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Abstract 

Reflections from artificial boundaries inhibit convergence 
of transient solutions to  their steady limit. Far-field damp- 
ing operators to  suppress such reflections are presented for 
general first order hyperbolic systems, and particular ref- 
erence is made to  the  compressible Euler equations. T h e  
damping operator has the  following properties: (a)  No 
reflections are generated due to  the  introduction of the  
clamping terms and (b) Different wave systems may be 
damped a t  different rates. Feature (a) enables the  atten- 
uation of waves over relatively short length scales, while 
feature (b) enables the  damping operator t o  act selectively 
on the outgoing waves alone, leaving the  incoming waves 
unharmed. This  property is desirable in genuine time- 
dependent problems where consistent information should 
be allowed t o  propagate from the  artificial boundaries. 
Results for compressible Euler flows past aerofoils show 
the potential of far-field damping in substantially acceler- 
ating, particularly in fully subsonic problems. 

Introduction 

One important  factor tha t  influences rapid convergence 
of computed transient solutions to  steady-state is the  un- 
steadiness shed by the various boundary procedures. In 
particular, external flow calculations raise the problem of 
modelling open boundaries across which the  fluid flows 
and which should ideally allow the outgoing disturbances 
to pass through without generating reflections. Apart  
from degrading t ime accuracy of transient solutions, re- 
flected waves carry energies which bounce back and forth 
between artificial and solid boundaries dissipating very 
s l o ~ l ~ ~ ~ ' ~  and inhibiting convergence to  the  steady limit. 
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For evolutionary problems of hyperbolic character, per- 
fectly non-reflecting boundary conditions (BCs) exist onl!, 
in one space dimension1-3. In multidimensional proble~ns.  
perfectly absorbing BCs do not Instead, onc 
aims a t  minimizing the amount of reflected energy a t  the 
boundary, often by matching the  BCs to a known (asymll- 
totic) behaviour of the solution in the  far-field1-lo, or by 
applying heuristic boundary procedures guided by pract,i- 
cal e ~ ~ e r i e n c e " ~ ' ~ .  

In this paper, we pursue a less conventional approacl~ 
to  suppress far-field reflections, based on modifying tllc 
governing equations in a narrow absorbing 'sponge' layer 
near the  far-field boundary. The  far-field modification is 
motivated by the  natural  decay of multidimensional tlis- 
turbances which tend to  zero strength as they approach 
infinity, and takes the form of a far-field damping opera- 
tor. 

Variations on the  theme of far-field damping were pro- 
posed before by various a u t h ~ r s ' ~ - ' ~  and a.pplied t,o the 
solutions of external problems in various application ar- 
eas. One universal feature of fa.r-field damping is that, 
the  introduction of the  damping terms creates interfaces 
which may generate reflections when crossed by travelling 
waves. Damping operators tha t  give rise to  reflectioils are 
of limited potential. In pa.rticular, in order to rcducc. t,lic. 

effect of partial, the damping operator has to be applied 
very gradually, smeared over a large region which may oc- 
cupy up to  a third of the overall domain and inaccuracies 
in the  converged solution are to  be expected. In [13,14] 
we show tha t  damping operators based on a modified sec- 
ond order scalar wave-like e q ~ a t i o n s ~ ~ - ~ ~  will inevilal~l!. 
give rise to  partial reflections. In aerodynamis, this bears 
on potential flow descriptions (Full potential, T r a n s o ~ ~ i c  
Small Perturbations (TSP) etc.). 

The  damping operator proposed in this paper is hasccl 
on a modified first order system of equations which 110s- 
sesses additional degrees of freedom and enables the con- 
struction of a damping operator with the  following prop- 



erties: 

1.  travelling waves may be attenuated a t  an exponential 
rate. 

2. the passage of waves accross the interface is reflection 
free, even under an abrupt change of coefficients. 

3. different wave systems may be damped at  different 
rates. 

4. the operator depends continuously on a set of damp- 
ing functions, when all set t o  zero the unmodified 
equations (and solutions) are recovered. 

