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The exact curve is found for the nose-on radar crosse
section of a perfectly conducting prolate spheroid whose ratio
of major to minor axis is 10/1, for values of w times
the major axis divided by the wavelength less than three, The
exact acoustical cross-section is also found for the same
range of paraneters,

Introduction

Analysis of the numerical work required to obtain exact scattering
cross-section curves by the method of Mie or Hansen, even when the
scatterer is a coordinate surface of a separable system, quickly suggests
that there should be a better method. Much work has been done in the
effort to find better methodsl?? and an approximate method for the

spheroid problem has been developed

*This article is a shortened version of "Studies in Radar Cross-Sections XI--

The Numerical Determination of the Radar Cross-Section of a Prolate Spheroid",
K. M., Siegel, B, H, Gere, I, Marx and F. B, Sleator (UMM-126, December 1953).

Now Chairman, Department of Mathematics, Hamilton College, Clinton, N, Y.

1. W. Franz and K, Deppermann, "The Creeping Wave in the Theory of
Diffraction", McGill Symposium on Microwave Cptics, June 1953,

2. V. Kline, "Asymptotic Solutions of Linear Partial Diffraction Equations
and the WKB Method", ibid,
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by CStevenson 3 s but up to the vresent the results of References 1 and 2
have bcen avplied §nly to cases wherc the exact solutions were already known,

Thus, although it wac %nown a »riori that the magnitude of the compu-
tations involved would be enormous, the classical solution for the spheroid
problen was carried out, and with the aid of the Mark IIT Digital Computer
and its excellent staff at the Naval Proving Ground at Dahlgren, Va., the
nurerical results presented here were obtained. This problem required
roughly five times the cavacity of the Mark III, To obtain 22 values of the
radar cross-section it was necessary to run the computer for ten weeks, part
of the time on a 2l hour seven-day-a-week basis,

Since it was expected that for ratios of semi-major axis a to semi-
rinor axis b near unity, the curve of nose-on radar crosc-section O vs,
wavelength A would approximate that of a sphere, it was decided that more
information would be obtained by exanmining a case with a larger value of
a/b., Thus a value of 10 was chosen for this ratio,

Furthermore, analysis revealed that for a fixed amount of machine
time the number of values of cross-section of a given body which could be

computed to a given accuracy decreased sharply as the wavelengtih decreassed.

2, A, F, Stevenson, "Solution of Electromagnetic Scattering Problems
as Power Series in the Ratio (Dimension of Scatterer) / wavelength,
Application to Scattering by an Elliosoid", Journal of Applied
Physics, Vol. 2L, p. 11Lh2?, (1953). The present paper contains some
of the numerical work referred to in Stevenson's "note added in proof",
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Since the Rayleigh solution was immediately available for the region
of large wavelength, it was felt that the present computations would
most profitably be concentrated in the region of the first maximum,

Previous analysis of the sphere problem indicated by analogy
that the first maximum for the prolate spheroid should occur at a larger
wavelength than that oredicted by physical optics,'and also that the
R=yleigh solution would form an upper bound on the curve in its region
of validity, Furthermore it was felt that the 10/1 spheroid should
behave electromagnetically rather like a thin wire, and accordingly the
abscissas of the successive maxima as predicted by the thin wire theory
of Van Vleck, Ploch, and Hamermeshh were corputed, Oﬁ the basis of
this information a set of values of 2naﬁ\'was chosen to span the region
in which the first maximum might occur,

In addition to comnuting the radar cross-sections, the Mark ITI
recorded enouch intermediate information so that the exact acoustical

answers were easily obtainable by hand computation,

b, J. H Van Vleck, F. Ploch, and !, Hamermesh, "Theory of Radar Reflec=-
tion from Wires or Thin Metallic Strips", Journal of Applied Physics,
Vol. 18, n. 27k, (19L7).
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Results

Thé results shown in Fig. 1 were obtained from the following formulas:
The geometric optics solution is

