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Aeroelastic Modal Characteristics of Mis tuned Blade
Assemblies: Mode Localization and Loss of Eigenstructure

Christophe Pierre*
University of Michigan, Ann Arbor, Michigan 48109

and
Durbha V. Murthyt

NASA Lewis Research Center, Cleveland, Ohio 44135

An investigation of the effects of small mistiming on the aeroelastic modes of bladed-disk assemblies with
aerodynamic coupling between blades is presented. The cornerstone of the approach is the use and development
of perturbation methods that exhibit the crucial role of the interblade coupling and yield general findings
regarding mistuning effects. It is shown that blade assemblies with weak aerodynamic interblade coupling are
highly sensitive to small blade mistuning and that their dynamics are qualitatively altered in the following ways:
the regular pattern that characterizes the root locus of the tuned aeroelastic eigenvalues in the complex plane is
totally lost; the aeroelastic mode shapes become severely localized to only a few blades of the assembly and lose
their constant interblade phase angle feature; curve veering phenomena take place when the eigenvalues are
plotted vs a mistuning parameter.

Nomenclature
A = aerodynamic matrix in physical coordinates
A = aerodynamic matrix in interblade phase angle

coordinates
AJ = aerodynamic coefficient for jth interblade phase

angle mode
E = Fourier transformation matrix
6j =yth constant interblade phase angle mode shape
K = stiffness matrix
K0 = nominal generalized blade stiffness
M = generalized mass
M = mass matrix
m = number of nonrotating blade component modes
N = number of blades
u = aeroelastic mode shape
Ui = /th physical coordinate
6K = deviation from tuned stiffness matrix
dKf = stiffness mistuning for /th blade
6X = first-order eigenvalue perturbation
62X = second-order eigenvalue perturbation
5u = first-order eigenvector perturbation
52u = second-order eigenvector perturbation
e = mistuning standard deviation
vij = j th interblade phase angle coordinate
X = aeroelastic eigenvalue
Oj = interblade phase angle for j th mode
o> = complex frequency
o>fl = assumed frequency
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I. Introduction

P ERFECT periodicity, or cyclic symmetry, is a convenient,
frequent assumption when the dynamics of bladed disk

assemblies is analyzed. A primary reason for taking advantage
of cyclic symmetry is that the blade response and excitation
can always be expressed in terms of constant interblade phase
angle modes that uncouple the equations of motion, thereby
reducing the size of the problem to that of one blade.1'2 This
simplification yields drastic reductions in computational cost.
Such ideal regularity, however, holds true only if all the blades
are identical and uniformly spaced and if the disk is symmet-
ric. However, periodicity is always disrupted by differences in
the blade structural properties and modes of vibration, which
result from manufacturing and material tolerances. Cyclic
symmetry of the unsteady aerodynamic loading may also be
destroyed by a slightly unequal spacing of the blades. This
phenomenon, known as mistuning, not only tremendously
increases the size and cost of the analysis of blade assemblies
such as turbines, compressors, and fans, but may also qualita-
tively alter their dynamics.

Numerous studies have been conducted in an attempt to
understand the effects of mistuning on the dynamics of blade
assemblies (see the survey paper by Srinivasan3). These studies
have led to some common conclusions. For example, it has
been suggested that, although mistuning has often a beneficial
(stabilizing) effect in a flutter situation,4'7 it may have an
undesirable effect on the forced response through a possibly
very large increase in the maximum amplitude experienced by
some blades.8 It has also been shown that blade mistuning
results in the appearance of new peaks in the frequency re-
sponse.9 Besides these general findings, though, there are
quantitatively and even qualitatively different results among
these studies. For instance, the increase in maximum ampli-
tude due to mistuning, the blade with the largest amplitude,
and the effect of mistuning standard deviation on the rotor's
largest amplitude were all found to be different by various
researchers.

We believe these discrepancies originate from the widely
different models and parameter values used in the various
studies. This was suggested and substantiated in a series of
recent papers.7'10"12 These studies showed that the sensitivity to
mistuning can vary by several orders of magnitude depending
on the strength of the interblade coupling, the excitation fre-
quency, and the number of blades. Specifically, in the weak
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inter blade coupling case, small random mistuning drastically
alters both the free and forced responses by localizing the
vibration to a small geometric region of the structure (or to a
few blades) and by increasing severely the amplitudes of some
blades—a phenomenon referred to as "mode localization."

These investigations led to a fundamental understanding of
mistuning effects. However, except for the pioneering work by
Bendiksen7 that evidenced the high sensitivity of closely
spaced aeroelastic modes to mistuning (although not localiza-
tion), the localization studies just cited did not include any
aerodynamic effects.

In this paper motion-dependent unsteady aerodynamic
loads are included in the formulation, leading to an aeroelastic
eigenvalue problem that governs the stability of the blade
assembly. Our primary objective is to reach general conclu-
sions regarding the effects of small structural mistuning on the
aeroelastic mode shapes, eigenvalues, and stability of typical
high-mass-ratio turbomachinery blade assemblies. The corner-
stone of our approach is the development and use of perturba-
tion schemes that enable us to predict mistuning effects and
that yield important physical insights into the dynamics of
mistuned assemblies.

To achieve structural mistuning without altering the aerody-
namic terms, we consider small, random mistuning of the
blade frequencies. Moreover, to highlight the role of aerody-
namic coupling on the sensitivity to mistuning, we ignore
structural coupling between blades. This enables us to demon-
strate the key roles of aerodynamic stiffness and damping. We
show that aerodynamic coupling has an effect qualitatively
similar to that of structural interblade coupling11 (although it
has a vastly different quantitative effect). In particular, we
find that assemblies with weak aerodynamic interblade cou-
pling (e.g., those for which aerodynamic forces are small
compared to structural elastic forces) are highly sensitive to
mistuning, and that their dynamics is qualitatively altered. For
example, aeroelastic modes become localized and the locus of
the eigenvalues loses its structure when small mistuning is
introduced.

The paper is organized as follows. Section II presents the
structural and aerodynamic models and the formulation of the
aeroelastic eigenvalue problem. The dynamics of tuned aeroe-
lastic systems is reviewed in Sec. III. In Sec. IV we discuss the
nature of two parameters that are key to our study: the aero-
dynamic coupling and the structural mistuning. Perturbation
schemes that predict and provide insight into mistuning effects
are developed in Sec. V. Section VI presents the results of a
parametric study of a blade assembly and their interpretation.
Section VII concludes the paper.

The primary original contributions of the paper lie 1) in the
evidence of new phenomena (e.g., localization of aeroelastic
modes and loss of structure of the root locus) occurring in
mistuned aeroelastic systems, and 2) in the generality of the
mistuning trends and phenomena uncovered by our perturba-
tion approach. We expect our results to be qualitatively valid
for typical turbomachinery blade assemblies with stiff blades.

II. Equations of Aeroelastic Motion
The structural and aerodynamic models we use in our study

are those introduced by Kaza and Kielb.13 In this section we
briefly describe these models. The reader is referred to Ref. 13
for a full description.

