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In this paper, we derive sufficient conditions for local and global boundedness of spacecraft motion inside a

prescribed region subject to a dead-band hovering thrust control law in time-invariant Lagrangian dynamical

systems. Using the conservative properties of the system, we define a zero-velocity restriction on the spacecraft

motion, then show that a dead-band controller exists that bounds nearby trajectories arbitrarily close to the desired

hovering position. Theminimumnumber of independent directions that the deadbandmust restrict is well definedas

a function of hovering position and divides the position space into distinct dynamical regions.We present numerical

plots of these regions in the two-body, restricted three-body, andHill problems and findhovering near a central body

usually requires dead-band control in only one or two independent directions to be bounded. The effects of

uncertainty in the initial hovering state on the zero-velocity surface are evaluated and the largest allowable

perturbations in the Jacobi constant that maintain boundedness are formulated.

Nomenclature

A = set of allowable spacecraft positions
(localized formulation)

B = set of allowable spacecraft positions (global
formulation)

CL = value of Jacobi constant in the Lagrangian
formulation

C0 = nominal value of Jacobi constant
C� = value of perturbed Jacobi constant
ĉ = unit vector in dead-band thrust direction
D = set of positions on the dead-band surface
d = function that defines the dead-band surface
fdb = dead-band function
G = function that defines the zero-velocity

surface
J = Jacobi constant
Jbf = Jacobi constant for the two-body problem
JHill = Jacobi constant in the Hill three-body

problem
JR3BP = Jacobi constant in the restricted three-body

problem
L = Lagrangian function
N = mean motion of the primaries’ orbit
p = generalized momenta of the system
q = system configuration variables
�qeqm; _qeqm� = equilibrium state in Lagrangian formulation
R = distance between primaries
Rc = dead-band surface radius
Rr = resonance radius
rmax = maximum attainable distance from nominal
rsc;1, rsc;2 = spacecraft position with respect to first/

second primary
r� �x; y; z�T = spacecraft position vector
�r� � �x; �y; �z�T = spacecraft acceleration vector

r0 � �x0; y0; z0�T = nominal hovering position
r� � �x�; y�; z��T = critical position where dead-band surface

and zero-velocity surface are not transverse
T = kinetic energy
T = spacecraft thrust vector
TDB = dead-band component of control thrust
Tm = constant magnitude of dead-band control

thrust
TOL = open-loop component of control thrust
t = time
U = gravitational potential of the central body
V = potential function
v̂c = unit vector defining dead-band orientation
vmax = maximum attainable spacecraft velocity
v� = spacecraft velocity vector after dead-band

thrust activation
v� = spacecraft velocity vector before dead-band

thrust activation
v� � _x; _y; _z�T = spacecraft velocity vector
Z = set of positions on the zero-velocity surface
�SRP = force parameter for solar radiation pressure
� = dead-band size parameter
�J = perturbation from nominal Jacobi constant
�Jmax = largest perturbation from nominal Jacobi

constant
�J�, �J� = maximum allowable increase/decrease in

Jacobi constant to preserve boundedness
�r = deviation in position from nominal
�r0 = error in initial position vector
�v = deviation in velocity from nominal
�v0 = error in initial velocity vector
�v0;max = maximal error in initial velocity that

preserves boundedness
��x� = Dirac’s delta function
� = ratio of masses, �2=��1 � �2� 	 1

2
�CB = gravitational parameter of the central body
�SB = gravitational parameter of the small body
�Sun = gravitational parameter of the sun
�1, �2 = gravitational parameter of the first/second

primary
~!� �0; 0; !�T = frame angular velocity vector

I. Introduction

I N recent years, there has been significant interest in sending
spacecraft to small bodies in our solar system (including
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asteroids, comets, and planetary satellites) for the purpose of
scientific study. However, the dynamics of a spacecraft near such a
body are greatly complicated by the irregular mass distribution of
these bodies, their weak gravitational fields, and the nontrivial
perturbations due to solar tide and radiation pressures. One strategy
that has been proposed tomitigate these difficulties is hovering [1–3].
Hovering can be defined broadly as using control thrust to null the
total acceleration on the spacecraft, creating an equilibrium at a
desired position. This approach is feasible near small bodies because
the nominal accelerations on a spacecraft are small.

Hovering near small bodies was first studied by Scheeres [1] in a
paper that looked at the eigenvalue structure of hovering using an
open-loop controller to cancel the spacecraft’s nominal acceleration.
Subsequent papers added a one-dimensional dead-band control on
altitude to the open-loop thrust to suppress deviations from nominal
and determined where motion could be stabilized by this controller
analytically [2] and numerically [3]. The Japanese Aerospace
Exploration Agency (JAXA) successfully implemented spacecraft
hovering near an asteroid for thefirst time in the fall of 2005 during its
Hayabusa mission to asteroid Itokawa. Kubota et al. [4] and
Kominato et al. [5] document their three-dimensional dead-band
hovering control approach and success in detail. In this paper, we use
the conservative properties of spacecraft dynamics near small bodies
to determine the minimal dimension dead-band controller that is
sufficient to bound hovering motion at a given position. Our
approach allows the region near the small body to be partitioned
according to the type of dead band that bounds hovering. This result
will help mission planners determine the minimal measurement
capabilities necessary to maintain hovering at a chosen location.