::77()6z a®
% . /

The physical optics solution is

o~ b [‘_ 2lcos haj(#) + sm l’a ]

PO
We note that
lim C:éo, = CZé.O‘ (KI=‘21T)4i)
b > P
Ye also note that _ 2
VY (4] po. ad .

p A

The Rayleigh electromagnetic answer is

o - e ™ T )"
£y NT (4 -N)* 2

where
T = amab’/s ,
and
2 a* b2 at@t- b64)=
Nz —=—= {1~ —, 109 T %
a--b Za(a *b}‘ a ‘\u éf/
For = /Ob

R

(93
v y
4 rr b
<Z;ax é 7’;;L (f ka 1)

The Rayleigh acoustical answer is

Oy, = LTI (2L \F
.a),. Aq 1..L Y
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where

a, FRay.

For ka®= 1, 2, 3, one may use the work of Spence and ranger 5
to obtain the nose-on acoustical cross section.
As stated nreviously, if one considers a 10/1 prolate spheroid
as a thin wire one could use the work of Ref. L to predict the
abscissas of the successive maxima.

The appropriate formula is

- 5 /5 L 3=/ cot Ka for odd maxima
1:?{ < /0#7—%—6 -+ —— /Qj“e /'(u /,87/ P {_ H

< tan Ko for even maxima,

5, ®. D, Spence and S, Oranger, "Scattering of Sound from a Prolate
Spheroid", Journal of the Acoustical Society of America, Vol, 23,
T‘TOQ 6, p. 761’ (1951)0

6
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When a/b = 10, the left hand side of this expressions reduces to

g % L,12 - 1,5 log, ka} o

Cn the basic of similar analyses for the sphere it was felt that
four terms in the field expansions would be sufficient to guarantee
accuracy of two sirnificant figures in the results for ka< 3. Conse=-
quently the exact cnrve is drewn out to ka = 3, and beyond this the
cormuted noints are plotted on the chance that the fourth order results
for clightly higher values of ita might be of some value, At several
values of ka both third and fourth order resuvlis were obtained in order
to give some idea of the magnitude of the errors involved in truncating
the infinite determinants, The differences between third and fourth
order solutions are cmall for ka < 3,

In order to show that the truncation error was small at ka = 3 and
that a fourth order solution was sufficiently accurate, the acoustical
cross-section was commuted for =211 orders up to 9. The results are

tabulsted here:

n | ¢ 1 2 3 W 5 6 7 B

o
ThiA 17.T .22 7.95 2,04 1,88 1,88 1,88 1.8 1,88

0

D

ta2ils of the numerical analysis used in obtaining the exact
answers are given in Apnendix A, The exact cross-section formulas are
nresented in ‘ppendix B, while a 1list of the quantities which were

tabulated by the Mark ITI is given in Appendix C.
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Conclusions

The abscissa of the first maximum of the nose-on cross-section curve
for a thin prolate soheroid can be obtained quite accurately froﬁ thin
wire theory, The ordinate of the first maximum for a 10/1 prolate
spheroid is only slightly higher than that for a sphere, This suggests
that for all prolate spheroids such that 1< a/b<£10, the ordinate of
the first maximum could orobably be oredicted to two significant figures
by linear interpolation between the spherc solution and that of the 10/1
spheroid,

The striking difference between the sphere and the prolate spheroid
solutions in both the electromagnetic and acoustical cases is that for
the spheroid the second maximum has a larger ordinate than the first,
This is the first such nroblem sclved in either electromagnetic or
acoustical theory in which the first maximum is not the greatest,

Among the many scientists who worked on the numerical aspects
of obtaining the exact solution on the Mark ITII Electronic Calculator,
the authors wish to cinsle out W, Bauer, R. Beach, D, M, Brown,

D. F, Eliezer, A. V. Fleishman, G, H, Gleissner, H, E. Hunter, K. Kozarsky,

R, A. Niemanrn, L, M, Rauch, and I, Wyman for special acknowledgement,
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Appendix A

Computations

The essential mathematical tormulation of the problem has been
given by Schultz in the vreceding article, and the expressions appeare
ing there were used in the computations with no appreciable modifica-
tion. For the range of parameters used in the present nroblem, however,
it was necessary to compute the spheroidal coeftficients den which
express the spheroidal wave functions in terms or spherical ones, and
which 3chultz assumed known. This was accomplished in the manner specie
fied by Fll.a.mmer6 .