The structure we examine consists of N blades equally
spaced on a disk. Each blade is modeled as a straight, slender,
twisted, nonuniform elastic beam with a symmetric cross sec-
tion. The elastic, inertia, and tension axes are taken to be
noncoincident, and the effect of warping is considered. The
equations of motion of a rotating blade are discretized by
expanding the blade deflection in terms of the mode shapes of
the associated nonrotating blade. Thus, each blade is effec-
tively modeled by an m -degree-of-freedom system, where m is
the number of nonrotating blade modes used.

We do not consider blade root flexibility and assume that
the blades are unshrouded and rigidly clamped to the disk.
Moreover, as in Ref. 13, we take the disk to be rigid. This
means that there is no structural coupling between blades in
our assembly. Thus, the interblade coupling arises solely from
aerodynamic effects. This allows us to highlight the effects of
aerodynamic coupling, as those of structural coupling have
been studied previously.11

The unsteady, motion-dependent aerodynamic forces are
calculated by applying two-dimensional, linear, unsteady, cas-
cade aerodynamic theories in a strip fashion for both sub-
sonic14 and supersonic15 regimes. This results in a (complex)
matrix of generalized aerodynamic forces. Motion-indepen-
dent aerodynamic loads are not considered here, since we
restrict our investigation to the aeroelastic eigenvalue prob-
lem. Furthermore, to highlight the effect of aerodynamic
damping, no structural energy dissipation is included in our
model (although linear structural damping could be added
easily).

Since each blade is modeled by m natural modes, the motion
of a blade is described by m coordinates that are the ampli-
tudes of the motion in those natural modes. We will refer to
these modal amplitudes as the blade physical coordinates.
Application of component mode analysis to the TV-blade as-
sembly yields a set of Nm homogeneous, linear, ordinary
differential equations in the blade physical coordinates. We
look for motions such that all the blade coordinates oscillate
with the same frequency and/or decay or grow at the same
rate. This yields the aeroelastic eigenvalue problem:

{ -XM + K-A(u a ) )w =0 (1)

wherew = [wn, . . . , ulm, w2i, • • • , u2m, . . . , uNl, . . . , uNm]T

is the Nm -dimensional complex eigenvector of the blade phys-
ical coordinates, where T denotes a transpose; M and K are
Nm x Nm real inertia and stiffness matrices, respectively; A is
the Nm x Nm complex aerodynamic matrix, calculated at the
assumed frequency coa; and X is the complex eigenvalue.

The matrices A, K, and M consist of N2 blocks, each of size
m x m. Since there is no structural coupling between blades,
K is a block-diagonal matrix, where each block is the stiffness
matrix of an individual blade (for a nonrotating assembly
these blocks themselves are diagonal). The absence of struc-
tural coupling also means that M is block-diagonal.

The aerodynamic matrix A is fully populated. The off-diag-
onal blocks provide aerodynamic coupling between the blades,
and the off-diagonal elements for each block account for the
coupling between the (nonrotating) blade modes. The matrix
A depends on the assumed frequency of blade vibration ua and
on the flow and geometric parameters.

For a tuned system the blades are identical; thus, all ma-
trices in Eq. (1) are block circulant. These block-circulant
matrices have special properties that result in a mostly analyt-
ical description of the eigensolution of the tuned assembly
(this is discussed further in Sec. III). The stiffness matrix of
the tuned assembly consists of identical blocks on the diago-
nal. For example, for a one-component mode per blade repre-
sentation, K is proportional to the identity matrix. For a
mistuned assembly with arbitrarily different blades, the stiff-
ness matrix consists of distinct blocks and is no longer block-
circulant, but with the assumption of frequency mistuning, the
mass and aerodynamic matrices remain block circulant. In
fact, the aerodynamic matrix is left unchanged by the intro-
duction of frequency mistuning (if there is no mode shape
mistuning).

The solution of the aeroelastic eigenvalue problem [Eq. (1)]
dictates the nature and stability of the assembly's motion in an
aeroelastic mode. For an eigensolution (X, u), the blade as-
sembly's motion is given by u exp(/coO> where o> is the complex
frequency defined by X = co2 (and where i2 - -1 ). Writing
w = UR + /co/, where co/? is the frequency of oscillations and co/
the damping in the aeroelastic mode considered, one can easily
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show that Re X = u2
R - co/ and Im X = 2ujuR. This means that

for small damping the real and imaginary parts of X can be
associated with the natural frequency and the damping in a
mode, respectively. Note that instability, or flutter, occurs
when co/<0 or, equivalently, when the imaginary part of the
eigenvalue X is negative. The flutter boundary is thus defined
by o>/ = 0, or Im X = 0.

Most of the numerical parameters used for generating the
results reported in this paper are the same as those in the work
of Kaza and Kielb.13 Only the differences are mentioned here,
as follows. In most calculations the number of blades is
N = 56. The axial Mach number and the assumed vibration
frequency used for aerodynamic computations are 0.641 and
coa = 238.08 Hz, respectively. The rotational speed of the
blade assembly is 3000 rpm. In the calculation of aerodynamic
forces eight strips are used, and Table 1 gives the resulting
span wise Mach number distribution. Note that the tip Mach
number is 1.103; thus, both subsonic and supersonic aerody-
namic theories need to be used. The tip solidity is 2.382 and
the tip mass ratio is 19.4569. Only one component blade
mode, the first torsion mode, is considered. This results in
diagonal mass and stiffness matrices for the blade assembly
and in a circulant aerodynamic matrix A. Furthermore, if we
normalize the modes consistently so that all modal masses are
equal, the mass matrix is proportional to the identity matrix,
since in this study mistuning is introduced only in stiffness.
For a tuned system the stiffness matrix is also proportional to
the identity matrix.

In the rest of this paper we examine how the aeroelastic
modes of the assembly obtained by solving Eq. (1) are affected
by the introduction of small random blade mistuning. To
achieve this we must first understand the dynamics of the
perfectly tuned assembly. This is discussed in the next section.

III. Cyclic Symmetry and Tuned
Aeroelastic Eigensolution

A tuned bladed-disk assembly features perfect cyclic sym-
metry in the sense that all blades are identical and the first
blade (i.e., the reference blade) is adjacent to the TVth blade
(i.e., the last blade). In the tuned case all matrices in Eq. (1)
are block-circulant and the aeroelastic eigensolution has re-
markable features.1'2 For a single-component mode per blade
model the matrices become simply circulant. Important pro-
perties of circulant matrices are given in Appendix A. In this
section we discuss the characteristics of the corresponding
tuned aeroelastic modes.

A. Aeroelastic Eigensolution of Tuned Assemblies
The properties of circulant matrices (see Appendix A) deter-

mine the aeroelastic modes of tuned assemblies. Since M, K,
and A in Eq. (1) are circulant, they share the same set of
eigenvectors and thus the aeroelastic mode shapes of the tuned
assembly are the eJ9 j = 1, . . . , N, given in Eq. (A2). (This is
true whether or not aerodynamic effects and/or structural
coupling are included in the model.) This means that for a
motion in theyth mode all blades in the assembly vibrate with

Table 1 Spanwise Mach number distribution

Strip no. Mach no.
0.7163
0.7393
0.7830
0.8466
0.9230
0.9998
1.064
1.103

equal amplitudes and with a constant phase difference be-
tween adjacent blades. We rewrite this mode shape as

1
e =—fl eiajVTV

————— (modulo 27r), (2)

Strips are numbered from blade root to blade tip

The phase angle a/ between adjacent blades is equal for all
adjacent blade pairs. Consequently, the normal modes of the
tuned assembly are referred to as constant interblade phase
angle modes.