The paper begins by defining the Jacobi constant for a class of
dynamical systems applicable to spacecraft motion and formulating
the zero-velocity surface near an equilibrium. We then show that a
dead-band hovering controller does not destroy the conservative
property of the system. The effects of uncertainty in initial state and
thrust on the zero-velocity surface are presented, which leads to
sufficient conditions for localized and global boundedness of
hovering trajectories. Themaximum allowable perturbation in initial
state such that boundedness is preserved under dead-band control is
defined. Finally, our sufficiency conditions are used tomap the dead-
band control necessary to bound hovering motion in the small-body-
fixed frame, in the restricted three-body problem, and in the Hill
three-body problem as a function of hovering position. The paper
closes by discussing implementation of hovering using a reduced
measurement set and a method of obtaining near-asymptotic
stability.

II. Spacecraft Motion Near Equilibrium

The equations of motion for a spacecraft in a uniformly rotating
coordinate frame subject to accelerations derived from a potential
function and a constant thrust (in the rotating frame) can bewritten as

�r� 2� ~! 
 v� � @V�r; t�
@r

� T (1)

where the angular velocity of the reference frame with respect to
inertial space, ~!, is assumed to be constant. For the case of a single
attracting body in the rotating frame, V�r; t� � U�r; t��
0:5!2�x2 � y2�, though more general forms are possible. If we
multiply both sides of Eq. (1) by v, we find

d

dt

�
1

2
vTv � V�r; t� � TTr

�
�� @V

@t
(2)

If we have chosen our reference frame such that V is not an explicit
function of time (i.e., @V=@t� 0), then we have found the Jacobi
constant for this system.

J�r; v� � 1

2
vTv � V�r� � TTr (3)

Equation (3) maintains its value for the duration of any trajectory
following the equations of motion [Eq. (1)].

It is clear that we can always choose T���@V�r�=@r�j�r0;0� such
that the right hand side of Eq. (1) equals zero at r0. If v is also zero,
then we have an equilibrium point at r0. This is precisely the
approach that is used in spacecraft hovering.

If we initialize a trajectory at an equilibrium state �r; v� � �r0; 0�,
then all states on a valid trajectory must satisfy the following
equation.

J�r; v� � J�r0; 0� � C0; 8 t (4)

If we expand the left-hand side in a Taylor series in position and
velocity deviations from the equilibrium state to second order, we
obtain the following condition on allowable states in the vicinity of
the equilibrium,

�rT
@2J

@r2

����
�r0 ;0�

�r���vT�v 	 0 (5)

where �r� r�t� � r0 and �v� v�t�. Note that �@J=@r�j�r0 ;0� ��@J=@v�j�r0;0� � 0 at an equilibrium point. It is clear that for real
values of �v, the right-hand side must be less than or equal to zero.
This inequality defines the local region of allowable motion in
position space of the system. The boundary of this region, where

�rT
@2J

@r2

����
�r0;0�

�r� 0 (6)

defines a quadratic “zero-velocity surface” as a function of �r that
cannot be crossed by a real-valued system. This result for the zero-
velocity surface near equilibria is general and applies to any time-
invariant conservative system. A more general formulation is given
in the appendix.

Depending on the signs of the eigenvalues of �@2J=@r2�j�r0;0�, this
boundary has one of the quadratic shapes described in Table 1. In
simple terms, Table 1 means the following. If all three eigenvalues
are negative, then there are no local restrictions on where the
spacecraft can go as all displacements from nominal result in a
negative left-hand side of Eq. (5). Conversely, if all eigenvalues are
positive, then no displacements from the nominal state are permitted.
For both of the mixed eigenvalue cases, the zero-velocity surface is a
real quadratic cone in �r where the two bounding cones touch at the
equilibrium point. For a real �v, motion is restricted to hyperbolic
surfaces on the outside of these cones in the�,�,� case and on the
inside of the cones for the�,�,� case. The shaded region in Fig. 1
illustrates the allowable region of motion for each case in two
dimensions. Each shaded contour represents allowable positions for
some kvk � 0.

III. Conservative Properties of Hovering Control

Now we show that the Jacobi constant defined in the preceding
section holds for a spacecraft subject to an idealized dead-band
hovering thrust controller. Previous work [3] defines dead-band
hovering control as a sum of two thrust components: a constant,
open-loop thrust to create an equilibrium at the desired hovering
position, TOL, and a dead-band thrust to control deviations from this
nominal position, TDB.

T OL �� @V

@r

����
�r0 ;0�

(7)

Table 1 Shapes of zero-velocity surfaces [6]

Sign of eigenvalues Zero-velocity surface kvk> 0 surface

�,�,� Imaginary quadratic cone Imaginary ellipsoid
�,�,� Real quadratic cone Two-sheet hyperboloid
�,�,� Real quadratic cone One-sheet hyperboloid
�,�,� Imaginary quadratic cone Real ellipsoid
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T DB �
��Tmĉ�r�; if fdb�r� � �;
0; otherwise

(8)

If we assume that Tm is large so that the spacecraft does not move
much outside the dead band [when fdb�r� � �] before the thrust
returns it, we can ignore the small external acceleration on the
spacecraft derived from V�r� during this time. Such a large thrust
assumption is typically used and is reasonable for spacecraft
applications. These assumptions allow a closed-form solution for the
delta-V applied to the spacecraft between subsequent dead-band
crossings as a function of incoming velocity. If we also require the
dead-band thrust direction be normal to the dead-band boundary

[ĉ�r� � rf̂db�r�], we obtain the impulsive form of the dead-band
thrust component.

