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Aone-dimensional theory of slender structures with heterogeneous anisotropic material distribution is presented.

It expands Cosserat’s description of beam kinematics by allowing deformation of the beam cross sections. For that

purpose, a Ritz approximation is introduced on the cross-sectional displacement field, which defines additional

elastic degrees of freedom (finite-sectionmodes) in the one-dimensionalmodel. This results in an extended set of beam

dynamic equations that includes direct measures of both the large global displacement and rotations of a reference

line, and the small local deformations of the cross sections. Two situations are studied in which this approach

provides a simpler alternative to shell models with comparable fidelity. First, we look at the detailed structural

response of composite beams with distributed loads. In particular, the case of a composite box beamwith embedded

piezoelectric actuators is considered. Second, this methodology is applied to study the low-frequency response

characterization of composite beams. Numerical results in both cases show that a reduced set of finite-section modes

allows a full description of the actual three-dimensional displacement field using a strictly one-dimensional

formulation.

Nomenclature

A = area of the cross section
ai = unit vectors of the reference coordinate system
Bi = unit vectors of the local coordinate system in the

deformed reference line
bi = unit vectors of the local coordinate system in the

undeformed reference line
Csr = rotation tensor from coordinate systems r to s
c = tensor of material elastic constants
ei = unit vector along the i-direction
F = vector of cross-sectional internal forces
fs0 = column matrix of applied conjugated forces of q
fs1 = column matrix of applied conjugated forces of q0

f0 = vector of zero-order applied forces per unit length
f1 = vector of first-order applied forces per unit length
g = damping coefficients
H = vector of sectional inertial angular momenta
h = characteristic dimension of the cross section
K = kinetic energy per unit length
K = curvature vector in the deformed reference line
k = curvature vector of the undeformed reference line
l = beam length
M = vector of sectional internal moments
M = sectional mass matrix
m0 = vector of zero-order applied moment per unit length
m1 = vector of first-order applied moment per unit length
P = vector of sectional inertial linear momenta
Qs0

= column matrix of conjugated forces of q
Qs1

= column matrix of conjugated forces of q0

Qt = column matrix of conjugated momentum of _q
q = column matrix with amplitudes of finite-section modes
R = position vector at the deformed reference line
r = position vector at the undeformed reference line
S = sectional stiffness matrix
t = time
U = strain energy per unit length
u = displacement vector of the origin of reference coordinate

system
V = inertial velocity vector at the deformed reference line
v = inertial velocity vector of origin of reference coordinate

system
w = warping displacement vector
X = position vector of the deformed material point
x = position vector of the undeformed material point
x = curvilinear coordinate along the undeformed reference

line
x� = cross-sectional coordinates in the reference configuration
� = strain tensor in the three-dimensional solid domain
� = vector of force strain measures at reference line
� = variational operator
�A = applied action at time and spatial boundaries
�W = virtual work per unit length of the external forces
�� = column matrix of local virtual rotations of reference line
�’ = column matrix of virtual rotations of reference

coordinate system
� = vector of moment strain measures at reference line
� = vector of distributed applied force per unit volume
� = mass density
� = matrix of approximating functions for finite-section

modes
� = inertial angular velocity vector at the deformed reference

line
! = inertial angular velocity vector of the reference

coordinate system (a)
~��� = cross-product operator
_��� = differentiation with respect to t
���0 = differentiation with respect to x

I. Introduction

A lthough beam models allow the easy modeling of structural
elementswith a dominant spatial dimension, their application is

typically limited by additional kinematic constraints to the

Presented as Paper 2275 at the 48th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Honolulu,
Hawaii, 23–26 April 2007; received 15 April 2007; revision received 10
September 2007; accepted for publication 2October 2007. Copyright © 2007
by Rafael Palacios and Carlos E. S. Cesnik. Published by the American
Institute of Aeronautics and Astronautics, Inc., with permission. Copies of
this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923; include the code 0001-1452/08
$10.00 in correspondence with the CCC.

∗Postdoctoral Research Fellow, currently Lecturer, Imperial College
London, Department of Aeronautics, London SW7 2AZ, United Kingdom;
rpalacio@imperial.ac.uk. Member AIAA.

†Associate Professor, Department of Aerospace Engineering; cesnik@
umich.edu. Associate Fellow AIAA.

AIAA JOURNAL
Vol. 46, No. 2, February 2008

439

http://dx.doi.org/10.2514/1.31620


deformation. One typical assumption is that the deformation of the
beam reference line defines the displacement field in the actual three-
dimensional slender solid by assuming, for instance, rigid cross
sections (Cosserat’smodel). The resultingmodels are valid while the
area of the cross section remains close to zero, but it is not that
obvious to establish their limits when the cross-sectional size
increases. The aim of this paper is to establish a theory of beamswith
finite-size cross sections that satisfies the following requirements:
1) it uses a one-dimensional representation of the structure along a
reference line; 2) it allows for deformations of the cross section not
necessarily related to the deformation of the reference line; and 3) it
accounts for cross sections of arbitrary shape and material
distribution for initially curved or twisted reference lines, and for
arbitrarily large deformations of the reference line.