A motion in theyth mode is that of a wave traveling through
the assembly with a phase change a/ at each blade. It is
shown in Appendix A that e N _ j + 2 = ej (where an overbar
denotes a complex conjugate); hence, a motion in the
(N —j + 2)th mode is characterized by an interblade phase
angle aN-j + 2= - a, (modulo 2ir), corresponding to a wave
traveling in a direction opposite to that of the jth mode, with
the same phase change at each blade in absolute value. Here
we adopt the convention that a forward-traveling wave propa-
gates in the direction of increasing blade number. Note that
with this convention the positive rotation of the rotor is in the
direction of backward-traveling waves, i.e., in the direction of
decreasing blade number.

Hence we have the following description of the mode
shapes:

1) The first mode shape, e\, corresponds to a zero in-
terblade phase angle; all blades vibrate in phase with the same
amplitude.

2) For even N, the (TV/2 + l)th mode has an interblade
phase angle equal to TT; adjacent blades vibrate out of phase
with equal amplitudes.

3) Motions in the modes Cj corresponding to interblade
phase angles or, € ]0, TT[ are waves that travel backward through
the assembly.

4) Motions in the modes Cj such that a/ €]TT, 2?r[ are
forward-traveling waves related to their backward-traveling
counterparts by eN-J + 2 = Cj. A pair of forward- and back-
ward-traveling waves have the same number of (traveling)
nodal diameters.

The aerodynamic matrix A is complex; thus, from Eq. (A3),
its eigenvalues are complex. This means that, if aerodynamic
effects are included in the model, the aeroelastic eigenvalues
of the system (1) are complex (recall that M and K are real). In
addition, each pair of backward- and forward-traveling
waves, Cj and £/, is associated with two distinct eigenvalues,
because the unsteady aerodynamic forces depend on the direc-
tion of rotation of the rotor. For example, since the backward
traveling direction coincides with that of the rotor rotation,
the aerodynamic interaction forces between two blades are
different for a forward wave motion and a backward wave
motion.

If aerodynamic effects are not included in the model, then
A = 0 and the eigenvalue problem (1) is real symmetric. When
there is only structural coupling in a cyclic system, the eigen-
values are real and most eigenvalues have multiplicity 2, such
that Xy- = Xjv_y + 2» except for the zero-interblade phase angle
mode (j = 1) and, for TV even, for the ?r-interblade phase angle
mode (j = TV/2 +1). The structural-only model has double
eigenvalues because the direction of rotation of the assembly
has no effect on its dynamics; thus, backward- and forward-
traveling waves cannot be distinguished. For each double ei-
genvalue these two traveling waves combine into standing
waves with fixed nodal diameters. Furthermore, since the
system studied herein features structurally uncoupled blades,
removing the aerodynamic coupling yields TV-fold degenerate
eigenvalues for the tuned system.

The degeneracy that occurs in the cyclic structural system is
removed by aerodynamic forces. It would also be removed by
Coriolis forces if these were included in the formulation, since
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they depend on the direction of rotation (these forces are not
considered here). Similarly, any infinitesimal amount of mis-
tuning in one blade would also split the double eigenvalues of
the structural system. The conclusion is that real physical
rotors do not feature double eigenvalues.

Examples of motions in constant interblade phase modes
are shown in Fig. 1 for an aeroelastic system. The waves travel
along the assembly in the directions shown, except for the two
standing-wave modes.

B. Physical and Interblade Phase Angle Coordinates
All matrices in Eq. (1) admit the N, independent, interblade

phase angle modes as eigenvectors. Thus, we can diagonalize
the tuned aeroelastic eigenvalue problem by introducing the
coordinate transformation defined with the modal matrix E
given in Eq. (A4). Let

(3)

where the elements of u are the physical coordinates and where
we define y = [rji, . . . , riN]T as the vector of (assembly) modal
coordinates, or interblade phase angle coordinates; rjj repre-
sents the contribution of the mode with interblade phase angle
Oj to the total motion of the assembly. The matrix E defines
the transformation from interblade phase angle to physical
coordinates.

First we apply this modal transformation to diagonalize the
aerodynamic matrix. We have

A = diag (Ai, . . . , AJ9 . . . , AN) = E*AE (4)

because E is unitary, and where an asterisk denotes a conju-
gate transpose. The diagonal matrix A is the matrix of eigen-
values of A, made of the modal aerodynamic coefficients: Aj

Mode 1; ai = 0
Standing wave

Modes 2 and 56; cr2 = -0-56 :
Traveling waves

Modes 3 and 55; cr3 = -a55 = |f
Traveling waves

Modes 28 and 30; cr28 = -cr30 =
Traveling waves

Modes 27 and 31; <r27
Traveling waves

Mode 29; 0-29 =
Standing wave

Fig. 1 Typical constant interblade phase angle modes of a tuned
assembly of 56 blades. The deflection pattern in the physical coordi-
nates u is shown at a given instant of time. Note the standing or
traveling character of the mode shapes. Arrows indicate the opposite
directions of travel of the waves.

is the aerodynamic coefficient (e.g., a moment) for a cascade
of blades oscillating in the jth interblade phase angle mode.
These modal aerodynamic coefficients are distinct as they
depend on the interblade phase angle. In fact, it is typically A,
not A, that is calculated by unsteady aerodynamic codes. This
requires only TV independent calculations, one for each in-
terblade phase angle. The generalized (modal) aerodynamic
force for a motion of amplitude t]j in theyth interblade phase
angle mode is Aji)j, and the physical load on the blades is
AjtijCj. For a general motion the physical load is a linear
combination of the individual modal loads, given by
(£4 = EAiy. From QA = AM we retrieve Eq. (4) as A = EAE*,
where A contains the aerodynamic influence coefficients in the
physical coordinates.

Next, the transformation from interblade phase angle to
physical coordinates [Eq. (3)] can be applied to the eigenvalue
problem [Eq. (1)], yielding

- XE*ME + E*KE - \}rj = 0 (5)

where, for the tuned assembly considered here, E*ME =
diag(M/) and E*KE = diag(A}), where M, and Kj are the gener-
alized mass and stiffness for the yth interblade phase angle
mode, respectively. This gives the eigenvalues of the tuned
assembly as

(6)

Equation (6) can also be obtained by looking for the values of
X such that the circulant matrix (- XM + K - A) has zero
eigenvalues, by applying the general expression for the eigen-
values of a circulant matrix [Eq. (A3)].

Note that the imaginary part of Xy, and thus the stability of
the tuned assembly, is not affected by a change in the blade
stiffness. Also note that the difference between any two eigen-
values is proportional to that between the corresponding
modal aerodynamic coefficients.

IV. Nature of Aerodynamic Coupling and
Structural Mistuning

A. Aerodynamic Matrix Characteristics
Previous studies of structural models of blade assemblies

(e.g., see Ref. 11) have shown that the key parameter that
determines the sensitivity of their dynamics to mistuning is the
interblade coupling. In our model the coupling between blades
is provided solely by the aerodynamic terms. Thus, it appears
reasonable to explore further the properties of the aerody-
namic matrix in order to obtain useful insights into the effects
of mistuning.