T DB ��f�2vTrf̂db�r��rf̂db�r�g��fdb�r� � �� (9)

The dead-band function fdb would likely be based on altitude or
position of the spacecraft and can be chosen to constrain the
spacecraftmotion in an arbitrary number of directions. The following
examples of the function fdb would restrict spacecraft motion in one
[Eq. (10)], two [Eq. (11)], or three [Eq. (12)] dimensions.

fdb�r� � j�r � r0�T v̂cj (10)

fdb�r� � k�I � v̂cv̂
T
c ��r � r0�k (11)

fdb�r� � k�r � r0�k (12)

Level sets for each of these examples are shown in Fig. 2. There are
many other possible formulations for fdb. The function should be
chosen such that rfdb is well-defined at all relevant locations [i.e.,
smooth at the boundary fdb�r� � �].

The formulation for the Jacobi constant [Eq. (3)] already allows
for a constant thrust, so the conservative properties of this system are
not violated for the TOL component of the hovering control. It is
easily shown that the same Jacobi constant is preserved in the
presence of the idealized dead-band thrust TDB as well. This
impulsive thrust “reflects” the velocity vector of the spacecraft off the
boundary fdb�r� � � such that

v� � v� � 2�vT�ĉ�ĉ (13)

It is easily shown that themagnitude of the velocities before and after
the burn are equal. Because the Jacobi constant depends only on the
magnitude of v, the addition of the impulsive control thrustTDB does
not destroy the conservative nature of this class of dynamical
systems.

IV. Hovering Control and Zero-Velocity Surfaces

Because dead-band hovering control does not destroy the Jacobi
constant of our system, we can apply our knowledge of zero-velocity
surfaces [Eq. (6) and Table 1] to design a controller that ensures
boundedness of a hovering trajectory. The idea is to use dead-band
thrust to control motion in the directions not naturally restricted by
the zero-velocity surface. The general rule for hovering dead-band
design is that the chosen controller must restrict motion in at least as
many dimensions as the zero-velocity surface allows unrestricted
motion and be oriented such that the spacecraft trajectory is trapped
inside a bounded region defined by the zero-velocity surface and the
dead-band surface.

For instance, say hovering is implemented at a position where the
Hessianmatrix of the Jacobi constant with respect to position has one
negative and two positive eigenvalues (�, �, � case). Then if we
orient a one-dimensional dead-band control of the form in Eq. (10)
such that v̂c is sufficiently close to the eigenvector corresponding to
the negative eigenvalue, the spacecraft trajectory is known to be
bounded for all future time.Geometrically, the�,�,� zero-velocity
surface defines a quadratic cone that restricts the spacecraft motion in
two dimensions and the dead-band control defines two bounding

planes that place “caps” on these cones. This creates a three-
dimensional hourglass-shaped region of space to which the
spacecraft is energetically restricted. Similarly in the �,�,� case,
where the zero-velocity surface restricts motion in one dimension, a
two-dimensional dead-band control, such as Eq. (11) with v̂c
adequately close to the eigenvector corresponding to the positive
eigenvalue, is sufficient to bound the nominal trajectory in three
dimensions. In the�,�,� case, a dead-band control that bounds the
trajectory in three dimensions, such as Eq. (12), would be necessary.
Motion near equilibrium in the �, �, � case is stable without any
control, but generally does not occur in astrodynamical systems.

Of course this idea works for the nominal system because there is
no motion away from the equilibrium at all. The following sections
show that this idea remains valid when uncertainties in the initial
state and thrust are considered.

V. Local Boundedness

A. Perturbed Local Zero-Velocity Surfaces

First, we evaluate the effects of small errors in the initial state and
control thrust on our localized zero-velocity surface result. The zero-
velocity surface for hovering with small perturbations in initial
position and velocity is defined via a Taylor expansion. In this way,
the true value of the Jacobi constant can be approximated to second
order as

J�r0 � �r0; �v0� � C� � C0 �
1

2
�rT0

@2J

@r2

����
�r0 ;0�

�r0 �
1

2
�vT0 �v0

(14)

For dynamically valid future motion,

J�r0 � �r; �v� � J�r0 � �r0; �v0� � C� (15)

and thus,

�rT
@2J

@r2

����
�r0 ;0�

�r���vT�v� 2�C� � C0� (16)

We can define the zero-velocity surface for the system under small
perturbations as

�rT
@2J

@r2

����
�r0 ;0�

�r� 2�C� � C0� ��J (17)

