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[Abstract] Motivated by long-endurance requirements in surveillance, reconnaissance
and exploration, this paper considers level flight path planning for unmanned aerial vehicles
(UAVs) equipped with solar cells on the upper surface of the wings. These solar cells collect
energy that is stored in a battery and used to drive a propeller. The mission of the UAV
is to travel from a given initial position to a given final position, in less than an allowed
duration, using energy from the battery. The subsequent problem of energy-optimal path
planning features the interaction between the aircraft kinematics, the energy collection
model, and the energy loss model. All three models are coupled by the bank angle of
the UAV. Within this framework, the problem is formulated as an optimal path planning
problem, with the aircraft bank angle and speed serving as control inputs. Necessary
conditions for optimality are given, whose solution yields extremal paths. These necessary
conditions are utilized to study analytically the properties of extremal paths. An efficient
numerical procedure is also given. It is shown that optimal paths belong to one of two
regimes: solar or drag. The Power Ratio, a non-dimensional number that can be computed
before flight, is identified. It is shown that this ratio predicts the regime of the optimal
path, which facilitates the solution. Implications of the power ratio for UAV design are
discussed. Several illustrations are given.

Nomenclature

a Azimuth of the sun, deg K Amount whereby the induced drag exceeds
CD Coefficient of drag that of an elliptical lift distribution
CDo Parasitic drag coefficient λx X-Costate, N
Cl Coefficient of lift λy Y-Costate, N
D Drag of the aircraft, N λψ Ψ−Costate, J
δ Variation φ Bank angle, deg
ε Oswald efficiency factor Pin Power collected, W
e Elevation of the sun, deg Pout Power lost, W
Ein Energy collected, J PR Power Ratio
Eout Energy lost, J Psd Power spectral density of the sun, W/m2

ER Energy Ratio ψ Heading, deg
ET Total Energy, J ρ Air density, kg/m3

ηprop Efficiency of the propeller S Surface area of the wing, m2

ηsol Efficiency of the solar cells T Thrust of the aircraft, N
g Gravitational acceleration, m/s2 tf Final time, sec
H Hamiltonian, W TM Maximum time allowed, sec
Hφφ ∂2H/∂φ2 to Initial time, sec
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HφV ∂2H/∂φ∂V V Speed, m/s
HV V ∂2H/∂V 2 x X position, m
i Incidence angle of sun rays, deg W Weight of the aircraft, N
j Dummy summation index y Y position, m

I. Introduction

Increasing endurance requirements within surveillance, reconnaissance and exploration missions require
a new class of unmanned aerial vehicles (UAVs). The UAV considered in this paper is distinguished from
the majority of UAVs by its power source. The aircraft discussed are equipped with solar cells on the upper
surface of the wings as well as onboard energy storage. These solar cells collect energy that is used to drive
a propeller.

This paper considers the problem of energy-optimal path planning for solar-powered UAVs in level flight.
This problem features the interaction between three subsystems: aircraft kinematics, energy collection, and
energy loss. While the current literature discusses methods to optimize UAV aerodynamic design for energy
usage, there is no approach that examines the coupling of energy collection and energy loss with the aircraft
kinematics. The purpose of this paper is to investigate this relationship and account for it in optimal path
planning.

Although the current literature on solar-powered UAVs does not consider optimal energy path planning,
a substantial body of work is available on the design and analysis of solar-powered aircraft. A brief review
of this literature is as follows. The feasibility of solar-powered flight is reviewed in Refs. 1-2 with a reference
to Dr. A. Raspet’s pioneering proposal of solar-powered flight in 1954. Hence, solar-powered aircraft have
only appeared recently and their history is discussed in Refs. 6, 9, and 26. The general history and methods
for design and analysis of solar-powered aircraft are discussed in Refs. 3-27. References 12, 15 and 25 are
unique in that they use an optimization procedure to design the aircraft based upon expected maneuvers
and sunlight availability.

Optimal path planning for solar-powered aircraft is qualitatively discussed in the literature. Mission
design is found in Refs. 27-30 with particular emphasis on where and when to fly. In most references,
efficiency through preliminary design is emphasized. Alternative methods to increase efficiency for solar-
powered aircraft are discussed in Refs. 43-45. Reference 45 is of particular importance as it achieves a
30% increase in efficiency by improving the cooling of solar cells. However, nowhere in the literature is
there a study directed towards optimizing the flight path itself based upon the interaction of kinematics and
energetics.