An important characteristic of A is that its elements are
typically several orders of magnitude smaller than those of K
and M. This is because unsteady aerodynamic forces are very
small compared to elastic and inertia forces, at least for the
high-mass-ratio blade assemblies we are examining in this
paper. It immediately follows that, although aerodynamic
forces add stiffness and damping to the assembly, they do not
change the natural frequencies of free oscillations much. The
negative or positive aerodynamic damping that results is also
small, although it may be sufficient to cause an instability.
More important to our study, however, is the fact that, be-
cause the elements of A are small, the aerodynamic interblade
coupling is weak for a typical assembly. Thus, according to
earlier studies of mistuned structural systems and of mode
localization, our model has the potential to feature dynamics
that are highly sensitive to small mistuning. The small magni-
tude of the elements of A also suggests that perturbation
schemes can be developed that treat the aerodynamic term as
a perturbation. This will be useful when we attempt to charac-
terize the localized modes.

The aerodynamic matrix is made up of influence coeffi-
cients: the element AJJ is the generalized force on blade /
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caused by a unit generalized displacement of blade j. Clearly,
the aerodynamic interactions between two blades decrease as
the distance between these two blades increases, and we can
expect the coupling between adjacent blades to be the most
significant. This feature is illustrated in Fig. 2, which displays
the magnitude of the elements of one column of the matrix A.
We note the clear dominance of the terms closest to the
diagonal and thus that of nearest-neighbor interblade cou-
pling. The aerodynamic coupling with a next-to-neighboring
blade is about one order of magnitude less than that with an
adjacent blade.

This near-diagonal dominance of the aerodynamic matrix is
yet another similarity with structural coupling, which is typi-
cally also strongest between adjacent blades. It suggests that
the aerodynamic matrix in the physical coordinates can be
reasonably approximated by a tridiagonal circulant or a penta-
diagonal circulant matrix. (These matrices are not strictly tri-
or pentadiagonal since they have elements near the upper-right
and lower-left corners because of cyclicity.) Table 2 compares
the least stable eigenvalue (the one with the smallest imaginary
part) of the full matrix A with that of the tri- and pentadiago-
nal approximations. The comparison suggests that accounting
for adjacent and next-to-adjacent blade coupling is sufficient
to capture the assembly's dynamics accurately. (We have con-
firmed this conclusion by observing that the locus of the
eigenvalues changes very little when we use the pentadiagonal
approximation instead of the full matrix A.) Such approxima-
tions of the aerodynamic matrix will be useful when we seek to
characterize the localized aeroelastic modes in Sec. V.

B. Structural Mistuning
In this study we examine the effects of frequency mistuning

only. We assume that the individual blade frequencies are
random and uniformly distributed about the frequency of the
nominal blade with a small standard deviation. We achieve
this mistuning by altering the torsional stiffness of the blades.
We only consider small random mistuning of standard devia-
tion <10%, resulting from unavoidable manufacturing and
material tolerances and wear.

For a mistuned assembly the stiffness matrix K is no longer
circulant, but with our assumption of frequency mistuning,
the mass and aerodynamic matrices do remain circulant. We
show in the next section that this small deviation of K from
perfect cyclicity results in the drastic alteration of the aeroelas-
tic eigensolution, e.g., in the localization of the mode shapes.
This high sensitivity originates from the weak interblade cou-
pling terms in A.

V. Perturbation Analysis of Mistuned Assemblies
In this section we attempt to predict and characterize mis-

tuning effects on the aeroelastic eigensolution through the use
of perturbation schemes. We first apply a standard, or classi-
cal, perturbation method that predicts the high sensitivity to
mistuning. Then we develop a perturbation scheme that is able

0.016
3 0.014
^_ 0.012

of 0.01
1 0.008

0.004
0.002

0
1 6 11 16 21 26 31 36 41

Row number, i
46 51 56

Fig. 2 Magnitude of the elements of the 42nd column of the aerody-
namic matrix in the physical coordinates A for the parameters in
Sec. II. Note the dominance of the near-diagonal elements.

Table 2 Real and imaginary parts of the least stable eigenvalue of
a tuned assembly, obtained with the full aerodynamic matrix A
and with the tridiagonal-circulant and pentadiagonal-circulant

truncations of A

Matrix Re \u Im
Full
Pentadiagonal
Tridiagonal

1.2025
1.2016
1.2041

0.0077
0.0066
0.0042

to handle large mistuning effects and thus characterize the
mistuned eigensolutions (e.g., the localized modes).

A. Prediction of High Sensitivity to Mistuning
Even though classical perturbation methods fail to describe

the dynamics of a mistuned assembly when it is qualitatively
different from that of the corresponding tuned system, they
predict high sensitivity and provide useful insight into the
onset of mode localization. (We refer the reader who is unfa-
miliar with perturbation theory for the eigenvalue problem to
Ref. 16.) In the classical approach the unperturbed system is
the tuned assembly and the perturbation is the frequency
mistuning. The unperturbed eigenvalue problem is

{ - X0M + K0 - A(ua)}u0 = 0 (7)
where, for no structural coupling and one component mode
per blade, M = Ml and K0 = K0l. From Eq. (6), the unper-
turbed eigenvalues are Xoy = (K0 - Aj)/M, and the unper-
turbed aeroelastic mode shapes are uoj = €j(j = 1, . . . , TV).
Note that the eigenvalues are clustered in a narrow band
because the modal aerodynamic coefficients are small. Also,
the imaginary parts of the eigenvalues (representing the damp-
ing) are small because the Aj are small.

For the mistuned system the stiffness matrix becomes

K = K0 + <5K, <5K - diag (8)

where dKi is the deviation of the /th blade stiffness from the
nominal value K0, such that dKt/K0 < 1. We assume the bKt
are independent and identical random variables of mean zero
and standard deviation a. In this paper we consider only one
(arbitrary) pattern of random mistuning, such that

(9)

JV - 1 /Ti
i.e., the estimates of the mean and the standard deviation
obtained from one realization of mistuning are close to the
mean and standard deviation of the mistuning random vari-
able, respectively. With this notation the mistuning is order e,
and with the assumption of zero mean the average stiffness of
the mistuned assembly's blades is the nominal blade stiffness.

The perturbed (mistuned) eigenvalue problem is given by
Eq. (1). We consider a second-order perturbation expansion
of the eigensolution as

,N (10)uj = uoj + 5i// + d2Uj
where 5X/ and duj (respectively <52A/ and 62i*/) are first-order
(respectively second-order) terms in e. The general perturba-
tion formulas are given in Appendix B.

7. First-Order Eigenvalue Perturbation
We can show, using Eq. (B5), that

(11)
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where tr denotes the trace of a matrix, the sum of its diagonal
elements. We make two observations. 1) The 6X7 is real. This
means that there is no first-order effect of mistuning on the
flutter boundary, because stability is only affected by the
imaginary part of the eigenvalues. 2) The first-order perturba-
tion d\j is independent of j. Hence, all the eigenvalues are
shifted identically as a result of mistuning, by an amount
equal to the average of the deviations of the frequencies
squared from the nominal value. For small mistuning this
eigenvalue shift is always small. Moreover, in this paper the
mistuning pattern has a (nearly) zero mean; thus, the first-or-
der effect on the eigenvalues is (nearly) equal to zero. We
conclude that <5X/ is at most a term of order e that cannot reveal
high sensitivity to mistuning.