By property ( I ) ,  the damping ~ p e r a t ~ o r  has a similar ef- 
fect to  moving the outer boundary to  a very large distance, 
without incurring the penalty of large domains of compu- 
tation. The  question which BCs t o  apply a t  the bound- 
ary itself is of much lesser importance since wave ampli- 
tudes near the boundary are very close to  zero strength. 
Property (2) is imperative for successful, reflection free 
attenuation process and for obtaining converged steady 
state solutions which can be trusted. Property (3) en- 
ables the design of an operator that  acts only on the 
outgoing part  of the soluion, leaving the incoming part 
unharmed. This feature is particularly desirable in gen- 
uinely time-dependent problems where time dependence 
enters through the far-field BCs and where consistent in- 
coming information should be allowed to  propagate into 
the domain. Property (4) makes the damping operator 
ea.sy to  implement. In aerodynamics, this is applicable to  
the Euler and Navier-Stokes flow models, as well as t o  the 
T S P  equations written as a first order system. 

Analysis 

The Equations 

The one dimensional Euler equations for inviscid non heat- 
conducting compressible flows in conservation form are 

where p, u ,  p and E are the density, velocity pressure and 
total energy respectively and H = ( E + p ) / p  is the specific 
enthalpy. We use a t o  denote the speed of sound and y the 
specific heat ratio. Then by the perfect gas assumption, 
p is calculated from 

We use A = dF/dW to denote the Jacobian ma.tris a.nd 
use R = ( r l ,  r z , r s )  and A = diag(X1, X 2 ,  X3) to  denote 
the matrices with the eigenvectors r k  and eigenvalues Xk 

of A respectively. The  equations in matrix form are 

A is given by 

and R and A are given by 

1 1 1 
R =  ( a u u + a  

h - u a  i u 2  H + u a  

u - a  0 0  
= 

( 0  0  u 0  u + a  0 )  

Simple wave solutions to  (1) are eigenvectors rk, nloving 
a t  the corresponding speeds X k ,  

General single frequency solution to  (1) are superpositiol~ 
of simple waves 

for some wave strengths crk . 

Far-Field Damping in I D  

In the far-field we introduce the damping operator D(W),  

W t + A ( W ) W , + D ( W ) ( W - W , ) = O  ( 6 )  

where D ( W )  is the 3x3 matrix 

with R ( W )  and X k  the eigenvectors and eigenvalucs oS 
A given by (4) and dk are arbitrary damping coefficienk. 
General single frequency solutions to (6) are 

3 

W ( X ,  t )  = C a k e - d k x ~ 7 w ( t - x ~ X ~ ) r $  (8) 
k = l  

representing plane wave solutions r k ,  moving a t  speeds 
Xa and exponentially attenuated a t  rates elk. The clioicc 



dk = 0 recovers the  undamped solution for the k t h  wave. 
Setting all dk t o  zero recovers the  unmodified solution (5). 

An attractive form of the  damping operator which does 
not involve expensive matrix products can be obtained 
by decomposing the  far-field perturbation W - W, into 
eigenmodes 

Then,  
3 

D(W)(W - W,) = x a k ~ k d k r k  
k = l  

(9) 

where dk are the  damping coefficients. The  a k  are given 
by the usual expressions of the  Roe's solverlQ 

A p  - p a A u  
a1 = 

2 0 2  

where A( ) = ( ) - ( ), is the  local perturbation of the 
respective flow variables about their free stream values. 

Reflection Analysis 

The  introduction of the  damping terms in the  governing 
equations creates a n  interface to  either side of which dif- 
ferent equations are being solved and across which wave 
motion is to  remain continuos. T o  analyze reflection and 
transmission properties of the  damping operator, we con- 
sider the problem 

Wt + A(W)W, + Dl(W)(W - W,) = 0 x < 0 
W, + A(W)W, + D2(W)(W - W,) = 0 x > 0 
[Wlx=0 = 0 

where [W] denotes the jump in W across the  interface. 
Dl and D2 are possibly different damping matrices of the 
general form 

d: are arbitrary damping coefficients t o  either side of the 
interface x = 0. By (8), respective solutions take the  form 

Continuity across the  interface reduces to  

T h e  eigenvectors r k  are independent hence f o r ~ n  a ba- 
sis with respect to  which the representation of W(O,t) 1s 
unique. I t  then follows tha t  a t  satisfy 

implying full transmission of all waves a t  all times L \\'c 
summarize the  main properties of the far-field tlalrrp~ng 
operator: 

1. analytic solution is fully transmitted across t,hc i~rtc-r- 
face for arbitrarily strong damping coellicie~~ts. 