Basic concepts of beam theory were first developed for the
modeling of solid homogeneous isotropic structures. There we find
the classical linear beam theories used in strength ofmaterials, that is,
the Euler–Bernoulli or Timoshenko theories. They are displacement
formulations; an ad hoc approximation of the cross-sectional
displacement field yields the strain energy and, using energy
principles, some beam stiffness relations can be defined, as well as
the subsequent equations of motion. Those classical assumptions in
the displacement field, however, no longer represent the behavior of
anisotropic slender structures. The concept of warping, which was
first developed for the Saint-Venant theory of torsion, is used to
quantify thismismatch and, based on it, a number of composite beam
theories have been formulated. With an interest in helicopter blade
design, Volovoi et al. [1] and Jung et al. [2] have reviewed the
available modeling methods for anisotropic beams.

Asymptotic expansions provide a useful mathematical tool to
construct one-dimensional structural models from the three-
dimensional equations of elasticitywithout ad hoc assumptions in the
displacement field. The slenderness of the structure provides a small
parameter (h=L, with h being the cross-sectional typical dimension
and L the characteristic wavelength of the deformation) to build an
asymptotic approximation to the solution of the three-dimensional
elastic problem. This is done without assumptions on the
displacement field, which is approximated as part of the asymptotic
solution process. The problem can be posed from either a weak [3–5]
or a strong [6–8] form of the equations of elasticity and its solution,
except for a few particular configurations, needs to be obtained
numerically. In general, this problem can be seen as the estimation of
how much the actual displacement field in the slender solid deviates
from the rigid cross sections along a deformable reference line
(which corresponds to the limit h=L! 0). These local deformations
are normally referred to as warping displacements of the beam cross
sections. The first warping model was postulated by Saint-Venant to
capture the local shear strains in the torsion of isotropic beams (see
Love [9], paper 82). This defines, in general, a two-dimensional
problem in the cross sections that also appears with transverse shear
deformations, and for which different numerical solutions have been
proposed [10,11]. For the case of anisotropic slender structures, a
warping correction appears on the cross sections for each possible
deformation of the reference line (its bending, extension, shear, and
twist degrees of freedom) and more general solutions have been
proposed for the warping field [4,12,13]. They are based on different
homogenization procedures of the local three-dimensional
equilibrium equations per unit length of the slender solid. In [12],
the warping field is obtained through minimization of the energy per
unit length, but the cross-sectional and longitudinal problems are
coupled in the solution, which complicates the actual implementa-
tion of the method. This is avoided in [13] through the identification
of the beam motions as the kernel of the equations in the interior of
the solid, which implies a variational definition of the one-
dimensional deformations of the prismatic beam without
assumptions on the displacement field. Alternatively, an asymptotic
solution is proposed in [4] by applying the variational–asymptotic
method [3] to anisotropic beams. This results in the variational–
asymptotic beam cross-sectional analysis, which was originally
based on four classical beam elastic degrees of freedom (extension,
twist, and bending in two directions). One big advantage of the

variational description is that it provides a robust framework formore
general formulations and thus the model in [4] was later expanded
[14,15] to account for a finite number of additional (higher-order)
nonclassical one-dimensional elastic degrees of freedom. These
nonclassical deformations include situations such as the camber-
bending deformation of thin strips [16] or the generalization of the
Vlasov correction for open-cell composite beams of Volovoi and
Hodges [17]. Cesnik et al. [14] proposed an eigenvalue problem on
the cross-sectional displacement field and therefore nonclassical
modes that are independent on the actual loading on the beam. To
improve this, Palacios and Cesnik [15] substituted them with a Ritz
approximation in which assumed shape functions on the warping
field (finite-section modes) are used to represent cross-sectional
deformations of interest for a given configuration. This results in a
theory of beams with arbitrarily deformable cross sections, which
will be fully developed in this work.