Solar-powered aircraft have many potential uses in exploration and civilian applications. References
31-35 propose innovative designs for the use of solar powered aircraft on Mars and Venus. In Refs. 36-41,
additional proposals are made for high altitude wireless communication platforms and other uses.

The work in Ref. 31 does take into consideration optimal path planning when designing the flight of
Helios. The maneuvers considered include takeoff, cruise and climb. An important note is that Ref. 31
considers winds in path planning. It does not, however, give a general analytical solution to the path
planning problem. Moreover, it does not account for coupling between the turn rate of the aircraft and the
incidence angle of the sun rays through aircraft bank angle.

The present paper presents an integrated model of the aircraft kinematics and energetics that has the
following original features. First, the energy collected and lost depend upon the bank angle of the aircraft.
The turn rate of the aircraft is also dependent upon the bank angle. Thus the aircraft kinematics and
energetics are coupled through the bank angle. Second, the sun is not assumed to always be present in the
sky. Maneuvers in all light conditions are considered and several regimes of flight are discussed.

Based on the integrated model, the problem of solar-powered UAV level flight path planning is formulated
as a maximization optimal path-planning problem, with the bank angle and speed serving as control inputs.
The present paper studies this optimization problem and provides the following original contributions:

• The necessary conditions for optimality for the maximization problem are formulated.

• From these necessary conditions, the properties of energy-optimal paths are derived.

• An efficient numerical optimization procedure is given.
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• Two distinct regimes of optimal flight are identified.

• Finally, the power ratio is shown to correctly predict the regime of optimal flight.

The remainder of the paper is as follows. In Sec. II, the model is presented. In Sec. III, the optimization
problem is formulated for maximization of the total final energy of the UAV. In Sec. IV, the necessary
conditions of optimality are used to characterize the optimal paths. Section V presents the discretization
procedure used to numerically compute optimal paths, whereas in Sec. VI, the power ratio is introduced.
In Sec. VII, properties of the optimal paths are presented. Section VIII discusses implications of the power
ratio on preliminary design. Section IX provides conclusions and discusses future work. Derivation of the
solar incidence angle, the properties of the aircraft model, derivation of the first order necessary conditions
and derivation of second order necessary condition are given in Appendices A, B, C, and D respectively.

II. Modeling

In this section the model used throughout the paper is presented. The model consists of three parts:
the aircraft kinematic model, the energy collection model and the energy loss model. Each subsystem is
presented below.

II.A. Aircraft Kinematic Model

The bank-to-turn aircraft is assumed to fly in still air and remain at constant altitude, with zero pitch angle,
according to the equations:

ẋ = V cosψ, (1)
ẏ = V sinψ, (2)

ψ̇ =
g tanφ
V

, (3)

where x and y are the Cartesian coordinates of the aircraft, ψ is the heading angle, V is the speed and φ is
the bank angle.

II.B. Energy Collection Model

The aircraft is equipped with solar cells, mounted on the top side of the wings, and gains solar energy from
the sun shining on the cells. Let a and e represent the azimuth and elevation angles of the sun, respectively.
Assuming that the wing configuration has zero dihedral angle, the incidence angle of the sun rays upon the
solar cells, i, satisfies:

cos(i) = cos(φ) sin(e)− cos(e) sin(a− ψ) sin(φ), (4)

which is derived in Appendix A. In this paper we assume that the sun is fixed in the sky. Equation (4) holds,
however, even if the sun moves. The power collected by the aircraft is:

Pin = ηsolPsdS cos(i), (5)

where ηsol is the efficiency of the solar cell, Psd is the solar spectral density, and S is the total surface area
of the wing. If less than a full wing is to be covered by solar cells, ηsol can be adjusted to account for this
decrease in solar cell area.

During a time interval [to, tf ], the energy collected by the aircraft is:

Ein =
∫ tf

to

Pin(t)dt. (6)

II.C. Energy Loss Model

Energy lost by the craft is derived from standard lift, drag and propulsion models (See Ref. 53). The
constant altitude assumption requires L cos(φ) = W where L is lift and W is the weight of the aircraft. The
equations governing the power lost driving the propeller, Pout, are:
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CL =
2W

ρV 2S cosφ
, (7)

CD = CDO +KC2
L, (8)

D = 1/2ρV 2SCD, (9)
T = D, (10)

Pout =
TV

ηprop
, (11)

where CL is the coefficient of lift, ρ is the air density, CD is the coefficient of drag, CDO is the parasitic drag,
the aerodynamic coefficient K represents the amount whereby the induced drag exceeds that of an elliptical
lift distribution, ηprop is the efficiency of the propeller and T is the thrust of the aircraft. The numerical
values of the aircraft parameters used in this paper are presented in Appendix B.