In general, the quantity�J can be positive or negative. The shape of
the perturbed zero-velocity surface for all eigenvalue cases is given
in Table 2. In all eigenvalue cases, the number of dimensions
restricted by the zero-velocity surface and its orientation
(eigenvectors) are not changed by small perturbations in initial
state. This means that a dead-band control that bounds the nominal
trajectory still has the dimensionality and the proper orientation to
bound the perturbed trajectory (assuming small perturbations). For
instance, in the�,�,� case, the zero-velocity surface is either a one-
sheet or two-sheet hyperboloid. (In Fig. 1, the contours for kvk> 0 in
the�,�,� case are two-sheet hyperboloids and the contours in the
�,�,� case are one-sheet hyperboloids.) Hovering in either of these
cases would still be bounded by a one-dimensional dead-band
control designed for the nominal state. This analytical result is
verified by numerical simulation. Figure 3 shows an integrated
hovering trajectory in the �, �, � region above a sphere and the
predicted zero-velocity surface (dotted region). The trajectory

Table 2 Shape of zero-velocity surfaces for perturbed equilibria [6]

Sign of eigenvalues �J > 0 �J < 0

�,�,� Real ellipsoid N/A
�,�,� One-sheet hyperboloid Two-sheet hyperboloid
�,�,� Two-sheet hyperboloid One-sheet hyperboloid
�,�,� Imaginary ellipsoid Real ellipsoid
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remains contained in the predicted region for the full integration time
(�1 day) under the nominally selected one-dimensional dead-band
control.

Next, we can make a broader statement about the effect of
uncertainty in the initial position without approximation. If we
believe ourselves to be at position r when, in actuality, we are at
r� �r0, the equation for the local bounding zero-velocity surface is

��r � �r0�T
@2J

@r2

����
�r��r0 ;0�

��r � �r0� � 2
@J

@r

����
�r��r0;0�

��r � �r0� � 0

(18)

where �@J=@r�j�r��r0 ;0� ≠ 0 because TOL�r� does not create an
equilibrium point. In general, this quadratic is not centered at
r� �r0. The center and �J, which is not zero in general, can be

found by completing the square. The shape of the zero-velocity
surface still depends solely on the eigenvalues of the matrix
�@2J=@r2�j�r��r0 ;0�, and can be found in Table 2. This tells us that for
the perturbed system to be bounded under dead-band hovering
control, the actual initial position of the spacecraft must have the
same eigenvalue signs as the nominal position. In addition, the
eigenvectors that describe the true zero-velocity surface (linearized
about r� �r0) must be sufficiently close to the nominal so that the
nominal dead band still bounds the motion in three dimensions.
Thus, we can conclude that hovering near a “border” between
different eigenvalue regions with a minimal dead-band control
would risk unbounded behavior.

The effect of open-loop thrust application errors on the zero-
velocity surface can be analyzed similarly. Both thrust and position
errors cause �@J=@r�j�r0;0� to be nonzero, which changes the center of
the bounding surface as well as its shape. However, the signs of the
eigenvalues of �@2J=@r2�j�r0 ;0� and the orientation of the zero-
velocity surface do not change from nominal, so the nominal
controller will still bound the perturbed system.

B. Boundary Definition

Formally, we can show (uniform) boundedness of the trajectory
using the definition of Khalil [7]. It states that the solutions of our
dynamical system under a chosen hovering thrust control law are
uniformly bounded if there exists a positive constant c, independent
of t0 � 0, and for every a 2 �0; c�, there is �� ��a�> 0,
independent of t0, such that

kx�t0�k 	 a ) kx�t�k 	 �; 8 t � t0 (19)

Because this system is time-invariant, the conditions regarding
uniformity are automatically satisfied. For the proof, we use the
standard norm and let c� �, the parameter of the chosen dead band.
In the initial condition ball of measure a, we first compute the largest
�J induced by any initial state

�Jmax � max
�r;v�2Ba

�J�r; v� � C0� (20)

and use it to compute the maximum allowable deviation in position
and velocity from the nominal. Formally, if

A �
�
r 2 <3

�����rT @2J@r2

����
�r0;0�

�r 	 �Jmax and fdb�r� 	 �

�
(21)

then

+,+,+ +,+,−

+,−,− −,−,−

Fig. 1 Allowable regions ofmotion for different eigenvalue sets (shaded

regions); each contour represents allowable positions for some
nonnegative velocity magnitude.

a) b)

c)

Fig. 2 Level sets of example dead-band functions: a) 1-D, b) 2-D, c) 3-D;

arrows indicate direction of unrestricted motion.

Fig. 3 Example of a �,�,� simulated trajectory; dots indicate the

predicted region of allowable motion.
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rmax � max
r2Bd�A�

kr� r0k (22)

and

vmax �
���������������������������������������������������������������������������
2fJ0 ��Jmax �max

r2A
�V�r� � TT

OLr�g
q

(23)

If both rmax and vmax are finite, which is implied by our condition that
the dead band must be properly oriented, then the system is bounded
with ��a� � rmax � vmax.