2. different wave systems may be attenuated a.t tlillerclrt 
rates, and in particular the outgoing waves Irrilv I,(: 
damped while the  incoming waves are left unhar~ncil . 

In both these respects the present damping operator is 
superiour t o  the ones in [lG-181. The  latter are all based oir 
a modified second order scalar wave-like equation, wllilc 
the  present operator is based on a modified first ordrr sys- 
tem. A simple count of degrees of freedom confirms that  i f  
the second order wave equation is modified, there are olllj, 
two free coefficients to  determine the  decay rates of all t l ~ e  
wave systems, while if the  same equation is tra~lsfornretl 
into the derivative space and written as a 2 x 2 first older 
system, there are four mat,rix elements to  determine l , l~c .  
decay rates. T h e  additional freedom is also reflected b ~ .  
the fact tha t  every second-order scalar equation can Ilc 
written as a first order system, but  not every first orilcr 
system can be reduced to  a second order scalar. I t  can also 
be verified tha t  preservation of the eigenvectors wliich is 
imperative for full transmission of waves is llot possil~l(, 
with a damped second order scalar [13,14]. 

D i s c r e t e  far - f ie ld  d a m p i n g  

Analytically, waves may be 'wiped-out' by a sucltlell 
change of damping parameters without, generating reflcc- 
tions. On the discrete level, the interface created tluc to 
the introduction of the damping terms is no longer a sill- 
gle point. I t  transforms into an  interface 'zone', the witltlr 
of which depends on tha t  of the numerical stencil, t . l~at  is 
on the  order of accuracy of the  numerical scheme. Since 
high order schemes possess additional spurious solut,ioll 
modes, the damping operator has to  be applied gratluall\~ 
in space to  ensure tha t  the damping procedure is 11u111cr- 
ically stabe. T h e  analytic non-reflective properties of t11c 
damping operator allows the width of the absorl~ing la!.er 
to  be kept to  a minimum, typically no more than 4-6 grid 
points accross the modified region. 



Far-f ie ld  d a m p i n g  and other a c c e l e r a t i n g  d e v i c e s  

Because of i ts  generality, the  damping operator can eas- 
ily be used in conjunction with other convergence accel- 
erating devices such as multistage t ime integration, mul- 
tiple grids and preconditioning. Note, however, t ha t  if 
the system is preconditioned, the  damping term should 
be preconditioned in the  same way in order to  retain its 
non-reflective features. Note also tha t  in multiple grid 
algorithms, the  amount of extra computational burden 
incurred by the  coarse and intermediate grid levels is neg- 
ligible since the  modified region is very narrow. 

Far-Field Damping in 2D 

The 2 dimensional Euler equations in conservation form 
are 

wt + F(W), + G(W), = 0 (11) 
with 

In matrix form the  equations are 

where A and B are the Jacobian matrices A = dF/dW, 
B = dG/dW and are given by 

where lql = d w  is the  flow velocity. Plane wave 
solutions in an  arbitrary direction 0 satisfy 

W t  + M(B)W,, = 0 (13) 
where x' = x cos 0 + y sin 0 and M(0) = A(W) cos 6 + 
B(W) sin 0. T h e  right eigenvector matrix of M(0) is 

with qn = u cos B+v sin 6' and qt = -u sin O+ v cos 0 the ve- 
locity components parallel and normal to  the  direction 0. 
By previous analysis we construct a 0 dependent damping 
operator 

with 

The choice (14) preserves the eigenvectors in an arl~itrary 
direction 0, and has plane wave solutions, 

describing plane waves moving a t  an  arbitra.ry direction .z.' 
and decaying a t  exponential rates dk. If all wave systems 
are damped a t  the  same rate dl, r d for all I;, equation 
(14) reduces to  

I t  is, however, not necessary to constra;n all wave sys- 
tems by the same decay rate and the damping operator 
may remain in i ts  general form (14). Here again a morc 
attractive form of the damping operator is 

with crk the  Roe's wave strengths. 