The proposed formulation is based on a spatial reduction of the
three-dimensional equations ofmotion of the slender solid,which are
reduced to describe the evolution of certain magnitudes (both the
classical and nonclassical beam deformations) along a reference line.
This reference line will be allowed to move in space and have
arbitrarily large deformations. In that respect, the classical part of the
deformation follows Cosserat’s model, that is, the beam is
represented by a deformable line curved in space with known elastic
properties and the deformation of the curve is analyzed using the
tools of differential geometry (see Love [9], paper 254). Using this
approach, Reissner [18] determined the geometrically exact static
equations of equilibrium, whereas a geometrically exact model for
beam dynamics was later introduced by Simo [19]. Those are
intrinsic formulations, but are explicitly solved in displacements/
rotations. Hodges [20] derived a mixed form of the beam dynamic
equations, which allows a very simple numerical solution scheme
[21]. This model will be expanded here to include also the
deformation of the cross section through a set offinite-sectionmodes.
The resulting one-dimensional formulation explicitly captures both
the large elastic deformations of the beam reference line aswell as the
small local deformations at the cross section. Typical situations in
which finite-section modes may be desirable are the accurate
estimation of the local deformation of composite beams under
nonuniform distributed loads (for example, bimoments acting on a
thin strip) and dynamic response of composite beams at low-to-
moderate frequencies. In those situations, the conventional solution
would be based on a shellmodel and this is avoided here by defining a
set of finite-section modes. Both situations are exemplified with
numerical tests in this paper. Applications under study (an on-going
research) of this approach also include the structural models in
aeroelasticity of rotorblades with either computational fluid
dynamics (CFD) [22] or flexible-airfoil potential [23] aerodynamics.

II. Theoretical Development

Starting from the three-dimensional elastodynamic equations, the
slenderness of the structure defines a small parameter in the
equations. This identifies two scales in the analysis and splits the
problem into a long-scale one along the longitudinal dimension and a
small-scale one at each cross section. A previous work by the authors
[15] has presented the general solution to the cross-sectional problem
and this work will focus on details of the development of the one-
dimensional dynamic equations along the reference line. For
completeness, some key results on the reduction process from the
three-dimensional solid to the reference line are also included here.

A. Kinematics

Consider the two configuration states in the deformation of a
slender solid of slowly varying cross section as shown in Fig. 1. They
correspond to the undeformed (reference) and deformed (current)
configurations. The deformation is described using a Lagrangian
description, with lower- and upper-case symbols used for
magnitudes at the undeformed and deformed state, respectively.
The description is done from the viewpoint of an observer on a
moving reference frame (a). The motion of this frame is given with
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respect to an inertial frame (a certain global frame, o) by the
translational velocity of its origin, v, and its rotational velocity, !,
which, in general, are unknown.

A (curved) reference line, r, is defined along the longitudinal
dimension of the undeformed configuration. Let r and x be the
position vectors along the reference line and in the undeformed solid,
respectively. Curvilinear coordinates can be defined, such as x� x1
is the coordinate along r and x� � x� are the orthogonal coordinates
in its normal planes. The tangent vectors at the reference line to the
three curvilinear coordinates define the undeformed reference frame,
b. The position vector x in the undeformed solid can then be written
as

x �x; x2; x3� � r�x� � xab��x� (1)

Let X be the position vector in the current configuration of a
material point initially at x. We define now the deformed reference
line, R, by the averaged value of X on the cross sections of r:

R �x� � 1

A�x�

Z
A�x�

X dA (2)

where A�x� is the cross-sectional area at x. In general, the covariant
base vectors corresponding to the curvilinear coordinatesX�xi� will
not define an orthogonal basis. To simplify the description we
introduce an “intrinsic” orthogonal deformed reference frame,B. Let
Z�X �R be the position vector in the deformed cross section.
Frame B is defined by enforcing that the average rotation around the
three vectors Bi is zero, that is,Z

A�x�
�x3Z2 � x2Z3� dA� 0

Z
A�x�

x3Z1 dA� 0; and

Z
A�x�

x2Z1 dA� 0

(3)

where Z� ZiBi. Following Hodges [24], the rotation matrices
between the global frame (a) and the undeformed (b) and deformed
(B) frames will be denoted as Cba�x; t� and CBa�x; t�, respectively,
and their spatial derivative along the reference line defines the
curvature vectors of the undeformed (k� kb;ibi) and deformed
(K� KB;iBi) reference lines, respectively. The position vector in the
current configuration of the material point initially at x can be
written, without loss of generality, as [15]

X�x; x2; x3� �R�x� � x�B��x� � qn�x��n;i�x2; x3�Bi�x�
� wi�x; x2; x3�Bi�x� (4)

where�n;i, with n� 1; . . . ; N, is a set of approximating functions to
the sectional deformation field to capture nonclassical deformations
(which, in what follows, are referred to as finite-section modes); qn
are the amplitudes of those finite-sectionmodes; andw�wiBi is the
residual warping displacement vector. Note that, if the finite-section
modes are zero and the warping is the (prescribed) Saint-Venant
torsion warping, Eqs. (3) and (4) correspond to the kinematic

assumptions for the Timoshenko model of an isotropic beam with
extension, bending, shear, and twist degrees of freedom. In the
general case, for other values of these variables, several
orthogonality constraints need to be imposed on them to give a
unique description of the deformation. They are chosen as [15]Z

A�x�
��Tw dA� 0 (5)