Thus, a sufficient condition for boundedness of trajectories in the
vicinity of the hovering position is that the chosen controller must
restrict motion in at least as many dimensions as the zero-velocity
surface allows unrestricted motion and be oriented such that the
spacecraft trajectory is trapped inside a bounded region defined by
the zero-velocity surface and the dead-band surface. To get this
result, we have assumed that Tm is sufficiently large so that our
impulsive approximation is valid (which makes the level set fdb � �
an inviolable boundary) and that � is sufficiently small so that our
second-order approximation of the zero-velocity surface is valid.
Also, nothing here (except performance of the thruster) prevents
using a very small � to force A to be arbitrarily small.

This sufficient condition for boundedness is stronger than the
sufficiency conditions for linear stability on the manifold for one-
dimensional dead-band control presented in the previous literature
[2] because it does not neglect the Coriolis forces on the spacecraft
[3] nor artificially restrict the spacecraft motion. This boundedness
test is also preferable to numerical studies [3] as it ensures bounded
motion for all time and does not require numerical integration. Our
result is a sufficient condition, however, and does not disagree with
the stable (bounded) hovering regions predicted under open-loop
control in previous literature [1].

For particular cases, computing rmax and vmax is simple algebra.
For example, if we use the one-dimensional dead-band function in
Eq. (10) with v̂c � v3 at a hovering positionwith�,�,� eigenvalue
structure, then

rmax �
��������������������������������������������
�2

�
1 � e3

e1

�
��Jmax

e1

s
(24)

and

vmax �
�����������������������������������
2��Jmax � �2e23�

q
(25)

where e3 is the negative eigenvalue, v3 is its corresponding
eigenvector, and e1 is the smaller of the positive eigenvalues.

This system is somewhatmisleading due to its second-order nature
as it allows for arbitrarily large increases in the nominal Jacobi
constant without destroying boundedness. This is not the case in
general as is shown in the next section.

VI. Global Boundedness

A. Boundary Definition

Now we show boundedness of hovering trajectories with
perturbations in the initial state in a global formulation. This result
would bemore applicable than the localized result when using a dead
band with a large �. The argument is intuitive and simply states that
for a trajectory to be bounded, its region of allowable motionmust be
finite.

In the formal boundedness definition (Sec. V.B), let c� � and
�Jmax be defined as in Eq. (20). The allowable region of motion is
defined as the set

B � fr 2 <3jfdb�r� 	 � and

� �V�r� � TT
OLr� 	 �C0 ��Jmax� and

9 a path from r to r0g
We can define rmax and vmax similarly to the local case [Eqs. (24) and
(25)] by substituting the setB forA. Computation of rmax and vmax in

the global case involves solving simultaneous implicit equations and
is generally more complicated than obtaining the localized result. If
the dead band is of sufficient dimension and oriented properly such
that these values are finite, then the function ��a� � rmax � vmax

satifies the condition for boundedness.

B. Maximum Allowable Perturbations in Initial State

We can formulate the largest perturbations in initial state that a
spacecraft subject to hovering control designed for a particular
position can withstand and have the future motion remain bounded.
Unlike the linearized result, there are two limits for �J: a maximal
decrease that can only be achieved by errors in position, and a
maximal increase, achievable by a combination of errors in position
and velocity. The following formulation applies only to hovering
trajectories that are nominally bounded.

Without approximation, we define the zero-velocity surface as

Z � fr 2 <3jG�r� � J�r; 0� � C� � 0g (26)

The bounding surface(s) created by the dead-band control can be
defined by

D � fr 2 <3jd�r� � fdb�r� � � � 0g (27)

For boundedness to be preserved,C� must be such that these surfaces
fully enclose the permitted motion from the nominal hovering
position. The critical values of C� where hovering becomes
unbounded occur when the zero-velocity surface and the control
surfaces no longer intersect transversely, i.e., when there first exists a
position r 2 �Z \D� such that rG�r� and rd�r� are colinear.
Finding this critical point under the assumption that �J > 0 yields
the maximal allowable increase in Jacobi constant and assuming
�J < 0 gives the maximal decrease in Jacobi constant, �J� and
�J� can be found analytically in simplified cases and numerically in
general.

This conceptmay be best demonstrated visually. Figures 4a and 4b
show a series of zero-velocity surfaces, Z, for different values of the
Jacobi constant in the planar, circular-restricted three-body problem
as dashed contour lines. Here, we assume that we are “hovering” at
the L1 Lagrange point (X ��609 km, Y � 0 km) which requires
no thrust because it is a natural equilibrium of the system. The control
surfaces for a one-dimensional dead band, D, are shown as vertical
dotted lines. In this plot, a spacecraft’s motion is restricted to areas
where J�r; 0� [equivalent to the negative of the potential V�r�
because there is no open-loop thrust] is less than the initial Jacobi
constant. Beginning with the nominal energy at the hovering point
(�� 1:57), we can see that if we increase the energy to �1:35 (by
increasing the initial velocity), the allowable region of motion
created by the zero-velocity surface and the control surfaces expands
but the allowable trajectory remains enclosed. It can be seen in the
figure that at �1:28, �J� has been exceeded. The zero-velocity
contour and the control surface no longer intersect transversely. This
means that the trajectory of a spacecraft that starts at theL1Lagrange
point with an energy of �1:28 is not guaranteed to be bounded. An
example of an unbounded trajectory with a Jacobi constant of�1:28
is shown as a solid line in the figures. Figure 4b shows a zoomed-in
view of the trajectory escaping out of the open bottleneck between
the zero-velocity and control surfaces.