2. High Mode Shape Sensitivity
The first-order effect of mistuning on the aeroelastic mode

shape is, from Eq. (B7),

«2>
where we use Eq. (6). Equation (12) tells us that the magnitude
of dUj is determined by the ratios (e*dKej)/(Ak - Aj). If all
eigenvalues are well separated, then dUj is effectively first
order. However, if \Ak — Aj\ is order e or smaller, then dUj is
not order e any longer, but of the order of 1 or larger. The
assumptions for the use of asymptotic expansions in perturba-
tion theory are then violated, and the perturbation analysis
fails, thereby indicating that the mode shapes undergo dra-
matic changes.

We have seen in Sec. IV that the aerodynamic coupling is
typically weak; thus, the denominators in Eq. (12), Ak - Aj,
are first-order or smaller terms. (This is qualitatively similar to
the structural case where the distance between eigenvalues is
also small for small interblade coupling.) This means that for
first-order mistuning the ratio of disorder to interblade cou-
pling, and thus dUj [see Eq. (12)], is finite or large, and that the
aeroelastic mode shapes are highly sensitive to mistuning. We
show in Sec. V.C that this failure of the perturbation analysis
indicates the occurrence of mode localization.

It is interesting to note that the quantity e*SKej (k ^j) is
the coupling of the unperturbed eigenvectors through the mis-
tuning matrix and provides a good representation of disorder
in the assembly. For example, if the stiffness of all blades were
changed by the same amount, then 6K would be proportional
to the identity matrix and there would be no disorder since

B. Eigenvalue Loci Veering Phenomena
While the first-order mode shape perturbations provide in-

sight into the sensitivity to mistuning, interesting and useful
behavior can also be observed by considering the second-order
eigenvalue perturbations. From Eq. (B6),

as)
Any-

where vertical bars denote the modulus of a complex number.
The same mechanisms as those described earlier for the mode
shapes lead to high sensitivity. Namely, 62Xy is not second
order, but first order or larger, when the coupling of the
eigenvectors through the mistuning e*5Kej is of the same
order or larger than the aerodynamic coupling, measured by
\Ak - Aj r I. Then perturbation theory fails. Note that these
large mistuning effects are predicted by the second-order ei-
genvalue perturbation but are completely overlooked by the
first-order perturbation [Eq. (11)].

From Eq. (13) we conjecture that the sensitivity to mistun-
ing increases with the number of blades. This is caused by two
mechanisms: 1) As Nincreases the number of interblade phase
angles increases and the difference between two adjacent ones,
2ir/N, decreases. In turn, we can reasonably expect the differ-
ence between the two corresponding modal aerodynamic coef-
ficients to decrease and thus the terms in the summation (13)
to increase. 2) As N increases the number of terms in Eq. (13)
increases and thus the second-order eigenvalue perturbation
increases. This is readily seen for the eigenvalues such that all
terms in the summation are positive or negative (e.g., for the
real part of the lowest- and highest-frequency eigenvalues and
for the imaginary part of the least and most stable eigenval-
ues). This larger effect of mistuning with increasing number of
blades is illustrated in Sec. VI.

Another remark is that 62X/ is complex and thus both fre-
quencies and damping values are affected by mistuning to the
second order, unlike the first order. Below we examine in
detail the real and the imaginary parts of the mistuned eigen-
values. Recall that they correspond to the frequency and
damping in an aeroelastic mode, respectively.

L Veering Away of the Frequency Loci
From Eq. (13), the real part of the second-order perturba-

tion is

y = l , . . . , N (14)

Consider the locus of the real part of theyth eigenvalue Re X/
vs the mistuning strength as estimated by the standard devia-
tion, e. From Eq. (14), Re 62Xy is proportional to e2, the
coefficient of proportionality being equal to one-half the cur-
vature of the locus of Re X, vs e. We observe from Eq. (14) that
this curvature is inversely proportional to the interblade cou-
pling and is thus large for weak aerodynamic coupling.

Now consider the tuned eigenvalues with the smallest and
largest real parts, corresponding to the modes with the lowest
and highest natural frequencies, and denote them \L and X//.
From Eq. (6), these two eigenvalues are associated with the
modal aerodynamic coefficients with the largest and smallest
real parts, respectively. (Note that the interblade phase angles
corresponding to the eigenvalues with extreme real parts de-
pend on the system studied and its parameters.) For the low-
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Fig. 3 Loci of th? real parts (frequency) of the eigenvalues corre-
sponding to the highest- and lowest-frequency modes vs mistuning
strength. Observe the abrupt veering away of the loci for small mis-
tuning.
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est-frequency eigenvalue all terms in the summation, Eq. (14),
are negative; hence, Re d2\L <0 and the locus of the real part
of the lowest frequency eigenvalue has a large negative curva-
ture at the tuned state. Similarly, for the eigenvalue with the
largest real part, all terms in the summation are positive.
Thus, Re 62A//>0 and the highest frequency locus has a large
positive curvature. This means that the loci of the extreme real
parts, Re \L and Re A//, have large and opposite curvatures:
the loci abruptly veer away from each other at the tuned state
e = 0. This eigenvalue loci veering is illustrated in Fig. 3 for the
system parameters of Sec. II. It indicates the high sensitivity to
mistuning and is the same phenomenon that was observed
previously for the lowest and highest frequencies of a struc-
tural assembly.11

The phenomenon of veering away of the loci suggests that
second-order eigenvalue perturbations can be used effectively
to indicate high sensitivity. It also tells us that the modes with
extreme frequencies are more sensitive to mistuning than the
other modes and thus will localize first, because the corre-
sponding loci have larger curvatures.

2. Veering Toward of the Damping Loci
Now consider the effects of mistuning on the imaginary part

of the eigenvalues. We have, from Eq. (13),

(15)

\Ak-Aj\

7 = 1 , . . . , TV

Recall that Im X/ determines the damping in the yth mode,
with flutter occurring if Im A, < 0. The least stable mode of
the tuned assembly corresponds to the eigenvalue with the
smallest imaginary part A<y, which in turn is associated with
the interblade phase angle that yields the modal aerodynamic
coefficient with the largest imaginary part [from Eq. (6)].
Thus, all terms in the summation, Eq. (15), are positive for the
least stable eigenvalue and Im d2\u>0. It follows that mistun-
ing increases the imaginary part of the least stable eigenvalue
(because 6Ay = 0 for all y); hence, it has a stabilizing effect.
This beneficial effect of mistuning on the least stable root
holds for any mistuning pattern, provided the average blade
frequency is not altered by mistuning, i.e., EfL { dK, = 0. This
finding agrees with that of Bendiksen.7 We point out, how-
ever, that the stabilizing effect of mistuning does not necessar-
ily hold for the other eigenvalues, because some of the terms
(ImAj - Im^U) in the summation (15) are negative. For ex-
ample, the most stable root becomes less stable. It is conceiv-
able, at least mathematically, that for some mistuning pattern
an eigenvalue near the least stable one could become unstable
(although we never encountered such a case numerically).
Thus, care should be exerted when the stabilizing effect of
mistuning on flutter is exploited.