D a m p i n g  s t r a t e g i e s  

The  direction 6' in which waves are daniped varies fi.oi~r 
one grid point to  the next and its choice is problem depen- 
dent. Here various damping strategies may be adopted. 
One possibility is to damp the  waves in the direction 1101.- 

ma1 to  the outer boundary. In this case, 0 = Oi,j is calcu- 
lated once a t  the  beginning of the computation. Another 
possibilty is t o  choose B i , j  in the direction of the out8go- 
ing waves. This direction may be extracted fro111 local 
gradients of the  flow variables and needs to  be computed 
a t  every t ime step. A possible recipe for choosing 0 for 
flow past an  aerofoil geometry is illustrated in Figure (1). 
The  expected effect of damping on far-field solution is to 
'push' the solution towards the free stream values. Indeed, 
when damping is applied, flow variables close to  the outer 
boundary have converged values which are very close to 
the free stream values. Movies of residual convergence 
history show that  outgoing waves do not penetrate more 
than very few cells into the 'sponge' layer before llrey arc 
damped15. A typical effect of far-field damping on the 
converged Mach number distribution on the aerofoil sur- 
face is illustrated in Figure (2).  



Far-field damping and Jnthalpy damping 

Enthalpy damping, originally proposed by Jameson, 
Schmidt and Turkell0, proved a very successful device for 
accelerating convergence of unsteady compressible invis- 
cid flows to their steady limit. It was derived by reducing 
the unsteady Euler equations to  the wave equation, mod- 
ifying the wave equation by adding a damping term to 
obtain decaying solutions as t -+ ca, and transforming 
the modified equation back to the Euler equations. The 
result is a set of modified equations 

with H, the free stream enthalpy. Since the steady state 
enthalpy is constant along streamlines, if all streamlines 
originate from a uniform free stream, steady solutions of 
(16) are also steady solutions of ( 1 1 ) .  The coefficient d 
is then chosen to optimize convergence rate. Enthalpy 
damping was later analyzed by J e ~ ~ e r s e n ~ ~ w h o  made the 
following observations: When d  = 0, ( 1 6 )  form a hyper- 
bolic system, and possess frozen coefficient solutions of the 
form 

with wk = w k ( [ )  purely imaginary. He also showed that 
under certain conditions, taking d > 0 pulls wk off the 
ima.ginary axis into the left half of the complex plane, 
yielding exponential time decay of solutions and conse- 
quently accelerated convergence. In fact, what he showed 
was that out of the four eigenvalues w k ( J ) ,  only three are 
, ulled off while one always remains on the imaginary axis. 
Hence, even with enthalpy damping, not all solutions de- 
cay in time. That Euler solutions do converge to a steady 
limit he accredited to  the numerical dissipation introduced 
by the stable time integration procedure. 

It is easy to  verify that the present damping operator 
pulls all eigenvalues off the imaginary axis. Moreover, 
they can be pulled as far off the imaginary axis as one 
wishes, by choosing appropriate values for the damping 
coefficients d k .  Enthalpy damped solutions are not time 
accurate, but they converge to  the correct steady limit. 
By contrast, the present modified system (14) does not 
possess same steady solutions as the original system ( 1 1 ) .  
On the contrary, one expects far-field solutions to decay 
faster towards their ( ), values. On the other hand, since 
the damping terms are non-reflective, at  least in a one- 
dimensional asymptotic sense, their introduction in ( 1 4 )  
should not destroy time accuracy in the inner unmodified 
region and is expected to  converge to  the same steady 
limit over that region ( see Figure (2)). 