Now, we give an example analytical calculation of�J� and�J�
for spacecraft motion under a one-sided, one-dimensional dead-band
control (without the open-loop thrust component) near a spherical
body. Here, we can assume that the nominal position is of the form
r0 � �x0; 0; z0� without loss of generality. The zero-velocity surface
and dead-band control surfaces are defined as

Z �
�
r 2 <3jG�r� � � 1

2
!2�x2 � y2� � �CB

jrj � C� � 0

�
(28)

D � fr 2 <3jd�r� � x � Rc � 0g (29)
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For a trajectory in this system to be nominally bounded under one-
dimensional control, Rc < jr0j< Rr where

Rr �
�
�CB

!2

�
1=3

(30)

is the resonance radius. The applicable gradients are

rG�r� �
�
�!2x� �CB

x

jrj3 ;�!
2y� �CB

y

jrj3 ; �CB

z

jrj3
�
;

rd�r� � �1; 0; 0�
(31)

We are seeking the Jacobi constant at the critical position r� 2
�Z \D� where rG�r�� and rd�r�� are colinear. We can
immediately see that z� � 0 and x� � Rc. There are three possible

solutions for the y� coordinate, y� � 0, 
�����������������
R2
r � R2

c

p
. The solution

�x�; y�; z�� � �Rc; 0; 0� defines the largest allowable decrease in the
Jacobi constant, �J� � J��Rc; 0; 0�; 0� � C0. This bound can only
be violated by an error initial position such that the spacecraft is
initially outside the dead band. The largest allowable increase in
initial Jacobi constant is defined by the other two solutions for y�

where �J� � J��Rc;
�����������������
R2
r � R2

c

p
; 0�; 0� � C0. If we consider only

errors in initial velocity, we find

�v0;max �
�������������
2�J�

p
(32)

is the maximal allowable error in initial velocity such that the
trajectory remains bounded. For hovering positions outside of the
resonance radius, these solutions are not applicable because the
hovering trajectory is not nominally bounded by this dead-band
control.

VII. Particular Cases Applicable to Small Bodies

We can discuss a number of time-invariant systems that occur in
spacecraft dynamics with equations of motion of the form in Eq. (1).
In this section, we discuss boundedness of hovering in three systems
commonly used to model dynamics near small bodies: the two-body
problem in a rotating frame, the restricted three-body problem, and
theHill problem.Because J iswell defined and twice differentiable at
all physically relevant positions in these problems, the necessary type
of dead-band control to bound hovering can bemapped as a function
of hovering position. Unbounded or problematic hovering areas
(near a boundary of the eigenvalue regions) for a particular controller
can easily be identified and avoided.

A. Hovering in the Body-Fixed Frame (Two-Body Problem)

First, we determine the control type necessary to bound hovering
in a coordinate frame rotating with a small body. It may be desirable
to hover in the body-fixed frame for purposes of taking high-
resolutionmeasurements of a particular area of the surface or during a
landing or sampling maneuver.

For this problem, we assume that hovering is performed close
enough to the small body to consider it a two-body problem. We
assume that the small body rotates uniformly about its maximum
moment of inertia, which we align with the z-axis. We allow the
small body to have an arbitrary shape, but assume its density to be
uniform so that the gravitional potential is defined in closed form [8].
In this formulation, no solar effects are included.We assume that the
spacecraft mass is negligible compared to that of the small body. The
only forces present are the gravity of the small body, inertial forces
due to the rotating frame, and the spacecraft thruster forces. The
equations of motion for a spacecraft under body-fixed hovering
control near a small body are

�x � 2! _y� !2x� @U

@x
� TOL;x � TDB;x (33)

�y� 2! _x� !2y� @U

@y
� TOL;y � TDB;y (34)

�z� @U

@z
� TOL;z � TDB;z (35)

Here, the second subscript of the thrusts indicate the component of
the vector to be used. Equations (33–35) define a conservative
Lagrangian system in the form of Eq. (1) with Jacobi constant Jbf .

Jbf �
1

2
jvj2 � 1

2
!2�x2 � y2� �U�r� � TT

OLr (36)

The Hessian partial matrix with respect to position of Jbf is

@2Jbf
@r2

����
�r0 ;0�

�
�!2; 0; 0

0; �!2; 0

0; 0; 0

2
4

3
5 � @2U

@r2

����
r0

(37)

The signs of the eigenvalues of this matrix, and hence, the type of
controller necessary for bounded hovering in the body-fixed two-
body problem, can be mapped out for any well-defined potential
field. Figure 5 shows the different eigenvalue regions for hovering
positions above a spherical body in theX–Z plane, normalized by the
resonance radius. The equations of motion are rotationally
symmetric about the z-axis, so this figure fully characterizes the
three-dimensional space around the body. Using the Routh criterion,
it can be shown analytically that the boundary between the�,�, �
and the�,�,� regions is precisely defined by a sphere at the center
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of mass with radius equal to the resonance radius [Eq. (30)]. That is,
all hovering positions near a spherical bodywith jrj< Rr have the�,
�, � eigenvalue structure and therefore, can be bounded by a
hovering controller with a one-dimensional dead band. Similarly, the
boundary between the �, �, � and �, �, � regions is defined as a
function of jrj for jrj> Rr by Eqs. (38) and (39).�

x

Rr

�
2

� 2

3

�jrj
Rr

�
2

� 2

3

�
Rr

jrj
�

(38)