Z
A�x�

�T�0 dA� 0 (6)

where

�0 �
1 0 0 �x2 x3 0

0 1 0 0 0 �x3
0 0 1 0 0 x2

2
4

3
5

��� ��0 j �0 �; and w�
(
w1

w2

w3

) (7)

B. Equations of Motion

The equations of motion of the linear elastic domain are given by
the extended Hamilton’s principle applied in a time interval �t1; t2�
and in the spatial domain � asZ

t2

t1

�Z
�

���K � u� � �W� dx
�
dt� �A (8)

where �W is the virtual work per unit volume of the external forces,

�A includes any virtual action on the boundaries of the domain� and
at the ends of the time interval, andK and u are the kinetic and strain
energy densities, respectively. Overbars on virtual magnitudes
indicate that they do not correspond to the variation of a function.

Both energy densities are given byK� 1
2
� _X 	 _X and u� 1

2
� 	 c 	 �,

respectively, where � is the material density and c is the fourth-order
tensor of elastic material constants (compliances). � is the local
Jaumann–Biot–Cauchy strain tensor given in a mixed-bases
projection, as in Danielson and Hodges [25],

�ij � 1
2
�Aij � Aji� � �ij; with Aij � Bi 	

@X

@x
	 bj (9)

Spatial differentiation of Eq. (4) gives the local strain tensor in the
solid as

�� ����x; t� � ����x; t� � �qnqn�x; t� � �q0n
q0n�x; t�

� �ww� �lw
0 (10)

where ���� are a set of linear operators defined as in Cesnik and
Hodges [4], and � and � are the column matrix form of the force and
moment generalized strains, respectively, defined as [20]

� �
(
�11
2�12
2�13

)
� CBaR0a � Cbar0a; ��

(
�1
�2
�3

)
� KB � kb

(11)

Analogously, time differentiation of Eq. (4) defines the local

velocities in the solid. The local inertial velocity vector _X is obtained
as

_X� V �� 
 �x�B� ��nqn � w� � ��n _qn � _w� (12)

where the components of the translational, V � VB;iBi, and
rotational, ���B;iBi, velocity vectors (defined with respect to an
inertial reference frame) are given by the following kinematical
relations:

a3

a1

a2

b1

b3
b2

B3 B2

B1

r

R

L

h

R
X

Fig. 1 Coordinate frames in the deformation of a slender solid.
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VB � CBa� _Ra � ~!aRa � �a�; ~�B �� _CBaCaB � CBa ~!aCaB
(13)

Subindexes in the vectors refer to the reference system in which
their components are known. Substituting the strain and velocity
fields of Eqs. (10) and (12), respectively, into the strain and kinetic
energy densities, the variational problem of Eq. (8) defines without
any approximation the dynamics of a slender solid in two sets of
variables: 1) the averaged variables along the reference line
fR;CBa; qn; �; �; q

0
n;V;�; _qng, which are only spatial functions of

the longitudinal coordinate, x, and are thus the long-scale variables;
and 2) the residual local warping field and its derivatives fw;w0; _wg,
which will be referred to as small-scale variables.

The condition of slenderness, h=L� 1, ensures that the energy
contributions of these small-scale variables in the three-dimensional
dynamic Eq. (8) will be small compared to those of the long-scale
variables, and so it effectively defines a multiscale problem in the
slender solid. As a result, one can find an asymptotic approximation
to the variational three-dimensional problem by successively solving
the problem at the different scales. Thismethodology is known as the
variational–asymptotic method [3], on which the book by Le [5]
provides a good introduction.

C. Cross-Sectional Analysis

The solution to the cross-sectional (small-scale) problem in the
present scope was presented in [15]. It is assumed that the
contributions of _w and � 
 ��nqn � w� to the kinetic energy are
negligible, which effectively reduces the small-scale problem to the
minimization of the strain energy density at each cross section as
function of the (small) local warping displacements. The small-scale
problem becomes a constrained minimization problem, defined as

�

Z
A�x�
�u��̂; �̂; q̂n; q̂0n;w;w0� � � �� 	 w� dA� 0 (14)

where the symbol �̂was introduced to denote the prescribed variables
in the cross-sectional problem and � are the Lagrange multipliers
associated with the orthogonality constraints imposed by Eq. (5). A
detailed analysis of the different contributions in Eq. (14) leads to the
identification of different orders in the equation (i.e., h=L, �h=L�2,
etc.) and a general solution to this problem is obtained by a finite-
element discretization of the cross section. The first-order solution
results in [15]

w�x1; x2; x3� �w��x2; x3��̂�x1� � w��x2; x3��̂�x1�
� wqn�x2; x3�q̂n�x1� � wq0n �x2; x3�q̂0n�x1� � HOT (15)

where HOT is higher-order terms.
Therefore, as a result of this linear optimal problem, one obtains a

matrix of first-order warping influence coefficients,
�w� w� wqn wq0n �. The strain energy density can be explicitly
integrated at each cross section to define the strain energy per unit
length of the beam as