Since aerodynamic forces are small, Im 52A(/, although
nominally a second-order term, is first order or larger, which
means that mistuning has a first-order or larger effect on the
flutter speed (again this agrees with the findings of Ref. 7).
This makes the use of mistuning as a means of passive flutter
control attractive. However, it should be pointed out that Eq.
(15) is not a valid approximation of the least stable mistuned
root in this high sensitivity case, because it is precisely the
failure of the perturbation expansion that indicates the large
mistuning effects. To obtain a correct approximation of the
mistuned eigenvalues, we must use the modified perturbation
scheme presented in Sec. V.C.

Next, we consider the loci of the imaginary parts of the
eigenvalues Im Ay vs the mistuning strength e. Expectedly, Im
52\j is proportional to the curvature of the y'th locus at the
tuned state. The least and most stable tuned roots, \u and As,
are those with the smallest and largest imaginary parts and
correspond to the modal aerodynamic coefficients with the
largest and smallest imaginary parts, respectively. From Eq.

(15) we deduce readily that Im <52A[/>0 and Im 62AS<0.
Hence, for weak interblade coupling the curvatures of the loci
of Im \u and Im As are large and opposite. However, contrary
to the loci of the real parts, the locus of the root with the
smallest imaginary part has positive curvature and vice versa.
It follows that the loci of the two extreme imaginary parts veer
toward each other with large curvature at the tuned state. This
phenomenon is illustrated in Fig. 4, which displays the imagi-
nary parts of the least and most stable roots vs mistuning for
the parameters of Sec. II. We believe the phenomenon of the
damping loci veering toward is characteristic of highly sensi-
tive aeroelastic systems and has not been examined before.

C. Analysis of Mode Localization by Modified Perturbation Methods
Once high sensitivity has been predicted by the perturbation

approach described earlier, the next step is to analyze the
characteristics of the aeroelastic modes of the mistuned sys-
tem. To do so, perturbation methods have to be modified to
handle the dramatic changes resulting from small mistuning.
Such an approach has been developed in Ref. 11 to analyze
localization in structurally coupled assemblies.

The key idea behind the modified perturbation scheme is
to recognize that high sensitivity is caused by the small in-
terblade coupling; hence, this small parameter should be
treated as a perturbation. However, if both mistuning and
coupling are considered perturbations, the unperturbed sys-
tem consists of uncoupled identical blades and thus is TV-fold
degenerate. To remove this degeneracy, we include mistuning
in the unperturbed state and treat the interblade coupling as
the perturbation. With this modified perturbation scheme the
unperturbed system is purely structural, consisting of uncou-
pled mistuned blades in a vacuum. It thus has distinct natural
frequencies (unless two mistuned blades happen to have the
same frequency, but we shall not consider this unlikely case).
The perturbation consists of the small unsteady aerodynamic
forces. Each normal mode of the unperturbed system features
uncoupled oscillations of a single mistuned blade, with all
other blades remaining quiescent. When weak interblade cou-
pling is introduced, the neighboring blades participate in
the modal motion, but do so with small amplitudes because
the small coupling is not sufficient to cause a resonance among
the slightly different blades. Each mode of the mistuned as-
sembly is a perturbation of the oscillations of a single blade,
and thus is localized to that blade or to the small neighboring
geometric region, depending on the magnitudes of coupling
and mistuning. In the following we formalize this description
of localization.
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Fig. 4 Loci of the imaginary parts (damping) of the least and most
stable eigenvalues vs mistuning strength. Observe the rapid veering of
the loci as mistuning increases.
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1. Effect of Aerodynamic Coupling on Eigenvalues
With the modified perturbation scheme the unperturbed

eigenvalue problem is

(16)

where the superscript m refers to the modified perturbation
method. Since all matrices in Eq. (16) are diagonal, the modi-
fied unperturbed eigensolutions are simply

\(m) _Ao/ -
Kn

M / = !,..., N (17)

position /

corresponding to purely localized oscillations of individual
blades at their (rotating) mistuned frequencies. (Note that
these eigenvalues are sorted according to blade number, not by
increasing frequency.)

The matrix ( - A) is the modified perturbation that provides
the aerodynamic interblade coupling. From Eq. (B5) one can
show that the first-order modified eigenvalue perturbation is

= -T7' i = l , . . . , N (18)

Since the aerodynamic matrix in the physical coordinates A is
circulant, it has identical diagonal elements, and one can easily
show that

"N*
i / = i, ,N (19)

since the trace is an invariant under similarity transformation.
Equations (18) and (19) mean that to the first order the eigen-
values are displaced by the average of the modal aerodynamic
coefficients, which provides both damping and additional
stiffness to each mode. A similar finding was obtained by Wei
and Pierre,11 who showed that for weak structural coupling
the eigenvalues are shifted approximately by an amount equal
to the coupling stiffness between the blades.

To the first order in the aerodynamic effects, the eigenval-
ues of the mistuned assembly are

/ = ! , . . . , AT (20)

This approximation holds for small values of the ratio of
aerodynamic coupling to frequency mistuning, that is, for
not-too-small mistuning. It is not valid in the range of very
small mistuning values where curve veering phenomena and
high sensitivity occur. In this region the classical perturbation
method described in Sees. V.A and V.B approximates the
dynamics well.

Now consider the loci of the real and imaginary parts of the
eigenvalues vs mistuning strength e. To the first order we have
Re \i - (K0 + bKi - Re(trA)/7V)/M This tells us that, away
from the veering region, the loci of the real parts tend to
straight lines whose slopes are determined by the individual
blade mistunings. This trend is indeed observed in Fig. 3 for
not-too-small mistuning. For the imaginary parts we have
Im \j - - Im(trA)/7VM; thus, we expect the loci to approach
a straight line with zero slope as mistuning increases. This is
indeed observed in Fig. 4, although the imaginary parts of the
eigenvalues tend to distinct values, whereas the first-order
result [Eq. (20)] predicts identical asymptotes.
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Fig. 6a Aeroelastic mode shape associated with the lowest-frequency eigenvalue XL for various mistuning strengths and patterns of amplitudes.
The extended mode of the tuned system becomes severely localized for small mistuning and loses its constant interblade phase angle.

We can improve our approximation by including second-or-
der effects in the aerodynamic coupling. This yields

(21)

Note that since A is circulant, there are only N distinct ele-
ments Aik. These perturbation results are compared with nu-
merical solutions in Sec. VI.

2. Localized Aeroelastic Mode Shapes
Using Eq. (B7), we obtain the first-order modified perturba-

tions of the eigenvectors as

*** £ 1^ Si If
k — \ O/v / — OA. k
k*i

(22)

where \k is defined in Eq. (17). Combining Eq. (22) with
Eq. (17), we obtain the approximate mode shapes to the first
order in the aerodynamic coupling:

Ui —

position /

, . . . , = l,...,N (23)

Several remarks are in order:
1) The modified perturbation method is valid for small

aerodynamic coupling to mistuning ratio. This means that all
but the ith element of the /th mode shape in Eq. (23) are much
smaller than one. Hence, the /th aeroelastic mode shape is
localized about the /th blade. The other blades participate in
the modal motion, but with much smaller amplitudes. It is
important to note that localization occurs for mistuning that is
not too small, i.e., away from the veering region in the eigen-
value plots (Figs. 3 and 4).