�
z

Rr

�
2

� 1

3

�jrj
Rr

�
2

� 2

3

�
Rr

jrj
�

(39)

Because no �, �, � regions exist in this problem, we have
analytically defined the shape of the zero-velocity surface for
hovering near a sphere as a function of position. Nothing in this
analysis limits the results to small bodies; the eigenvalue regions
defined in Fig. 5 apply equally well to dynamics near spherical
planetary bodies. However, on the planetary scale, the necessary
thrust to hover is large and the oscillations from nominal allowed
under a bounding controller may be too large for some applications.

The eigenvalue regions are more complex to define for real small
body shapes. Because the term “small body” covers a wide range of
irregular gravitational fields, the shape of the eigenvalue regions is
unique to each. Figure 6 shows the sufficient dead band for bounded
hovering in the equatorial plane near a polyhedral model of the
asteroid 433 Eros (3:0 g=cm3 density, 5.27 h period) [9]. Because of
Eros’ elongated shape, the�,�, � hovering region here is divided
into two lobes. Hovering above the small body equator requires a
one-dimensional dead band near the elongated ends of the body and
requires two dimensions of dead-band control near its midsection.
Figure 7 shows the different hovering regions near a polyhedral
model of the asteroid 6489 Golevka (5:0 g=cm3 density, 6.0289 h
period) [10]. This is also interesting because of the �, �, � region
inside the large canyon that runs across Golevka’s south pole.

B. Hovering in the Restricted Three-Body Problem

Next we look at hovering in the restricted three-body problem. It
may be advantageous to hover in this frame which rotates with the
small body around the sun for the purpose of keeping a fixed
communication, sensing, or solar panel geometry. This formulation
can be applied to hovering in the small-body–sun system, a planet–
moon system, or a binary asteroid system.

Here, we assume that both primaries have point-mass potential
fields so that the equations of motion are time-invariant. More
complex gravity fields can be used if the rotation rate of the bodies is
equal to their mean motion around each other. Our equations are
centered at the center ofmass of the two primaries with the positive x-
axis pointing towards the smaller primary. The z-axis is normal to the
plane of the primaries’ mutually circular orbit and completes the
right-handed coordinate frame. The equations of motion for this
system with hovering control are
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�x � 2N _y� N2x � �1

x� �R

jrsc;1j3
� �2

x � �1 � ��R
jrsc;2j3

� TOL;x

� TDB;x (40)

�y� 2N _x� N2y � �1

y

jrsc;1j3
� �2

y

jrsc;2j3
� TOL;y � TDB;y (41)

�z���1

z

jrsc;1j3
� �2

z

jrsc;2j3
� TOL;z � TDB;z (42)

where rsc;1 � �x� �R; y; z�T , rsc;2 � �x � �1� ��R; y; z�T , and

N �
�����������������������������
��1 � �2�=R3

p
. Again, this is a conservative Lagrangian

system in the proper form with time-invariant Jacobi constant:

JR3BP �
1

2
jvj2 � 1

2
N2�x2 � y2� � �1

jrsc;1j
� �2

jrsc;2j
� TT

OLr (43)

Using the methodology discussed previously, we can map the
dead-band control sufficient to bound hovering in the restricted
three-body problem as a function of position. Figure 8 shows the
shape of the eigenvalue regions in the vicinity of the two primaries

for �� 0:01, a value typical for a planet–moon system. We can see
that each primary has an area in its immediate vicinity proportional to
its mass where hovering requires one-dimensional perturbation
control. If we consider �� 0:5, representative a binary asteroid
system,we find a�,�,� region in theX–Y plane as shown in Fig. 9.
Here, we can see a lobe of �, �, � dynamics around each primary
with the region being slightly larger on the outside of the primaries’
orbit than on the inside.

C. Hovering in the Hill Three-Body Problem

Finally, we look at hovering in theHill three-body problem,which
is a valid approximation of the restricted three-body problem for
hovering points near the smaller primary when � is small. The Hill
approximation does not apply to binary asteroid systems. The effects
of solar radiation pressure are easily included in this formulation
[11]. In the sun–small-body system, the equations ofmotion centered
at the small body are
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�x � 2N _y� 3N2x � �SB

x

jrj3 �
�SRP

R2
� TOL;x � TDB;x (44)

�y� 2N _x���SB

y

jrj3 � TOL;y � TDB;y (45)

�z��N2z � �SB

z

jrj3 � TOL;z � TDB;z (46)

The time-invariant Jacobi constant is

JHill �
1

2
jvj2 � 3

2
N2x2 � 1

2
N2z2 � �SB

jrj � �SRPx

R2
� TT

OLr (47)

The sufficient dead-band type to bound hovering near the small
body is mapped the same way we have done previously. When
jrj< rHill [Eq. (48)], the results are identical to those obtained in the
full restricted three-body problem.

rHill � R

�
�SB

3��SB � �Sun�
�

1=3

(48)

Figure 10 shows the eigenvalue regions for hovering near the small
body in the X–Z plane of the Hill problem. It can be noted that the
addition of solar radiation pressure has no effect on the sufficient
dead band because the potential associated with it is linear under
Hill’s approximations. The only difference in the necessary control is
in TOL, which must null the nominal acceleration due to solar
radiation pressure.