U �
Z
A�x�

u dA� 1
2
f �T �T qT q0T g�S�

8>><
>>:
�
�
q
q0

9>>=
>>;� HOT (16)

where the constant matrix �S� is the first-order asymptotic
approximation to the stiffness matrix. Higher-order approximations
were presented in [15]. To complete the solution of the cross-
sectional problem, the kinetic energy density needs to be evaluated
using the decomposition of the velocity field given by Eq. (12). With
the assumption of negligible contributions of _w and
� 
 ��nqn � w�, this task is straightforward, and defines the
kinetic energy per unit length as

K �
Z
A

K dA� 1
2

n
VTB �T

B _qTn

o
�M�

8<
:
VB
�B

_qn

9=
; (17)

where the constant matrix �M� is the inertia matrix for the cross
section.

D. One-Dimensional Analysis at the Reference Line

The small-scale cross-sectional problem has defined the
homogenization constants for the cross section, and the problem
has been effectively reduced to the analysis of the evolution of
averaged variables along the reference line. This one-dimensional
long-scale problem is now set up in a continuous segment of arc
length l of the reference line, which will be referred to as a structural
member. The solution procedure follows the one developed by
Hodges [20]. From Eqs. (16) and (17), the left-hand side terms in
Eq. (8) can be integrated at each cross section as

�� �
Z
l

0

���K � U� � �W� dx (18)

where �� is the virtual total potential and �W is the virtual work per
unit length of the applied loads, which is decomposed in the virtual
work per unit length of the structural damping forces and of the

applied external forces, �Wd and �We, respectively. To evaluate the
different terms in Eq. (18), one needs to select first an irreducible (as
defined in [26]) set of independent variables to obtain variations of
the functionals. Six independent variables (three displacements, u,
and three rotations, ’, of the reference frame a) determine the rigid-
body motion of the member. Additional independent variables
account for the deformations of the flexible structure: the set of
displacements and rotations along the reference line, as well as the
amplitudes of the finite-section modes.

1. Strain Energy per Unit Length

In Eq. (16) the strain energy per unit length was approximated as a
quadratic functional of the form U � U ���x�; ��x�; q�x�; q0�x��. The
partial derivatives of the strain energy are identified as section stress
resultants

FB �
�
@U
@�

�
T

; MB �
�
@U
@�

�
T

Qs0
�
�
@U
@q

�
T

; Qs1
�
�
@U
@q0

�
T

(19)

where FB andMB can be identified as the internal force and moment
column vectors, whereas the Qs terms are the conjugate forces
corresponding to the deformation of the structure in the finite-section
modes. The variation of the internal energy density is given by

�U � ��TFB � ��TMB � �qTQs0
� �q0TQs1

(20)

The column vector of virtual rotations from frame a to B, expressed

in frame a, is defined as
~��a � �CaBCBa. The virtual strain-

displacement relations are obtained from Eq. (11) as

���CBa
�
d

dx
�Ra� ~R0a��a

�
�CBa d

dx
�Ra�� ~�� ~e1�CBa��a

���CBa d

dx
��a; �q0 � d

dx
�q (21)

2. Kinetic Energy per Unit Length

Homogenization of the cross-sectional inertia properties in
Eq. (17) approximates the kinetic energy per unit length as a bilinear
functional of the form K�K�VB�x�;�B�x�; _q�x��. The partial
derivatives of the kinetic energy define the section momentum
resultants

PB �
�
@K
@VB

�
T

; HB �
�
@K
@�B

�
T

; Qt �
�
@K
@ _q

�
T

(22)

where PB and HB can be identified as the linear and angular
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momentum column vectors, whereas Qt are the generalized inertia
momenta associated with the finite-section modes. From the
previous definitions, the variation of the kinetic energy density is

�K� �VTBPB � ��T
BHB � � _qTQt (23)

The virtual quantities in (23) are now expressed as a function of the
independent variables as

�VB � CBa��a � CBa ~Ra�!a � CBa
�
d

dt
�Ra � ~!a�Ra

�

� ~VBC
Ba��a

��B � CBa�!a � CBa
�
d

dt
��a � ~!a��a

�
; � _q� d

dt
�q

(24)

where the first two equations were obtained by taking variations in
Eq. (13). The variations of the rigid-body virtual velocities and
displacements in the member frame can be expressed as

��a � � _ua � ~!a�ua; �!a � � _’a � ~!a�’a (25)

3. Virtual Work per Unit Length of the External Forces

Consider the vector� of distributed forces per unit volume applied
on the three-dimensional solid. The virtualwork per unit length of the
reference line produced by this force is given bymultiplying it by the
virtual displacement with respect to an inertial frame (the global
frame o), as