A three-term recurrence relation is obtained by substituting the
expansion in associated Legendre functionsof the angular spheroidal
function S,ﬁ:? ( '?) into its differential equation and then applying
the differential equation and recurrence relations for the Legendre

tunctions., This equation may be written

m mn mn , P ™ mn
Ei“.dk“,;-& JK *Ck*-l (Jk_:‘ z O (1)
m k kel
(am+ +J.)/.2m +My )
were kex = (ameakt3)(am 2K *E) (@)
mn . . ktl) - -1
(meki(msk - 1) +A 2(m ¥ )(riokt) ~2m (3)
I; : o™ Bt Gt ik amrakt3)

6, C. Flammer, "Prolate Spheroidal Wave Functions", Technical Report
No. 16, Stanford Research Institute, February 1951,
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co oo KCk-1)
k-2 = Gmrak-D@mrik-1)

and,4m"is the separation constant for the radial and angular

soheroidal functions. Expansions of Ah’\in positive or negative powers

of ¢ are given in Ret. 6. The number of coefficients given there,
however, oroved insufficient to give the necessary accuracy in most cases,
with the result that when the recurrence relations for the spheriodal
coefficients were used repeatedly, the errors built up

indefinitely. Consequently an iteratiocn scheme was used to refine the

7

L4

values of the‘Amr{ One such orocedure is described by Bouwkamp
but this appeared unsuitable for programming on a digital machine, and
a simpler though less direct moditication of his technique was accord-
ingly emmloyed, the details are given below,

This iteration procedure and the tabulation of the spheroidal coef-
ticients occupied a sizable fraction of the total computation time.
The remainder of the operations were straightforward and presented no
serious ditficulties., However, as stated earlier, the volume of numbers
was such that although the Mark ITI was the largest digital computer
in use at the time, it was necessary to divide the problem into five

successive runs, as illustrated in the schematic diagram shown in Figure 2.

7. C. J. Bouwkamp, "Cn Spheroidal Wave Functlons of Order Zero",
Journal of Vatheratics and Physics, Vol. 26, p. 79, (1947).

10

UNCLASSIFIED



UNCLASSIFIED

UNIVERSITY OF MICHIGAN

ASSUMED RUN 1 RUN 2 RUN 3 RUN 4 RUN 5
Amn
E'__'— (Exact)
Apn \ _J
(opprax) |
BN g
|
I mn !
R
o2
—
| v -
¢ $ '
; or j mn
] o s L
p | A
R ' Nn
! 13:4-
\
| |
3 Nn o .
: s ‘ Ih)q’,é f
t m i : 2
! P.,‘_.‘,,) ( g), — BN,\;C\J,‘ ,
T N
EQ""‘" (&)i \s{ gt Paswthn
Rwn 73]
l,__,-_, ——]_ RN N N ——3 VgV
j I | d
! rin) ;‘éamq(”‘
1] b oo - - rr— . i« , N

FIG, 2 LOGICAL AND SEQUENTIAL STR'CTURE OF COMPUTATIONS
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As indicated here, the first machine run included, in addition
to the approximate values of the separation constants, computation of
certain Bessel and Legendre functions, made necessary by the limitations
of all previously existing tables, These were obtained from standard
power series formulas,

The second run included the iteration procedure for the refinement
of the App, which may be outlined as follows, for each set of values
of ¢, m, ne’

(1) The avproximate value of Ap, is substituted in eoua-

tion (3) to give an approximate value for Fﬁn and the other

two coefficients Eﬁ and Gﬁ are computed exactly, as given

by equations (2) and (k).