VIII. Discussion

A. Implementation of Bounded Hovering

Ourmain result is not that the spacecraft trajectory can be bounded
by dead-band control, but that it can often be done by a reduced-order
controller. For instance, hovering in close proximity to a small body
(inside the resonance radius) as may be necessary for a sampling or
landing maneuver can often be bounded by a one-dimensional dead-
band controller, because the zero-velocity surface frequently has a
�, �, � structure. Further, the eigenvector corresponding to the
negative eigenvalue (the direction the zero-velocity surface allows
unrestricted motion) is usually closely aligned with the gravitational
acceleration vector (unless hovering near the resonance radius),
which means altimetry measurements may be considered as a basis
for the dead-band control. At positions with �, �, � zero-velocity
surfaces, a dead-band control on the latitude and longitude of the
spacecraft, possibly based on optical navigation measurements, may
be a good candidate to bound the trajectory.

For safety purposes, it may be desirable to have three-dimensional
control of the spacecraft motion as on the Hayabusa spacecraft [12].
This could be achieved by a three-dimensional dead-band controller,
or more cleverly, by a combination of a one-dimensional [such as
Eq. (10)] and a two-dimensional dead-band control [Eq. (11)].
Depending on where the spacecraft hovers, the � parameter of each
thrust control could be adjusted so that the minimal dimension
controller bounds the spacecraft and the secondary controller, which
has a larger � value, provides a safety net. Measurements for the
secondary dead band could be performed less frequently, which
would conserve spacecraft resources.

B. Asymptotic Stability of Hovering

Ideally it is possible to achieve asymptotic stability of hovering by
modifying the dead-band thrust control [Eq. (8)]. Hysteresis can be
added to the dead band such that the reflected spacecraft speed
becomes some fraction of the incoming speed. This causes the Jacobi
constant to decrease in value after every dead-band thrust. In the�,
�, � case, the zero-velocity surface becomes a two-sheet
hyperboloid and recesses away from the nominal hovering point as
Jacobi constant decreases. The spacecraft motion is restricted to the
space between one sheet of the hyperboloid and the dead-band

control surface. In an idealized situation, this space eventually
reduces to a single point, not at the nominal hovering position, but on
the dead-band boundary. The other eigenvalue cases yield similar
results. Hence, this controller would produce asymptotically stable
hovering. Of course, asympotic stability in reality is not feasible with
this controller due to thruster constraints. However, hysteresis may
be useful to manipulate the Jacobi constant to decrease (or increase)
the size of the bounded hovering region in accordance with mission
goals.

IX. Conclusions

In this paper, we have developed sufficient conditions for a dead-
band controller to bound spacecraft hovering motion in time-
invariant Lagrangian dynamical systems. We found that if the dead-
band control restricts motion in at least as many dimensions as the
zero-velocity surface allows unrestricted motion (determined by the
eigenvalues of the Hessian matrix of the Jacobi constant with respect
to position) and it is aligned properly, then it is sufficient to bound
perturbed trajectories near the induced equilibrium. This result can
be used to identify hovering positions where it may be possible to use
a dead-band control based on a reduced measurement set (i.e., one-
dimensional control based on altimetry or two-dimensional control
based on optical navigationmeasurements).Wewere able tomap the
sufficient dead-band dimensionality in the rotating two-body,
restricted three-body, and Hill problems and found that hovering in
close proximity to a small body usually only requires a one- or two-
dimensional dead-band controller to stabilize motion.

Appendix: An Observation on Lagrangian Dynamics

The results we find for equilibria in spacecraft dynamical systems
of the form of Eq. (1) are applicable to a broader class of
unconstrained, time-invariant Lagrangian systems. This more
general formulation follows.

For a time-invariant rheonomic system, there exists a Lagrangian
function of the form

L�q; _q� � T�q; _q� � V�q� (A1)

The Jacobi constant is defined as

J�q; _q� � @L

@ _q
_q � L� CL (A2)

which has constant value for all states on a valid trajectory. The
equations of motion for this system are given by the standard form of
Lagrange’s equation.

_q� _q (A3)

_p� d

dt

�
@L

@ _q

�
� @L

@q
(A4)

For a state to be an equilibria, _qeqm � 0. In addition, @L=@q must
equal zero. When evaluated at _qeqm, this second condition reduces to
finding qeqm such that �@J�q; _q�=@q�j�qeqm;0� � 0.

The discussion follows from here in the samemanner as in Sec. II.
If the trajectory is initialized at the equilibrium point �qeqm; 0�, all
possible future states must have the same value of Jacobi constant. A
quadratic expansion around the equilibrium can be performed and
because j _qj> 0, this defines the zero-velocity surface of the system
in the vicinity of the equilibrium.
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