2) We observe in Eq. (23) that the vibration amplitude of a
blade in a localized mode is directly proportional to the
amount of aerodynamic coupling between that blade and the
large amplitude blade. Since we have seen in Sec. IV that the
coupling between two blades decreases rapidly as the distance
between them increases, it suggests that only the blades that
are close to the large amplitude blade vibrate with an ampli-
tude that is not negligible. In other words, there is a rapid
spatial decay of the blade amplitudes away from the large
amplitude blade, and for a strongly localized mode only the
nearest neighboring blades participate in the motion.

3) In a localized mode the vibration amplitude of a blade is
inversely proportional to the difference between its stiffness
and that of the large amplitude blade. Hence, two blades that
are far apart but whose frequencies are sufficiently close may
experience local resonances, even though the blades between
those two vibrate with very small amplitudes. This means that
depending on the mistuning pattern for the assembly a mode
may be localized about more than one blade.
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Fig. 6b Aeroelastic mode shape associated with the lowest-frequency eigenvalue XL for various mistuning strengths and patterns of interblade
phase angles. The extended mode of the tuned system becomes severely localized for small mistuning and loses its constant interblade phase angle.
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Fig. 7 Amplitude patterns of aeroelastic mode shapes of an assembly with e = 0.95% mistuning. The lowest- and highest-frequency modes and
the least and most stable modes are shown. Observe that the modes near the edges of the frequency cluster (modes 1 and 56) are more localized
than those near the middle of the frequency band (modes 26 and 34).
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Fig. 9 Amplitude pattern of the highest-frequency mode A// for mis-
tuned assemblies. The mistuning strength is e = 4.76%. Observe the
much stronger localization featured by the assembly with the lower air
density.

4) Equation (23) shows that the degree of localization of a
mode depends only on the ratio of aerodynamic coupling to
structural mistuning. Thus, localization increases as interblade
coupling decreases or as mistuning increases. Finally, second-
order mode shape perturbations could be calculated but may
not reveal new qualitative features.

VI. Results and Discussion
The aeroelastic eigenvalue problem is solved for a tuned

assembly and for several mistuning strengths, with the system
parameters given in Sec. II. The mistuning values are obtained
from a random number generator with a uniform probability
distribution. We present typical results that demonstrate the

extreme sensitivity of the blade assembly dynamics to mistun-
ing and that confirm the general trends predicted by our
perturbation analyses.

A. Loss of Eigenstructure
Figure 5 displays the root locus of the 56 aeroelastic eigen-

values in the complex plane for various mistuning values. The
real part of the eigenvalues is plotted against the imaginary
part. Note the regular pattern of the root locus of the perfectly
tuned assembly in Fig. 5a, which is characteristic of the exis-
tence of constant interblade phase angle modes. Also note that
all the eigenvalues have positive (although small) imaginary
parts, which ensures stability in all modes. Finally, observe
that all eigenvalues have real parts clustered in a relatively
narrow interval (all frequencies of oscillation are within 5% of
the assumed frequency). This is characteristic of weakly cou-
pled systems, which feature closely spaced eigenvalues. Here
the interblade coupling is aerodynamic and is thus weak,
leading to a narrow band of frequencies for the tuned system.
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Fig. 10 Loci of the real parts (frequency) of the lowest- and highest-
frequency eigenvalues vs mistuning, by "exact" numerical solution
method (——), first-order classical perturbation method (- - -), and
second-order classical perturbation method (- - -).
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Fig. 11 Loci of the imaginary parts (damping) of the least and most
stable eigenvalues vs mistuning, by "exact" numerical solution
method (——), first-order classical perturbation method (- - -), and
second-order classical perturbation method (---).
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Figures 5b-5d depict the root locus of mistuned assemblies.
As mistuning increases we observe that the regularity of the
root locus is gradually lost, and for small mistuning e > 1.9%
the locus consists of a constellation of eigenvalues with little
discernible pattern. We refer to this phenomenon as loss of
eigenstructure. It is yet another illustration of the extreme
sensitivity of the eigensolution to mistuning. Although the
mistuned eigenvalues are apparently randomly scattered, we
observe two trends. 1) Mistuning results in the widening of the
range of the real parts of the eigenvalues; i.e., the natural
frequencies move apart when mistuning is introduced. This is
consistent with the veering away of the lowest and highest
frequencies shown in Fig. 3. 2) The imaginary parts of the
eigenvalues (corresponding to aerodynamic damping) move
closer together as mistuning increases. In particular, the least
stable eigenvalue becomes more stable. This narrowing of the
root locus along the imaginary direction confirms the veering
toward of the least and most stable imaginary parts of the
eigenvalues depicted in Fig. 4.

B. Localization of Aeroelastic Modes
Figure 6 displays the eigenvector corresponding to the low-

est-frequency eigenvalue for various mistuning strengths.
Both the amplitude pattern and the interblade phase angle
pattern of the mode shapes are depicted. As expected, the
mode shape of the tuned system features identical amplitudes
for all blades and a constant interblade phase angle. When
mistuning increases, the mode shape is altered fundamentally:
The whole assembly ceases to participate in the motion and the
vibration becomes confined to a few of the blades, with the
others vibrating with negligible amplitudes. This indicates the
occurrence of the phenomenon of localization of the aeroelas-
tic mode shapes. Note that the constant interblade phase angle
of the tuned system is lost when localization occurs, and no
pattern emerges for the phase angles of the mistuned system's
mode. Also note that the transition from extended to localized
modes is very rapid in Fig. 6: Substantial localization already
occurs for the very small mistuning e = 0.19%, which is un-
avoidable in practice. Localization becomes severe as mistun-
ing increases to e = 0.47%. Although a single mode is dis-
played in Fig. 6, our results show that all the mode shapes of
the mistuned assembly become localized.

The discussion in Sec. V.B suggests that the modes with the
lowest and highest frequency are most sensitive to mistuning
and thus may be the first to become localized. To confirm this
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Fig. 12 Loci of the real parts (frequency) of the lowest- and highest-
frequency eigenvalues vs mistuning, by "exact" numerical solution
method (——), first-order modified perturbation method ( - - - ) , and
second-order modified perturbation method (---).
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Fig. 13 Loci of the imaginary parts (damping) of the least and most
stable eigenvalues vs mistuning, by "exact" numerical solution
method (——), first-order modified perturbation method (- - -), and
second-order modified perturbation method (- - -).

conjecture, Fig. 7 displays the amplitude patterns of four
aeroelastic mode shapes for a given mistuning strength: two
modes at the extremes of the frequency cluster, the lowest and
highest frequency modes, and two modes near the middle of
the frequency cluster, the least and most stable modes. Indeed,
observe that the modes with the extreme frequencies are sub-
stantially more localized than those near the middle of the
frequency band. This confirms our interpretation of Eq. (14).
Although we do not show it here, we also observed that the
four modes in Fig. 7 become more localized as mistuning
increases, and achieve nearly the same degree of localization.

