  is Taylor's solu- 

tion for the structure of a weak shock wave. 

coor- 

The 

1 

+ .  
2 +The governing equation for u is written in terms 

of r and subsequently integrated to give7 

-4mfA +2 + + 2 +  
+ r tanh r - l+tanh r 

(y+l)u10 I =  4 cosh 2 +  r 2 8 1  
+ _  

u2 

2 +  + + 2 tanh r In cosh r 
2 +  cosh r CoSh r + u10 [-I-- 

tanh r + 
2 cosh r 

Matching this result to the outer solutions allows 

one to determine f while f must be determined by 

evaluating u2 at r = 0. By matching both upstream 
and downstream second-order terms of u one finds 

two equations for f,(y) which are combined to give 

+ + + 1  2 

+ 
~ 

2 L 2 2 '2d-'2u S - ( O , ? )  = -f" (y - -) + -Yu 
X 0 3 3 lo+- U. - 

I" ( 4 8 )  
Substitution of this result into Eq. ( 3 7 )  yields 

Eq. ( 4 8 )  completes the specification of the boundary- 
value problem for 4 and Eq. ( 4 9 )  provides a 
relationship between the constants specified hy 
the upsteam and downstream boundary conditions, 
c2, and cZd, respectively, and the sonic-line 
location, xao ,  to 00). 

is Seen to be identical to Eq. ( 2 7 )  for determining 
the location of the discontinuous shock wave, x 

10 This equation fo r  x 

SO' to O(1). 



Integration of the governing equation for 
u: gives' 

+2 
2 + +  3 + 2 + _ -  u2 

3r Ul0 
1 3 "lo u1 u2 Ul0 

u + + + - u u  = -  

+ +  + +  + + 
1 1  -C u - Cl J r uldr + C:ulo In cosh r 

+4 
+ t +  + +  + u1 -C4r - V1Uzr - !J u + + c - 

2 l r  5 4 

+ 
+g8(Y) (50)  

+ .  where gg IS a function of integration, and where 

Cl, C2, C3, C4, C5, C6 and C 
The asymptotic forms of u 

in conjunction with the asympotic forms of u 

i n  the same limits as given by the outer composite 
solutions, can be used in Eq. (50) to obtain two 
equations, one in each limit, of the form 

+ + + + + +  + are given in Ref. 7. 
+ 7  + and u+ for r + m, + 

3 
1 2 

+ 
~ e n c e ,  if coefficients of like powers of x are 
equated in each equation, six equations are obtain- 
ed, three for each limit. 

+2 
It is found' that the coefficients of x 

u9J of x result in equations for determining x' 

give 
equasions which are identities, and the coefficients 

Finally, it is Seen from Eq. (50) that at each limit, 

r +t= or r +--, the coefficients of x+' includes 
g Cy), the function of integration. If one of these 
equations is subtracted from the other, so as to 
remove g Cy), the resulting equation is 

k2' 
+ + 
8 

8 

mf ' 0 
( 

+ 2mc2 
+ (-)+ x,) (U2xdO+U2x"O) 1 

UlO 

In effect, because Eq. (52) contains both the up- 
stream and downstream asymptotic forms of the 
solution for the flow through the thick shock wave, 
the jump conditions applicable to the third-order 
terms in the velocity components are embodied in it. 

The desired equation for xQ1 is found by 
integration of Eq. (52) over the interval 
0351 where integrals of the potential functions 
in 5, 6 and n are found using Eqs. ( 3 6 )  through 
(39). Hence, Eq. (52) becomes7 

2 2 4  
- 2yu10c2u + 3y *lo c = c  3d 3u 

Since r+ = -yo IX-X~~-E(X~~+ 2mc2/u10)+. + . . )/2sm, 
it is seen from this result that the only location 
in the shock Structure which is independent of 
Reynolds nubher to O ( 6 )  occurs at the point where 

c+ = 0 ,  i.e., when x = x 

c2  = 0, it is seen that the equation here for x 

identical to that found for the position of the 
inviscid shock wave term xsl in Eq. ( 2 8 ) .  

it has been found that to O(E) the location of 
the sonic line within the structure of a transonic 
shock wave at moderate Reynolds number is indepen- 
dent of Reynolds number and Is coincident with 
the location of the corresponding discontinuous 
wave found at high Reynolds number. 

+ O(E~'~). Moreover, "ith % k + 
el is 

Hence, 

VI. NZMERICAL SOLUTIONS OF INVISCID CHANNEL FLOW 

In the previous sections, analytical solutions 
describing the behavior of both inviscid and 
viscous transonic flows in channels have been pre- 
sented. It was shown that to O(E) the position of 
the sonic line within the Structure coincides with 
the desired discontinuous shock wave in high 
Reynolds number flow. 
simulations of inviscid transonic flows within a 
channel are presented. 
shock wave is compared with the analytical structure 
solutions and the location of the sonic line wifhin 
the captured wave is also compared with chat from 
the analytical solutions. 