During a time interval [to, tf ], the energy lost by the aircraft is:

Eout =
∫ tf

to

Pout(t)dt. (12)

II.D. Model Summary

In summary, the integrated model is as follows. The bank angle determines the heading and the position
of the aircraft through (1)-(3). This bank angle, combined with the sun’s position determines the incidence
angle through (4). The incidence angle of the sun together with the bank angle and speed determine the
energy collected and lost by the aircraft during flight through (5)-(6) and (7)-(12), respectively.

III. Problem Formulation

III.A. Mission Description

The missions considered in this paper are to fly from given initial location and heading (xo, yo, φo) to given
final location and heading (xf , yf , φf ) within a time interval [to, tf ]. In a typical mission, to is given, and tf
must satisfy tf ≤ to + TM , where TM is given and represents the maximum duration of the mission. This
duration is assumed short compared to the duration of daylight, so that the solar spectral density and sun
position are assumed constant during the mission.

III.B. Dynamic Optimization Problem

The dynamic optimization problem presented in this paper is motivated by the requirement to maximize,
with respect to the time-histories of the bank angle and speed, the final energy of the solar-powered aircraft,
i.e.,

max
φ(·),V (·)

(Ein − Eout), (13)

subject to (1)-(12) and boundary conditions.

In practice, a larger value of objective function (13) increases the endurance of the aircraft.

IV. Optimal Path Planning

In this section, we derive the necessary conditions for optimality that characterize the optimal trajectories.
The necessary conditions for optimality for the maximization problem (1)-(12) are derived in Ref. 46.

Here, these necessary conditions are applied to the current problem. With states [x, y, ψ]T and control inputs
(φ, V )T the Hamiltonian is:

H(x, y, ψ, λx, λy, λψ, φ, V ) = Pin − Pout + λxV cosψ + λyV sinψ + λψ
g tanφ
V

, (14)
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where λx, λy, and λψ are the costates. In this problem, the only control constraints are that |φ| < π
2 and

V > 0. While velocity is constrained by performance of the engine, altitude, etc, it is assumed that the
aircraft can at least fly at the minimum-power velocity (Ref. 53):

VPowermin = 4

√
4KW 2

3CDoρ2S2 cos2(φ)
. (15)

We also assume that √
(xf − xo)2 + (yf − yo)2

TM
≤ VPowermin , (16)

in other words, if the UAV were to fly on a straight path between the initial and final locations, and at
minimum-power velocity, it would complete the mission within the allowed duration.

In our experience, it is not necessary to impose a tight constraint on the magnitude of the bank angle.
Indeed, banking requires lifting (See Eq. (7)), lifting induces drag (See Eq. (8)), drag requires thrust (See
Eq. (10)), which implies power loss (See Eq. (11)). Since the path planning aims at achieving optimal final
energy, the magnitude of the bank angle is naturally limited by these phenomena.

The state equations, derived from (14), are:

ẋ =
∂H

∂λx
= V cos(ψ), (17)

ẏ =
∂H

∂λy
= V sin(ψ), (18)

ψ̇ =
∂H

∂λψ
=
g tan(φ)

V
. (19)

The costate equations are:

λ̇x =
−∂H
∂x

= 0, (20)

λ̇y =
−∂H
∂y

= 0, (21)

λ̇ψ =
−∂H
∂ψ

= −λyV cosψ + λxV sinψ − ηsolPsdS cos e cos (a− ψ) sinφ. (22)

The first-order optimality conditions are:

∂H

∂φ
= −ηsolPsdSc(cos(e) cos(φ) sin(a− ψ) + sin(e) sin(φ))− 4KW 2 sin(φ)

ηpropρSV cos3(φ)
+

gλψ
V cos2(φ)

= 0, (23)

∂H

∂V
= λx cos(ψ) +

8KW 2 sec(φ)2

ηpropρSV 2
−

3ρSV 2(CDo + 4KW 2 sec(φ)2

ρ2S2V 4

2ηprop
+ λy sin(ψ)− gλψ tan(φ)

V 2
= 0. (24)