Another finding in Sec. V.B is that the sensitivity to mistun-
ing increases with the number of blades. To illustrate this, Fig.
8 displays the amplitude patterns of the highest-frequency
modes for mistuned assemblies made of 28 and 56 blades,
where the number of blades was varied by keeping the blade
geometry the same. We note that, although the mistuning
standard deviation is the same for both assemblies, the mode
of the 56-blade assembly is much more strongly localized than
that of the 28-blade assembly. This confirms our finding that
the degree of localization increases with the number of blades
and means that mistuning has a greater impact on the dynam-
ics of rotors with many blades such as turbines.

In Sec. V we showed by perturbation methods that both the
sensitivity to mistuning and the degree of localization increase
as the interblade coupling decreases. In our model we can vary
the unsteady aerodynamic coupling forces simply by adjusting
the air density: A decrease in air density results in a decrease
of all the elements of A by the same factor. Figure 9 displays
mode shapes of assemblies with identical mistuning strength
but different air densities. Observe that the modes become
more strongly localized as the air density, and thus the in-
terblade coupling, decreases.

C. Comparison of Perturbation and Numerical Results
Here we verify the validity of the perturbation results

derived in Sec. V by comparing them with "exact" numerical
results. Figure 10 depicts the loci of the real parts of the
lowest- and highest-frequency eigenvalues vs mistuning. Both
the first- and second-order classical perturbation results [Eqs.
(11) and (14)] and the numerical solution of the aeroelastic
eigenvalue problem (1) are shown. (The perturbation results
were obtained by perturbing directly the lowest- and highest-
frequency eigenvalues of the tuned system, not by sorting
them at each mistuning level.) As discussed in Sec. V.A, we
observe that the first-order eigenvalue perturbation does not
capture the system's high sensitivity. The second-order pertur-
bation solution provides the parabola tangent to the exact
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solution. It predicts the veering away of the loci and thus the
high sensitivity to mistuning. However, this approximation is
valid for very small mistuning only; for e>0.5% it grossly
overpredicts the exact solution.

Figure 11 displays the loci of the imaginary parts of the least
and most stable eigenvalues, obtained by first- and second-or-
der classical perturbations [Eqs. (11) and (15), applied directly
to the least and most stable tuned eigenvalues] and by direct
solution of Eq. (1). Again, only the second-order eigenvalue
perturbation predicts the veering toward of the loci. Neither
perturbation result approximates the exact solution ade-
quately, except for very small mistuning (e<0.5%).

The exact eigenvalues are compared with the first- and
second-order modified perturbation results [Eqs. (18) and
(21)] in Figs. 12 and 13. From the loci of the real parts in
Fig. 12, we note that the modified perturbation method ap-
proximates the exact solution remarkably well away from the
veering region. This means that the treatment of the small
aerodynamic coupling as a perturbation in Sec. V.C is a valid
methodology and that for small (but not too small) mistuning
the modes have a localized character. As expected, the modi-
fied perturbation approximation deteriorates for very small
mistuning, i.e., in the veering region. In this region the classi-
cal perturbation method must be used (see Figs. 10 and 11).
The mistuning range where neither perturbation scheme gives
accurate results defines the transition from constant interblade
phase angle modes to localized modes.

In Fig. 13, which is for the imaginary parts of the least and
most stable eigenvalues, the modified perturbation results
agree relatively well with the exact solution. However, for a
given mistuning level, the agreement in Fig. 13 is not as good
as that observed for the frequencies in Fig. 12. Moreover, it
should be noted that we had difficulties making sure that the
perturbation and exact solutions displayed in Fig. 13 corre-
spond to the same eigenvalues.

VII. Concluding Remarks
The primary findings of our study consist of the following:
1) The sensitivity to mistuning is governed by the interblade

coupling strength. Weak aerodynamic (or, for that matter,
structural) coupling between blades results in high sensitivity
to mistuning and qualitative alterations of the blade assem-
bly's dynamics.

2) The root locus of the aeroelastic eigenvalues (frequency
vs damping) loses the regular pattern that characterizes the
tuned system to become apparently randomly scattered for
small mistuning.

3) When plotted against mistuning strength, the real parts
of the eigenvalues (the frequencies) veer away from each other
with high curvature, whereas the imaginary parts of the eigen-
values (the damping values) veer toward each other abruptly.

4) The constant interblade phase angle aeroelastic mode
shapes of the tuned assembly are severely altered when mistun-
ing is present. The mistimed modes are not extended as in the
tuned case, but each mode is strongly localized to a few blades
of the assembly, and no pattern can be discerned for the
interblade phase angles.

Appendix A: Properties of Circulant Matrices
Circulant matrices arise in the study of systems with perfect

cyclic symmetry. The book by Davis17 contains a nice account
of their properties. Here, we briefly state those properties that
are used in the present work.

The general form of a square circulant matrix is

= circ(c!,c2,

c\
CN-I

c, € (Al)

We note that a circulant matrix has only TV distinct elements.
When several component modes are used to model a blade, the
elements c/ are themselves matrices and C is said to be block
circulant.

Circulant matrices of order N possess TV independent eigen-
vectors. Furthermore, all circulant matrices share the same set
of eigenvectors:

(A2)

where the eigenvectors have been normalized such that
\\Cj\\ - 1. An important property of the eigenvectors is that
Cj = eN-j + 2, f o r j = 2, . . . , TV; thus, most eigenvectors occur
in complex conjugate pairs, although e\ is real and for TV even
&N/2 +1 is real.

The eigenvalues of a circulant matrix can be written in
closed form as

exp{[27r/(y - 1)(* - 1)]/TV), j = 1, . . . , N (A3)X, =

We can arrange the eigenvectors of a circulant matrix in an
TV x TV modal matrix, as follows:

E= [*i, ...9eJ9...,eN] (A4)

The modal matrix E is commonly referred to as the Fourier
matrix. It is a unitary matrix, i.e., E-1 = E*. The modal
matrix E diagonalizes any circulant matrix C through the
similarity (and unitary) transformation:

(A5)

where the eigenvalues of the diagonal matrix are given by
Eq. (A3).

Appendix B: Eigensolution Perturbations
Consider the following eigenvalue problem:

{P0 + dP}Uj = \jQuj, j = 1, . . . , TV (Bl)

where P0, 5P, and Q are TV x TV complex matrices and (X/, Uj)
an eigensolution. We denote the eigensolution of the unper-
turbed eigenvalue problem (for dP = 0) by (Xoy, u0j),
j = 1, . . . , TV. Furthermore, we introduce the transposed un-
perturbed eigenvalue problem as

Note that Eq. (B2) is not the adjoint eigenvalue problem. One
can easily show that fjLOJ = \oj and that the two sets of eigenvec-
tors of the unperturbed problems are biorthogonal:

(B3)= 0

v%Puok = 0

Next, we expand the eigensolution of the perturbed problem,
Eq. (Bl), to the second order as

v = \oj + d\j + 62\j
~ co y ~ ~ 1 , . . . , - / v

Uj = uoj + dUj + 52Uj

The eigenvalue perturbations can be shown to be

j = 1, . . . ,TV

(B4)

(B5)

(B6)
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The first-order eigenvector perturbation is

duj = £ -—— ff——^uok y = l , . . . , TV (B7)

We do not give 52Uj since we do not make use of it in the paper.
Reference 16 describes the general approach to prove Eqs.
(B5-B7).

For the aeroelastic eigenvalue problem, Eq. (1), we have
Hoj = \v» uoj = ej9 and voj = Cj.
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