In this section, numerical 

The structure of the captured 

The grid system used in the computation is 
composed of a Set of adjoining quadrilateral mesh 
cells which are of nearly uniform spacing except 
for those cells near the channel wall. The grid 
lines are body-fitted and nearly orthogonal in all 
regions of the solution domain. A numerical pro- 
cedure, due to Visbal and Knight16, is used to 
generate the grid shown in Fig. 3 .  

. . . . . . . . . 

ou  
Y 
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Figure 3 Channel Grid 



10 the examples considered, the axial cell length 
is roughly 0.05 and the transverse width varies 
from a minimum of 0.02 near the wall to a maximum 
of roughly 0.05 near the centerline. 
consists of 130 streamwise cells and 24 transverse 
cells. 

The mesh 

The explicit finite-volume algorithm due to 
MacCormack and Paullay” is used to integrate the 
Euler equations in time from an initial State until 
a steady-state solution is obtained. The algorithm 
has been used extensively to obtain solutions to 
compressible-flow problems. 
order accurate, shock-capturing method, in which 
shock waves are smeared. The dependent variables 
are integrated in time by repeatedly applying the 
finite-volume operator to the dependent variables. 
The operator is a sequence of one-dimensional, 
time-dplit finite-volume operators. 

The scheme is a second- 

The inclusion of artificial viscosity in the 
finite-volume equations is of particular interest 
to this Study. Artificial viscosity is added in 
the form of a fourth-order pressure-damping term 
due to MacCormacklB. 
damping is widely used in shock-capturing numerical 
schemes to ensure stability and diminish oscilla- 
tions of the solution in the neighborhood of shock 
waves and serves as a suitable representative of 
methods which implement artificial viscosity. The 
term added to the finite-volume equations is of the 
form 

This particular form of 

where a is a constant used to vary the magnitude 
of this term. 

The initial conditions selected correspond 
to a uniform axial flow throughout the solution 
domain. The wall boundary condition is the flow 
tangency condition given by Eq. (11). On the channel 
centerline, the transverse velocity component, v, 
is set equal to zero. 
the wall and centerline are obtained from the equa- 
tionl’ 

The values of the pressure at 

2 2  
= -Kp(u +v ) an 

where n is the outward normal distance from the wall 
and K is the curvature of the wall or centerline. 
The stagnation pressure and temperature are specified 
at the upstream inflow boundary while static pressure 
is prescribed at the downstream outflow boundary. 
One-dimensional, unsteady characteristic equations2’ 
are used to describe the inflow and outflow wave 
phenomena. 

The incoming flow to the convergent-divergent 
channel is uniform and originates in a reservoir 
with constant stagnation pressure. PT1, and tempera- 
ture, TT1, of 1013 kPa and 273.15OK, respectively. 
The cross-sectional flow areas associated with the 
entrance and exit of the channel are the same; the 
area ratio between either of these locations and 
the throat is 1.12 which corresponds to selecting 
E = 0.2. For all cases to be presented here, the 
downstream static pressure is prescribed, according 
to quasi-one-dimensional flow theory, at such a 
value (736.8 kPa) so as to place a normal shock wave 
at the location x = 0.8. The numerical results are 
obtained using an integration time Step which is 0.7 

times the maximum-allowable time step given by the 
linearized stability analysis. Integration is 
carried out for a time period of roughly 20 times 
the characteristic time associated with convecting, 
at the critical sound soeed. the zas across the . .  - 
solution domain (a dimensionless distance of approxi- 
mately 6 . 5 ) .  

kd 
First, the numerical simulation is compared 

with the viscous transonic flow theory presented in 
SectionIVin order to ascertain the degree to which 
the captured shock-wave structure corresponds to 
that given by the analytical solutions. Towards 
that end, the composite analytical solution, valid 
to O(Ez), formulated in the previous section may be 
used to generate solutions at various Reynolds 
numbers. The value of c is taken as mulx(0) so 2U 
that u remains finite at the channel throat. The 
value of cZd is given by Eq. ( 4 9 )  with the sonic 

line positioned at xao = 0.8. In the analytical 

Solutions, the Prandtl number, as well as the expon- 
ent kv in the viscosity relation, is taken as unity. 

0 0 computation - theory, m = 0.05 
theory, m = 0.10 . __. . ._ 

theory, m = 0.20 

oa 
- m u - u  OD 1.0 M %O 

X/L 

Comparison of Viscous Flow Theory with 
Numerical Solution. Centerline velocitv 

Figure 4 
~I 

is shown using composite solution valid 
to O ( & .  

theory, m = 0.05 
theory, m = 0.10 
theory, m = 0.20 

I. 