The second order Legrendre-Clebsch condition is that the Hessian of the Hamiltonian be negative semi-
definite, i.e.:

∂2H

∂(φ, V )2
≤ 0, (25)

where, if

∂2H

∂(φ, V )2
=

[
Hφφ HφV

HφV HV V

]
, (26)

(27)
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Hφφ = ηpropηsolρPsdS
2V (−(cos(φ) sin(e))+cos(e) sin(a−ψ) sin(φ))

ηpropρSV
+−4KW 2 sec(φ)4+2 sec(φ)3(gλψηpropρS cos(φ)−4KW 2 sin(φ)) tan(φ)

ηpropρSV
,

HφV = − gλψ sec(φ)2

V 2 + 4KW 2 sec(φ)2 tan(φ)
ηpropρSV 2 ,

HV V = 8KW 2 sec(φ)2

ηpropρSV 3 −
3ρSV (CDo+

4KW2 sec(φ)2

ρ2S2V 4 )

ηprop
+ 2gλψ tan(φ)

V 3 .

The boundary conditions for this problem are:

x(to) = xo, (28)
y(to) = yo, (29)
ψ(to) = φo, (30)
x(tf ) = xf , (31)
y(tf ) = yf , (32)
ψ(tf ) = φf . (33)

If the final time is free, then we must satisfy

H(tf ) = 0. (34)

However, if the final time is fixed, Eq. (34) does not necessarily hold.
Equations (17)-(34) provide necessary conditions for optimality in the form of a two-point boundary value

problem. By choosing an initial state (xo, yo, φo)T and an initial costate (λxo, λyo, λψo)T , we can numerically
integrate the differential equations (17)-(22) subject to (23) and (24). This results in a flight path that
satisfies the first order necessary conditions, and along which the second order condition (25) can easily be
checked. We will call this strategy the numerical integration method.

We will refer to the flight paths that satisfy the first and second order necessary conditions (17)-(34) as
extremal paths.

V. The Discretization Procedure

V.A. Discretization

To obtain numerical approximations of optimal paths, we discretize the problem as follows. For a chosen in-
teger n ≥ 1, we subdivide the interval [to, tf ] into n subintervals [to, t1], [t1, t2], ..., [tn−1, tf ] of equal duration.
In each subinterval we assume that the control input is constant, i.e., (φ(t), V (t)) = (φj , Vj), t ∈ [tj , tj+1],
where the parameters (φj , Vj), 0 ≤ j ≤ n− 1, are unknown.

We treat the parameters (φj , Vj), 0 ≤ j ≤ n−1, and tf as inputs to a nonlinear optimization problem. As
an initial choice, in all subintervals we choose φj = 0, Vj = VPowermin and tf = to + TM . Constraints upon
this problem are imposed from the boundary conditions (28)-(33). From (13), the objective function is the
total energy at the end of flight. We then numerically solve for optimal flight paths using the MATLAB R©
Optimization Toolbox function fmincon and the ordinary differential equation solver ode45. We will call this
strategy the discretization method.

V.B. Characteristics of Discretization Results

The same set of simulation conditions was used for each result presented in this paper. These conditions are
shown in table 1.

Table 1. Simulation Conditions

Initial Position (xo, yo) (0,0) m
Initial Energy Eo 0 J
Initial Heading φo 127 deg
Final Position (xf , yf ) (700,1300) m
Maximum Duration of Flight TM 300 sec
Velocity of Minimum Power VPowermin 15 m/s
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(a) Flight Path

(b) Bank Angle

Figure 1. Example of an energy optimal flight path based on table 2. Dots are placed every 20 sec.

Figures 1 and 2 are representative samples of optimal flight paths, created using the discretization method.
Each flight path was then evaluated based upon the time of flight and total energy at the end of flight. A
summary of the conditions and results for figure 1 is presented in table 2.

Of particular note, in figure 1, is the positive total energy at the end of flight, indicating a net gain
of energy. The flight duration is equal to TM , the maximum allowed. The final time, tf , is free in this
problem subject to tf ≤ to + TM . The aircraft also only made slow, sweeping turns with |φj | << 1 for all j.
Throughout the flight the speed remained a constant 15 m/s.