Numerical Results 

Numerical algorithm and boundary condi- 
tions 

The method of solution is Hall's variationl1 of the cell ver- 
tex scheme with LW time integration, originally proposed 
by Nil2. The time increment at cell vertex 1  ( see Figure 
(3)) is given by, 

with SA denoting the area of cell A, At denoting the time 
step and changes at cell centers are given by 

with A1 and B1 denoting the Jacobian matrices at cell ver- 
tices. The scheme also uses artificial smoothing to suppres 
spatial oscillations, the details of which can be found i l l  

[ I l l .  
Boundary conditions: The original scheme proposed bj. 

Hall is designed for the calculation of steady solutions. 
The energy equation is omitted and pressure is calculated 
from Bernoulli's equation, using free stream enthalpy. The 
boundary recipes recommended by Hall a.re as following: 
At inflow, tangential velocity and entropy are specified, 
normal velocity is extrapolated using a one-sided vcrsio~~ 
of the interior scheme. At outflow, free stream pressure is 
specified and velocity components are estrapolatcd usi~rg 
one-sided version of the interior scheme. These boundary 
recipes were selected by Hall after extensive esperimel~ts 
with v.arious boundary recipes, including 1.1011-reflcctivc 
boundary conditions. They have proved better s\lit.ed for 
the calculation of steady solutions, in that they yicltletl 
faster convergence than the non-reflective BCs. On t,lie 
solid wall, the interior scheme is applied and a simple tall- 
gency condition is applied to the predicted solution. In 



the tests presented in this paper, Hall's method is applied 
to the full 4 x 4 system (11). Hall's boundary recipes 
are augmented by specifying the  free stream enthaply a t  
inflow and extrapolating enthalpy a t  outflow, using the 
same one-sided version of the  interior scheme. I t  is the 
expereince of the  author tha t ,  like in the  reduced system 
case, these boundary recipes yield faster convergence than 
non-reflecting boundary conditions, and tha t  the  spatial 
decay of converged flow field variables towards the free 
stream values is monotone. 

Damping term: T h e  non-homogeneous system (14) is 
solved by an  operator split algorithm where in the  first 
stage the solution W gets updated by the flux terms and 
in the second stage, a pointwise t ime integrator is used 
to account for the  effects of the damping operator. Since 
accuracy is not required in the modified layer in the far- 
field, a first order Euler t ime integrator is used. 

Numerical tests 

Steady solutions are calculated for transonic and subsonic 
flows past a symmetric non-lifting circular aerofoil of 10% 
height/chord length ratio. T h e  unsteady equations (14) 
are integrated and convergence is declared when nodal 
changes of all conserved quantities are less than We 
use an  aligned mesh with 32 evenly spaced cells on the  
aerofoil and linearly stretching cells on either of its sides 
and in the  vertical direction ( see Figure (4)). Converged 
steady s ta te  drag and normal force coefficients are ob- 
tained using 

Owing to  symmetry, the solution is calculated only on 
the top half of the  aerofoil, with reflective BCs applied 
along the line of symnietry. Consequently, the normal 
force coefficient CN does not vanish and serves t o  assess 
the effect of the far-field boundary and the far-field damp- 
ing on the accuracy of the  converged solution. T o  mini- 
mize the effect of the  far-field BCs on the  converged solu- 
tion, we conducted a series of experiments with the  outer 
boundary placed a t  various distances, until the converged 
solution ceases t o  change (changes in CN and Co 5 
The results of transonic and subsonic flow calculations are 
summarized in Table (1). For the tests conducted, i t  was 
found that  boundary distance of - 10 chord lengths is 
sufficient and solutions of tests (5) and (11) are consid- 
ered 'accurate'. T h e  respective converged Mach number 
and pressure profiles are shown in Figure (5). The  effect of 
far-field damping on the  convergence characteristics of the  
solution is summarized in Tables (2) and (3). In the Ta- 
bles, Boundary Thickness indicates the number of nodes 