Figure 5 Comparison of Viscous Flow Theory with 
Numerical Solution. Wall velocity is 
shown using composite solution valid to 
O ( & .  
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Fig. 4 is a comparison of the axial velocity along 
the centerline, as determined from the theory for 
flows at moderate Reynolds number, with the numeri- 
cal solution. 
of the parameter m, which is inversely proportional 
to Reynolds number, are shown, namely m = 0.05, 0.1  
and 0.2,  corresponding to Reynolds numbers of 389, 
194 and 97, respectively. The numerical solution 
shown is obtained using an artificial-viscosity 
coefficient, a, of 0 . 5 .  The analytical solutions 
are seen to bracket the numerical solution within 
the shock-structure region; the numerical solution 
also passes through sonic velocity at the location 
of the shock wave in inviscid flow. Additionally, 
the overall shape of the curves found analytically 
and numerically are qualitatively similar, especial- 
ly within the shock-wave structure. A comparison 
between the analytical and numerical solutions for 
the axial velocity component along the wall is 
found in Fig. 5. Again, the overall character of 
the numerical solution is quite similar to that 
displayed by the analytical solutions. In this 
particular example, the numerical solution does not 
exhibit the Zierep singularity6, probably as a 
result of excessive numerical damping. In light of 
these favorable comparisons, it is evident that a 
numerical solution of the Euler equations, including 
artificial viscosity and truncation error, for a 
nransonic channel flow containing a shock wave is 
approximately the same as an analytical solution of 
the Navier-Stokes equations at moderate Reynolds 
numbers. 

Analytical solutions for three values 

The effects on the numerical solution of changes 
in the magnitude of the artificial viscosity is 
shown in Fig. 6 .  Here the axial velocity component 
U on the centerline is shown for three values of the 
artificial-viscosity coefficient, a, and compared 
with the analytical solution for inviscid flow 
formulated in Section 111. A5 the numerical damping 
increases, the numerical shock wave is seen to 
increase in thickness in the expected manner. Ex- 
cept for the largest damping solution (a = 11, the 
sonic points within the numerical shock-wave struc- 
cures are observed to coincide, to plotting 
accuracy, with the location of the discontinuous 
shock wave in the inviscid-flow solution. 
numerical shock wave obtained with an artificial- 
viscosity coefficient of 1.0 is approximately 3s in 
thickness; it may he an indication of the limit to 
which the amount of artificial viscosity may be 
Increased and still give results similar to those 
obtained in the physical flaw as Reynolds number 
decreases. 

The 

- theory 
___--- cornputation, CL = 0.05 

computation, a = 0.50 _ _ _  computation, a = 1.00 

-i 
Figure 6 Comparison of  Inviscid Flow Theory with 

Numerical Solution. Centerlioe velocity 
is shop using composite solution valid 
to O ( E  ). Inviscid shock wave 1s at xS0=O.E 

w& 

- theory ______. computation, a = 0.05 
computation, a = 0.50 _ _ _  computation, CL = 1.00 La 

U -* 

FiKure 7 ComFmrison of Inviscid Flow Theory with 
Numerical Solution. Wall velocity is 
shop using com mite solution valid to 
O(E ) .  Inviscis shock wave at xso=0.8 

The effects of numerical damping on the axial 
velocity at the wall are found in Fig. 7. Here, the 
presence of the Zierep singularity in the numerical 
solution is observed for the case with the smallest 
damping (a = 0.05). Again, the sonic points within 
the numerical shock structures coincides with the 
location of the shock-wave discontinuity except for 
the solution with high damping. 

VII. Conclusions 

The behavior of shock waves in.transonic flows 
with varying Reynolds and Prandtl numbers has been 
examined using analytical and numerical methods. 
The method of matched asymptotic expansions has been 
used to provide analytical solutions for  both an 
inviscid and a viscous, thermally conducting tran- 
sonic flow in a s)mrmetric channel. The extension 
of previous work on viscous transonic flows in a 
channel to include the effects of Reynolds and 
Prandtl numbers upon the structure of a shock wave 
at moderate Reynolds number has been presented. 
position of the sonic line within the StrwtuIe o f  
a shock wave has been found to first order and is 
observed to be independent of Reynolds and Prandtl 
numbcrs to this order. Further, one finds that it 
is coincident with the position of the Shock wave in 
the corresponding inviscid flow. 

The 

Numerical solutions for an inviscid, transonic 
flow in a channel have been obtained using a second- 
order accurate, finite-volume method. The numerical 
solutions h m e  been observed to agree well with the 
composite analytical solutions for the channel f l o w  
including the Structure of the shock wave. Addition- 
ally, the position of the sonic line within the 
numerical shock structure agrees well with  the posi- 
tion of the shock wave in inviscid flow as deter- 
mined analytically. Although not presented here, 
the formulation, in tern of asymptotic expansions, 
of a transonic flow about an airfoil with a weak 
shock wave terminatin$ an imbedded supersonic region 
has been investigated . The Taylor solution for the 
structure of a weak, normal shock wave has been 
extended to include the effects of varying transport 
coefficients and shock wave curvature. Furthermore, 
it has been found that, to zeroth order, the position 
of the sonic line within the structure of this im- 
bedded shock wave is independent of Reynolds and 

I 
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Prandtl numbers and is coincident with the position 
of the corresponding shock-wave discontinuity obtain- 
ed when the solution for the flow at moderate 
Reynolds number is evaluated in the limit as 
Reynolds number tends to infinity. 

This research lends support to the comonly 
accepted supposition that the position of the sonic 
line within the structure of a numerical shock wave 
can be adopted as the location of the corresponding 
shock wave in inviscid flow. Finally, the analyti- 
cal solutions presented here allow this demanding 
model problem to be used in validating numerical 
algorithms. 
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