A summary of the conditions and results for figure 2 is presented in table 3. The only difference between
the environment settings is that the sun has set in this simulation. During this flight, the bank angle is close
to 0 deg, indicating almost no turning. The only turn that did occur was at the beginning of flight to obtain
a direct heading towards the destination. The control parameters during this turn indicate a high speed and
high bank angle for a short duration. The total flight duration is only 80 sec, much less than TM . In this
case, the total energy during the flight was negative, indicating more energy was lost than collected. The
speed throughout the flight remained at a constant 15 m/s.

As shown in figures 1 and 2, the flight path characteristics vary widely as the elevation is changed. Figure
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Table 2. Figure 1 Simulation Conditions and Results

Sun Position (a, e) (0,45) deg
Solar Spectral Density Psd 380 W/m2

Final Heading φf 270 deg
Flight Duration tf − to 300 sec
Total Final Energy ET 6764 J
Energy In Ein 12646 J

Table 3. Figure 2 Simulation Conditions and Results

Sun Position (a, e) (0,0) deg
Solar Spectral Density Psd 380 W/m2

Final Heading φf 61 deg
Flight Duration tf − to 80 sec
Total Final Energy ET -1776.1 J
Energy In Ein 554.7 J

3 is obtained by varying the elevation of the sun and recording the total energy of the resulting optimal flight
path while the remaining aircraft, environmental and mission parameters are fixed. The elevation is varied
from 0 to 90 degrees. While the total energy of the aircraft at the end of flight remains positive, a sinusoidal
relationship between elevation and energy emerges. This sinusoid may be approximated by fitting a curve
as:

ET = 11970 sin(
90
72
e). (35)

This relationship persists until the total energy becomes negative. At this energy transition point, the
trend departs from a sinusoidal function, which suggests a change in regime. The dashed line in the figure
represents the total energy acquired during a straight flight directly towards the final position.

V.C. Insights from Discretization Results

From the discretization results, we formulate the following propositions describing the observed characteris-
tics in figures 1-3. Let ETotal denote the cost functional in (13) when using a straight unbanked flight path
between the initial location (xo, yo) and the final location (xf , yf ).

Proposition 1 If Psd is small enough, then φ(t) = 0, V = VPowermin generate a path that satisfies the
necessary conditions for optimal flight, and tf ≤ to + TM .

Note that, in practice, Psd small implies ETotal < 0. However, Proposition 1 does not mean that
ETotal < 0 implies φ(t) = 0, V = VPowermin generate the only path that satisfies the necessary conditions of
optimality. We will show additional paths satisfying the necessary conditions where ETotal < 0 and φ(t) 6= 0
later in this paper.

Proposition 2 If ETotal > 0, and TM and ETotal are large enough, then the optimal path must satisfy
tf = to + TM and V = VPowermin .

Proposition 2 implies that when ETotal > 0 and large enough, and TM is large enough, the optimal path
takes as much time as allowed, flying at the most advantageous speed. Propositions 1 and 2 will be proved
in Section VII, based on experimental results presented in Section VI.

VI. The Power Ratio

The simulation results and insights presented depend upon the sign of ETotal. If ETotal < 0 we have on
average that Pin < Pout. Conversely, if ETotal > 0 we have on average Pin > Pout. These results may be
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(a) Flight Path

(b) Bank Angle

Figure 2. Example of an energy optimal flight path based on table 3. Dots are placed every 5 sec.

expressed as Pin
Pout

< 1 or Pin
Pout

> 1, respectively. When considering a straight unbanked flight path between
the initial location and the final location, as in Proposition 1, this fraction may be expressed as:

PR =
2ηpropηsolρPsdS2VPowermin sin(e)
CDOρ

2S2V 4
Powermin

+ 4KW 2
. (36)

We refer to this non-dimensional number as PR, the Power Ratio.
During flight, Pin and Pout become functions of the bank angle, φ, heading angle, ψ, and the azimuth of

the sun, a. At the end of flight, we can evaluate the total energy collected and lost, and compute the energy
ratio, ER, as:
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Figure 3. Total energy at end of flight as a function of solar elevation

ER =

∫ tf

to

Pin(t)dt∫ tf

to

Pout(t)dt
. (37)

ER defines the two flight regimes observed, which we call the Drag Regime and the Solar Regime, corre-
sponding to ER < 1 and ER > 1, respectively.

Because PR does not depend on specific values of (φ, ψ, a), we can use it to predict the performance of
the aircraft before flight. In order to validate this usage, table 4 compares PR with ER, the Energy Ratio
computed after a variety of flights. It turns out that PR exactly matches ER under the conditions specified
by Proposition 1. Therefore table 4 only examines those flights when ER > 1.