�We �
Z
A�x�
� 	 ��X� �u� dA (26)

The position vector X is given in Eq. (4) as a function of the
deformation of the reference line and the cross-sectional warping.
The latter can be approximated by the warping influence coefficients
obtained in Eq. (15) to give

Xo � CoaRa � CoB�	��q � w

� (27)

where 	T � f 0 x2 x3 g contains the cross-sectional coordinates,
and 
T � f �T �T qT q0T g includes the elastic degrees of
freedom. The corresponding virtual displacements are

�Xo ��Coa ~Xa�’a � Coa�Ra � CoB� ~	� ~�q � ~w;

�CBa��a

� CoB���q� w
�
� (28)

Substituting this expression in Eq. (26), one obtains the virtual
work per unit length of the applied forces as

�We � �uTaCaBf0 � �’TaCaBm
0 � �RTaCaBf0 � �R0Ta CaBf1
� ��T

aC
aBm0 � ��0TaCaBm1 � �qTfs0 � �q0Tfs0 (29)

The following applied forces per unit length have been used in this
expression:

f0 �
Z
A�x�

�B dA; fs0 �
Z
A�x�

�
�T � wTq

�
�B dA

m
0 �
Z
A�x�

CBa ~XaC
aB�B dA; m0 �m
0 � CBa ~RaCaBf0

f1 �
Z
A�x�

wT��B dA; fs1 �
Z
A�x�

wTq0�B dA

m1 �
Z
A�x�

wT��B dA (30)

where �B is the projection of the distributed force � onto the
deformed reference, B. From Eqs. (27) and (30), the virtual work of
the external forces depends on the actual deformation through the
cross-sectional warping field. The applied work also includes the

contribution from the resultant applied forces per unit length
conjugated of the finite-section modes fs0 and its longitudinal
derivatives, fs1 .

If cross sections are rigid and the motion of the member reference

frame (a) is prescribed, that is, �ua � �’a � 0, then the only nonzero
terms in Eq. (30) are the classical beam forces and moments:

f0;cl � f0 �
Z
�B dA; m0;cl �

Z
~	�B dA (31)

4. Virtual Work per Unit Length of the Structural Damping Forces

Structural damping is modeled here by forces/moments per unit
length proportional to the rate of change of the generalized internal
forces (expressed in their components in the deformed frame) at each
cross section, that is,8>><
>>:
fd0B
md0B

fsd0
fsd1

9>>=
>>;��g

d

dt

8>><
>>:
FB
MB

Qs0

Qs1

9>>=
>>;��
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0 0 gs0 0

0 0 0 gs1

2
664

3
775 d
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>>:
FB
MB

Qs0

Qs1

9>>=
>>;
(32)

where g is a diagonal matrix of nonnegative structural damping
coefficients. The virtual work of these forces is given by

�Wd ���RTaCaBgF _FB � ��T
aC

aBgM _MB

� �qTgs0 _Qs0
� �q0Tgs1 _Qs1

(33)

5. Intrinsic Equations in the Member Frame

The strain energy (20), kinetic energy (23), and virtual work (29)
and (33) are substituted into the expression of the total potential per
unit length (18). Through integration by parts in both time and space,
one obtains the geometrically nonlinear intrinsic equilibrium
equations at the reference line. In strong form, they are written as�

d

dt
� ~�B

�
PB �

�
d

dx
� ~KB

�
�FB � f1� � gF

d

dt
FB � f0�

d

dt
� ~�B

�
HB � ~VBPB �

�
d

dx
� ~KB

�
�MB �m1�

� � ~e1 � ~��FB � gM
d

dt
MB �m0

d

dt
Qt �

d

dx

�
Qs1 � gs1

d

dt
Qs1 � fs1

�
�
�
Qs0 � gs0

d

dt
Qs0 � fs0

�
(34)

If the rigid-body motion of the member is unconstrained, the
system is completed by the free-body equations given in the member
frame�

d

dt
� ~!a

�
pa �

Z
l

0

CaBf0 dx;

�
d

dt
� ~!a

�
ha �

Z
l

0

CaBm
0 dx

(35)

where two new aggregate vector magnitudes were defined to
describe the free-body motion of the member: p, the member
translational momentum, and h, the member angular momentum
about the origin of themember reference frame, a. Their components
in the a frame are given by

pa �
Z
l

0

CaBPB dx; ha �
Z
l

0

�CaBHB � ~RaC
aBPB� dx (36)

Equations (35) are the expression for an elastic system of the
Euler–Lagrange rigid-body equations. Note that both Eqs. (34) and
(35) are given in their intrinsic form, that is, the local elastic
equilibrium Eqs. (34) are given in the local deformed frame, B, and
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the global dynamic equilibrium Eqs. (35) are given in the member
frame, a (a body-fixed representation, if frame a is forced to move
with themember). Three different extensions can be identified in this
formulation when compared to the original intrinsic theory of
moving beams of Hodges [20]. First, the motion of the reference
frame is brought into the system by including Eqs. (35). Second, the
addition of the finite-section deformation modes into the one-
dimensional representation of the structure brings an additional
differential equation for each mode into the final system, Eqs. (34).
And third, a more general definition of the forcing terms in the one-
dimensional equations is introduced in Eqs. (30) by using the actual
structural deformation (defined by a set of warping influence
coefficients in the cross-sectional analysis) in the computation of the
virtual work of the external forces.