accross the  modified region and Direction of Modifica.tion 
indicates the  direction in which waves are damped (X for 
inflow and outflow boundaries, Y for top boundary and 
X-Y for both). The  first line in each table serves as a 
bench mark and indicates a computation with the BCs 
described in the  previous section. Tests (2) through (7) 
use the  same BCs together with far-field damping. In Test 
(8), all outer boundaries are crudely overspecified to free 
stream conditions, and far-field damping is applied. Test 
(8) is particularly relevant to  the ocurrence of a character- 
istic boundary, since the  type of a characteristic boundary 
changes almost a t  random during the transient phase as a. 
result of small numerical errors. A conventional boundary 
treatment tha t  depends on the  boundary type will also bc 
random and may end up  shedding unsteadiness and dc- 
laying convergence. 
Transonic Test Case 
Results are summarized in Table (2). In all cases far-field 
damping accelerates convergence to  steady states and is 
found relatively insensitive to  parameters like Boundary 
Thickness and Attenuation rate. Comparison of Tests (1) 
and (6) reveals a handsome 35% drop in the number of' 
iterations to  steady s ta te ,  while relative differences in CN 
and CD are less than 1%. Absolute differences in both are 
of order Convergence histories of Tests (1) and (6) 
are compared in Figure (6). One stiking result is t11a.t even 
the  overspecified case (8) converges almost as ra.pidly a.s 
(6). This  indicates tha t  in all previous cases, most energy 
is absorbed by the  damping operator and not by the BCs. 
Subsonic Test Case 
Results are sumarized in Table (3). Here, the impact of 
far-field damping is even more dramatic,  yielding ail inl- 
pressive drop of over 60% in number of iterations to steady 
state,  with relative changes in CN and CD well under 0.5% 
(compare Tests (1) and (3)). The  more pronounced im- 
pact of the damping is to  be expected, since in the t,ran- 
sonic case, convergence is delayed by the formation of the 
shock wave as well. The  rapid convergence of Test (8) 
should also be noted, demonstrating the effectiveness of 
energy absorption by the  damping operator even when 
the  boundary is overspecified. Convergence histories of 
Tests (1) and (3) show tha t  the  periodic nature of con- 
vergence, attributable to  far-field reflections15, is almost 
entirely removed (see figure (7)). 

Summary 

A framework has been given for the construction of clamp- 
ing operators to  suppress reflections from artificial bound- 
aries for general first order hyperbolic systems. Pa.rtic- 
ular reference is made to  the compressible Euler q u a . -  
tions. T h e  damping operator selectively damps the outgo- 
ing part  of the solution over short length scales, wi thmt  
affecting the incoming part of the solution and withoutm 



generating reflections. Two dimensional steady Euler cal- 
culations of subsonic and transonic flows past symmetric 
aerofoils demonstrate substantial improvement in conver- 
gence characteristics, with a particularly sharp impact in 
the fully subsonic case. T h e  results also indicate tha t  far- 
field damping is a n  attractive alternative to  conventional 
boundary treatments near characteristic boundaries where 
boundary type changes almost a t  random due t o  small nu- 
merical errors, and where customizing the  boundary pro- 
cedures to  a random boundary type may end up  shedding 
unsteadiness. 
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- m 
N o .  

B o u n d a r y  G r i d  CN 
D i s t a n c e  S i z e  

N o .  o f  
I t e r a t i o n s  

5390 
5168 
6358 
6503 
6418 
6289 

1637 
3919 
4540 
5342 
5528 
5879 
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Figure 1: A possible recipe for choosing 0 for flow calculation past aerofoils. 
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Figure 2: A typical effect of far-field damping on the converged subsonic Mach number profiles: Undan~pccl (das l~cd)  
and damped (solid) solutions. 

Figure 3: Grid notation for Hall's numerical algorithm. 



Figure 4: Numerical grid for non-lifting aerofoil calculation. 

Figure 5: Converged Mach number profiles for Tests (5) and (11) in Table (1): (a)Transonic and (b) s r~l~sonic  cascs 



Figure 6: Convergence histories for transonic test: Average density residuals vs iteration number for Tests number 
(1) and (6) in Table (2). 
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Figure 7: Convergence histories for subsonic test: Average density residuals vs iteration number for Tests numl~er  (1 )  
and (3) in Table (3) .  