Table 4. Typical Comparison of PR and ER on Energy-Optimal Paths

PR ER Error
2.3492 2.3511 -0.08%
2.2016 2.2125 -0.49%
2.0771 2.0745 0.13%
1.9112 1.9307 -1.01%
1.7704 1.7822 -0.66%
1.6304 1.6226 0.48%
1.4810 1.4548 1.80%
1.3149 1.2983 1.28%
1.1526 1.1551 -0.22%
1.0068 1.0041 0.27%

In summary, if PR is evaluated for a specified mission before flight, a non-dimensional value emerges.
The Energy Ratio of the optimal flight path closely approximates this value. Thus, we have the following:

Experimental Fact 1 PR can be used instead of ER to determine the regime of the optimal flight.

VII. Properties of Extremal Paths

So far, Propositions 1 and 2 were inferred from observed characteristics of numerical approximations of
optimal flight paths. We will now prove them through application of the necessary conditions (16)-(24),
using Experimental Fact 1.
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VII.A. Proof of Proposition 1

We first assume that φ(t) = 0, simplify the necessary conditions and solve for the states and costates subject
to the constraints (28)-(34). This results in:

φ = 0, (38)
V = VPowermin , (39)

ψ = arctan(
yf − yo
xf − xo

), (40)

tf =
xf − xo
cosψV

=
yf − yo
sinψV

, (41)

λx = 0, (42)
λy = 0, (43)

λψ =
V ηsolPsdS cos(e) sin(a− ψ)

g
, (44)

where each of the costates is constant. Here, both V and ψ remain constant at their initial values. A
derivation of (39)-(44) is provided in Appendix C. The flight duration depends on the distance to the final
destination and the velocity, and is feasible because of (16).

It is shown in Appendix D that the flight conditions (38)-(44) satisfy the second order necessary condition
for optimality. Since φ = 0 yields a path that satisfies the necessary conditions for optimal flight, we have
proven Proposition 1.

VII.B. Proof of Proposition 2

Since ETotal > 0, the optimal path must satisfy Ein − Eout > 0. From Experimental Fact 1, this yields
Pin − Pout > 0. For ETotal large enough, Pin − Pout will be large enough to be the dominant term in the
right hand side of (14). Therefore, H > 0 when ETotal > 0 and large enough.

From Ref. 46, we may express the transversality conditions as:

[λT δx−Hδt]tfto = 0, (45)

or, when focusing on the variation of the final time,

H(tf )δtf = 0. (46)

Since H > 0, δtf = 0 which implies that the final time is fixed. Therefore tf = to + TM , which proves
the first claim.

We must now examine the velocity of the aircraft when ETotal > 0. Consider an extremal path that
satisfies our mission parameters with V > VPowermin . If this same path is flown with V = VPowermin ,
ETotal will be higher than with V > VPowermin . Since velocity is constrained to be greater than or equal to
VPowermin , a maximum ETotal occurs when V = VPowermin . Thus V = VPowermin is optimal and we have
proven the second claim and Proposition 2.

VII.C. Special Properties when PR < 1

Numerical integration of the necessary conditions (17)-(24) has shown that there are curved paths that are
extremal with PR < 1. Since we have already shown that Proposition 1 holds when PR < 1, we may compare
a flight path formed from integrating (17)-(24) with a similar flight path solution satisfying Proposition 1.
Figure 4 illustrates a comparison of such flight paths.

While the flight path satisfying (17)-(24) has a PR value of 0.7402, the flight path satisfying Proposition
1 has a PR value of 0.7418. This slightly larger PR suggests an increased endurance for the aircraft. From
this result we conjecture that, while both flight paths are extremal , the flight path satisfying Proposition 1
is a global maximizer while the curved extremal is only a local maximizer.
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Figure 4. Extremal Paths when PR > 1

VII.D. Extremal Path Summary

In summary, extremal flight paths can be obtained as follows. When PR < 1, extremal flight paths are best
described by Proposition 1. When PR > 1, extremal flight paths satisfy Proposition 2. The velocity in both
regimes is not an independent control but is instead dependent upon the bank angle.