III. Mixed-Form Finite-Element Solution

A numerical solution is proposed based on a mixed (or hybrid)
form of the equations on the reference line. The procedure is very
similar to the one introduced by Hodges et al. [21] and it will not be
fully developed here. Basically, the weak form of the equilibrium
Eqs. (34) and (35) is augmented imposing the kinematical relations
(11) and (13) through Lagrange multipliers, which defines a

generalized virtual potential ��
. Rodrigues parameters [24], �Ba , are
used to parameterize the finite rotations between the member
reference frame (a) and the deformed frame (B). Note that this
parameterization already includes any initial twist and curvature of
the reference line. The mixed form of Eqs. (34) and (35) defines an
appropriate starting point for a (spatial) finite-element discretization
of the one-dimensional dynamic equations. The discretization is
defined in each member; next, members are assembled using the
boundary and/or joint conditions at their ends. If free-body motions
are unconstrained, the problem is completed by adding the rigid-
body equations from Eqs. (35). The dependency with time is left
explicitly and the original system of partial-differential equations is
converted into a set of ordinary-differential/algebraic equations in
time domain. The generalized virtual potential is discretized in N
elements at a given time as

��
 �
XN
e�1

��
e (37)

The length of the eth element is �le, and is bounded by nodes e
and e� 1. One advantage of the mixed formulation is that one can
select very simple shape functions in the element. Here, constant-
valued functions are selected within the elements as8<

:
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with x 2 �xe; xe�1�. This defines a 3 
 �6� Nq� element state vector,
where Nq is the number of finite-section modes, as

X T
e �t� �

h
RTe �Te qTe FTe MT

e QT
se PTe HT

e QT
te

i
(39)

and a member state vector as

X T�t� �
h
XT

1 	 	 	 XT
N

i
(40)

The boundary values of displacements and forces at x� 0 and
x� l defined additional unknowns in the problem. Their
components in the member reference frame (a) define the member
boundary state vector as

X̂ T
x�x0�t� �

h
R̂Tx�x0 �̂

T
x�x0 q̂Tx�x0 F̂Tx�x0 M̂T

x�x0 Q̂
T
s1;x�x0

i
(41)

The total number of unknowns in the discretization of the
structural member is �3 
 N � 4� 
 �6� Nq�. In general, all of them
are functions of time. The former discretization allows the explicit
integration in x of Eq. (37), which can be written as a set of
differential-algebraic equations in time domain for each member:

A�X� 	 _X� L�X; X̂x�0; X̂x�l� � S�X; X̂x�0; X̂x�l� (42)

where A is the (singular) inertia matrix operator, S is the structural
column matrix operator, and L is the load column matrix operator.
These equations are complemented by 6� Nq additional equations
on each member end, which can be defined either from external
boundary conditions (such as clamped or free end) or from joint
conditions between two ormoremembers. For a cantilever beam, the
boundary conditions would be

KRX̂x�0 � 0 and KFX̂x�l � b (43)

with KR � � I 0 �, KF � � 0 I � being 0 and I the zero and unit
matrices of dimension (6� Nq), respectively, and with b being the
vector of applied tip loads. Three different solution schemes were set
up for Eq. (42): a time-domain solution, a steady-state solution, and a
linearized vibration analysis. The time-domain solution uses an
implicit three-point backwards Euler integration scheme with a
variable time step, whereas the steady-state solution is obtained by

setting _X� 0. In both cases, a bandwidth-optimized system of
algebraic equations is obtained, which is solved for each time and
load step, respectively, using a Newton–Raphson method with
analytical Jacobians. For the linearized vibration solution, the
dynamic Eqs. (34) are linearized around a nonlinear steady state and
the complex-domain eigenvalues and eigenvectors from the
resulting first-order system of equations is obtained using ARPACK
[27].