(2) The quantity K;Tl = - G?L/FTZ is computed, on

the assumption that d?g /d?ﬂ is negligibly small,

mn
k+2

for k =12, 10, « « « . . 5 O using equation (1) in the

mn m m
form 1/%, 5 = - (Fﬂn * B "!ﬁn) / Gy

(3) Values of Kgng‘i /d’;n are computed

(L) The quantity GTQ / ng = -an - Eg Kzn is computed,
m

Since the exacl value of C_, is zero, the computed value

H . 13 s ) . »
" The routine is riven here for n even, The obvicus modifications are
aprlied to deal with odd n,

12
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of GTQ / KTS is a measure of the error in the approximate

value of A used, If this does not exceed a certain
empirically established tolerance, the values of Kgn

obtained in step (3) are used to compute the required spheroidal

coefficients dl“’{n.

(5) TIf the value obtained in (L) exceeds the tolerance, it
is substituted back in equation (1) which then yields a second

approximation to A An average of the first and second

Xﬁn'
approximationsnay be used to repeat the procedure from step (1),
The remaining quantities appearing in Figure 2 have been discussed
in the preceding article, The specific formula for the back-scattering
cross-section, which is not given there, appears in Appendix B,
Formulas used in computing the acoustical cross-section are also

presented in this appendix,
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Appendix B

1., Tormula for Hadar Tack-Scattering Cross=Section

If the valuef7= 1 is substituted into the exoression for the
scattering cross-section derived in the preceding naver (equation 79),
the @ dependence disappears and the resulting formula for the back-

scattering cross-section can be written

g

n / 90 on | 2

o) % feo % |,

¢~ = linal

=3t

2. Acoustical Cross-Section
The problem of acoustical scattering by a prolate spheroid was
solved by Spence and Granger., In the present terminology the expres-

sion they derived for the nose-on cross-section '’ may be written

, 2 o a4l (1) % +1
P % z I H (8 s (). ;S,O(-l)n AH (%0)5, 27

where

) )
H,J‘S)‘ (g)/ on (g))

a1
“n 23 on <l)/Non

(1)
N = [ ( ] = 3
on 1 7

*
and An is the complex conjugate of An.
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Appendix C
fuvantities Tabulated in Machine Output

For each point shown on the graph of Fisure 1 the following

oguantities were recorded in the course of the computations:

- 0 3 m m
1. Associated Legendre functions P—n-m —1(5) and @ man (3)
and their derivatives with respect to &.
forms= 0,1

“:-1,'2,00000-'160

ssel functi cg) for Nat 2 ... 47
2. Bessel functions Jh+i( 5) y T

3. Separation constants A ,
n¥
form=z o, 1

n=o,1, 2, 3

li. Spheroidal coefficients d n(k70), and dy /F (k< 0),
for m = 0,1
h: O’ 1, 2’ 3

k = all required values in the range -16 to +16,

5. Radial soheroidal functions "E:l)n(f) and f«f:;')@) ani their derivatives
with respect to §.
for £z 1.005
m =0, 1

nzo, 1, 2, 3.
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6. DBoundary integrals I{:/"

fork =1, 2, 5, 6

all combinations of N and Ain the rance
N=0,1,2,3
n=o0,1, 2, 3.

(I;J ! nd Ig"were not recorded.)

To Determinantal elements Pﬂn ’ Ch‘n s n’Nn , UNn , VNn N wl\/n ’

for all combinations of N and nin the range
N=21, 2, 3,

nzn 1, 2, 3.

8, Radar cross-section &

With the exception ofg~ , all quantities are siven to 15 simificant
figures.s The values of ¢~ are rounded off tc 5 significant figures,
Particular values of any of these quantities may be obtained on

requeste.
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