VIII. Design Implications of the Power Ratio

We can manipulate PR to clarify the distinct roles of environmental parameters and aircraft parameters.
By substituting in for V the full expression (15) for VPowermin , we simplify PR as:

PR = 0.402Psdηsol sin(e)
√
ρ 4

√
η4
propb

6ε3π3S3

CDoW
6

, (47)

where ε is the Oswald efficiency factor and b is the wingspan. The form of PR in (47) separates those terms
depending on the environment, [Psd, ηsol, e, ρ, g], and those depending on the airframe, [ηprop, b, ε, S, CDo ,m].
From (47), a very long wing with a large surface area is advantageous for solar-powered flight. As expected,
most successful solar-powered UAVs do indeed have these characteristics - see, e.g., Helios (Ref. 31), Solong
(Ref. 20), Pathfinder (Ref. 9), or Sunriser (Ref. 15). A more detailed utilization of the power ratio for
design is presented in Ref. 54.

IX. Summary, Conclusions and Future Work

We have presented a new integrated model for optimal energy path planning for solar powered UAVs.
The model accounts for the coupling of the kinematics with the energy collected and lost. This coupling
happens through the bank angle of the aircraft. Based on this model, we have presented necessary conditions
for the maximization of total energy and proven satisfaction of these necessary conditions in two different
regimes of flight. We have shown that a prediction of the optimal regime of flight can be made accurately
before flight and that this optimal regime drastically affects the path (direct or loitering) taken by the UAV.
The determination of this optimal regime of flight is made through the Power Ratio. Further results suggest
that the Power Ratio can be used for design of aircraft.

This paper has experimentally shown that the Power Ratio is approximately equal to the Energy Ratio.
The Power Ratio is also a determining factor for the choice between two optimal regimes of flight. By
manipulating PR, we have shown that the similarity in looks of solar-powered UAVs is not accidental,
indeed, it is systemic of efficient design. Most importantly, this paper has shown that the energy collected
by a solar powered UAV can be increased both through efficient design and optimal path planning.
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In future work, we will find sufficient conditions for optimality that characterize optimal energy tra-
jectories. We will consider optimal energy path planning in non-level flight conditions and also validate
Propositions 1 and 2 through a series of flight tests of a solar powered UAV.

Appendix A: Derivation of the Solar Incidence Angle

Define [g] = [x̂g, ŷg, ẑg]T as a vectrix (See Ref. 49) fixed to the ground with ẑg vertical ascending. If a
and e are the azimuth and elevation of the sun, then ŝ, the unit vector to the sun, is given as

ŝ = [g]T

 cos(e) cos(a)
cos(e) sin(a)

sin(e)

 . (48)

Define [a] = [x̂a, ŷa, ẑa]T as a vectrix fixed to the aircraft. In terms of [g],

[a] = R1(φ)R3(ψ)[g], (49)

where,

R1(φ) =

 1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 , (50)

R3(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 , (51)

represent rotation matrices about the first and third axis, respectively. By inverting this relationship, we
obtain

[g] = R3(ψ)TR1(φ)T [a]. (52)

Hence, ŝ can be expressed, in the aircraft-fixed vectrix, as

ŝ =

 cos(e) cos(a)
cos(e) sin(a)

sin(e)

R3(ψ)TR1(φ)T [a]. (53)

Define the incidence angle i as the angle between the line-of-sight to the sun and the ẑ-axis of the
aircraft-fixed vectrix. Then i = arccos(ŝ · ẑa). Hence, (53) yields:

cos(i) = cos(e) cos(a) sin(ψ) sin(φ)− cos(e) sin(a) cos(ψ) sin(φ) + sin(e) cos(φ), (54)

or, after applying trigonometric identities,

cos(i) = sin(e) cos(φ)− cos(e) sin(φ) sin(a− ψ). (55)

Appendix B: Aircraft Model Parameters

The aircraft model used in all simulations and numerical results in this paper was developed by the
University of Michigan SolarBubbles Team (See Refs. 50-52). Aerodynamic coefficients were evaluated
through the use of AVL and Fluent and verified experimentally through full size wind tunnel testing (Ref
52).

The flying wing aircraft, pictured in figure 5, has the characteristics listed in table 5.
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Table 5. Aircraft Model Parameters

Wing Area S 0.1566 m2

Mass m 1.2 kg

Wingspan b 0.711 m

Oswald Efficiency Factor ε 0.992
Parasitic Drag CDo 0.011
Propeller Efficiency ηprop 0.7
Air Density ρ 1.29 kg/m3

Figure 5. Wind Tunnel Aircraft Model

Appendix C: Derivation of Drag Regime First Order Necessary Conditions

The first order necessary conditions, simplified as in Proposition 1, are:

∂H

∂φ
= −ηsolPsdSc cos(e) sin(a− ψ) +

gλψ
V

= 0, (56)

∂H

∂V
= λx cos(ψ) +

8KW 2

ηpropρSV 2
−

3ρSV 2(CDo + 4KW 2

ρ2S2V 4 )

2ηprop
+ λy sin(ψ) = 0, (57)

ẋ =
∂H

∂λx
= V cos(ψ), (58)

ẏ =
∂H

∂λy
= V sin(ψ), (59)

ψ̇ =
∂H

∂λψ
= 0, (60)

λ̇x =
−∂H
∂x

= 0, (61)

λ̇y =
−∂H
∂y

= 0, (62)

λ̇ψ =
−∂H
∂ψ

= −λyV cosψ + λxV sinψ. (63)

Since λ̇x, λ̇y, and ψ̇ are all zero, λx, λy and ψ are all constants. Equation (56) becomes a function of
constant parameters and V . From this we can see that V must be constant as well. Similarly, (56) is now a
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function of constant parameters and λψ. Accordingly, λψ must also be constant, and:

λ̇ψ = −λyV cosψ + λxV sinψ = 0. (64)

Now (56) yields:

λψ =
ηsolPsdV S cos(e) sin(a− ψ)

g
. (65)

We can now solve for λx and λy using (58) and (65) as:

λx =
(−4KW 2 + 3CDOρ

2S2V 4) cosψ
2ηpropρSV 2

, (66)

λy = − (−4KW 2 + 3CDOρ
2S2V 4) sinψ

2ηpropρSV 2
. (67)

Equations (57), (66) and (67) are satisfied simultaneously by λx = 0, λy = 0 and V = 4

√
4KW 2

3CDoρ
2S2 , which is

the velocity at minimum power

Appendix D: Satisfaction of the Drag Regime Second Order Necessary
Condition

The second order necessary condition is:

∂2H

∂φ2
≤ 0, (68)

where, if

∂2H

∂φ2
=

[
α β

β γ

]
,

(69)

α = ηpropηsolρPsdS
2V (−(cos(φ) sin(e))+cos(e) sin(a−ψ) sin(φ))

ηpropρSV
+−4KW 2 sec(φ)4+2 sec(φ)3(gλψηpropρS cos(φ)−4KW 2 sin(φ)) tan(φ)

ηpropρSV
,

β = − gλψ sec(φ)2

V 2 + 4KW 2 sec(φ)2 tan(φ)
ηpropρSV 2 ,

γ = 8KW 2 sec(φ)2

ηpropρSV 3 −
3ρSV (CDo+

4KW2 sec(φ)2

ρ2S2V 4 )

ηprop
+ 2gλψ tan(φ)

V 3 .

In order to check that the second order necessary condition is satisfied, we show that the left hand side
of (68) is negative definite. This holds by Sylvester’s Criterion, if, and only if, the determinant of the first
nested principal minor of (69) is negative and the determinant of (69) is positive.

We will begin with the first nested principal minor as

ηpropηsolρPsdS
2V (−(cos(φ) sin(e))+cos(e) sin(a−ψ) sin(φ))

ηpropρSV
+ −4KW 2 sec(φ)4+2 sec(φ)3(gλψηpropρS cos(φ)−4KW 2 sin(φ)) tan(φ)

ηpropρSV
.

(70)

By simplifying and assuming φ = 0 according to Proposition 1, we obtain,

−4KW 2 − ηpropηsolρPsdS
2V sin(e), (71)

which is always negative, and the first criterion is satisfied.
We must next examine the determinant of (69) which, if φ = 0, reduces to

(−g2λψη
2
propρ

2S2 + 16K2W 4 + 12CDoKρ
2S2V 4W 2 + 3CDoηpropηsolρ

2PsdS
4V 5 sin(e)

+ 4KηpropηsolρPsdS2VW 2 sin(e))/V 4. (72)
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In (72), we substitute expression (44) for λψ to obtain

(A+D)(3C +D)−B2, (73)

where

A = V PsdρS
2ηpropηsol sin(e), (74)

B = V PsdρS
2ηpropηsol cos(e) sin(a− ψ), (75)

C = CDoρ
2S2V 4, (76)

D = 4KW 2. (77)

If Psd is small enough, then expression (73) is positive, which completes the proof.
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