IV. Numerical Examples

Three numerical examples are proposed to illustrate the ability of
the present theory to capture higher-order deformations with a
beamlike solution framework. First, the effect of cross-sectional
deformations is studied in the natural vibration modes of a simple
isotropic thin strip. The second example is the computation of the
local deformations in a cantilever box beam with embedded
actuation. Distributed actuation generates local wall deformations,
which are captured by the proposed theory through finite-section
modes. Finally, the effect of cross-sectional deformations is studied
on the linear vibration characteristics of the same box-beam
configuration. Results compare a classical one-dimensional
Timoshenko bending, extension, shear, twist (BEST) description
with 6 degrees of freedom, the expanded one-dimensional model
withfinite-sectionmodes, and platefinite-element solutions obtained
using MSC.Nastran. The goal in this section is to show potential
applications of the finite-section mode concept, which defines
intrinsically a linearized problem at the small-scale (cross-sectional)
level. To focus the reader on this aspect of the theory, numerical
examples in this paper have been restricted to small displacements of
the reference line, even though the proposed analysis is a
geometrically nonlinear formulation.

A. Isotropic Thin Strip

Consider an isotropic thin strip (E� 1:0 GPa, �� 0:3,
�� 1000 kg=m3) of length-to-width ratio L=h� 4 and cross-
sectional width-to-thickness ratio h=t� 50. Thickness was chosen
to be t� 2:79 mm. For this configuration, linear vibration results are
obtained by a finite-element one-dimensional model based on the
present approach and compared to a shell model. In both cases, the
discretization was refined until a desired convergence rate was
achieved. In the one-dimensional model, the effect of camber
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bending is included by a finite-section mode, defined as

��x2; x3� �
�
0 0

�
2x2
h

�
2

� 1

3

�
T

(44)

where the reference for the cross-sectional coordinates was selected
at the area centroid of the cross section. This definition satisfies the
orthogonality conditions of Eq. (6). The converged natural
frequencies (in Hz) of the first 10 vibration modes of this
configuration are included in Table 1. They are identified as vertical
bending (VB) or lateral bending (LB) modes or twist modes (T). The
eigenvectors obtained by both approximations are compared using
the modal assurance criteria (MAC) number (i.e., the normalized
scalar product of both mode shapes).

From these results, it should be noted first that vertical bending
modes compare verywell. In particular, themode shapes obtained by
the one-dimensional formulations capture the local warping effects,
as seen in the fifth bending mode in Fig. 2. It should be noted that the
beam model using the 6-degrees-of-freedom (DOF) Timoshenko
description does capture the cross-sectional deformation through the
warping influence coefficients corresponding to the bending
curvature [i.e., second column of matrix w�, defined in Eq. (15)],
whereas the model with the camber-bending finite-section mode
captures thewarping through the additional degree of freedom.There
is, however, a small difference between these two results that can be
observed at both root and tip of the strip; the bending curvature is
�2 ≠ 0 at the root and �2 � 0 at the tip, and so it is the corresponding
warping at those cross sections in the model with the Timoshenko
DOF. When the camber bending is explicitly included in the model,
cantilever conditions yield q� 0 at the root and q0 � 0 at the tip,
which is closer to the behavior of the shell model.

In Table 1, the comparison between both one-dimensional models
and the shell model for the natural frequencies of the lateral bending
and twist modes shows a larger error, which increases with
frequency. This is particularly critical for the torsional modes, for
which the camber-bending deformation does not improve the model
accuracy. The situation is analogous to the aforementioned one for
the root warping with the Timoshenko DOF but for the torsional
curvature, �1. The beammodels in this work do not enforce �1 � 0 at
the root, and so it does not constrain the warping at the root. This
situation would be solved by a generalized Vlasov model (see, for
instance, [24]), which has not been included in the present analysis.
At higher frequencies, some camber-bending-dominatedmodes start

to appear. They would not be captured by a classical (Euler–
Bernoulli or Timoshenko) beammodel, and a finite-section mode for
the camber-bending deformation is then required. The frequencies of
the first natural vibration modes that can be identified as camber-
bending dominated are included in Table 2. The eigenvectors for the
first and third camber-bending-dominated mode are shown in Figs. 3
and 4, respectively. They were computed from models with 40
elements in the longitudinal direction.

As it can be observed, the additional degree of freedom in the one-
dimensional model has captured quite accurately the lowest camber
vibration modes of the thin strip. For shorter plates, higher-order
camber deformations could be included by defining additional finite-
section modes.

B. Static Response of Composite Box Beam with Embedded

Actuation

This second numerical example corresponds to a cantilever
composite box beam with midwall dimensions 20a �length� 

2a �width� 
 a �height� and with embedded piezoelectric actuators.
Each wall is made of four orthotropic plies of thickness a=100. This
configurationwasfirst introduced in [15].A dominant dimension can
be identified in the structure and a one-dimensional model is

Table 1 First natural frequencies (in Hz) of the thin strip

Shell (two-dimensional) Timoshenko (one-dimensional) One-dimensional with camber bending

Type No. Freq. No. Freq. MAC No. Freq. MAC

VB1 1 1.469 1 1.457 1.000 1 1.470 1.000
VB2 2 9.191 2 9.133 1.000 2 9.209 1.000
T1 3 11.80 3 11.05 0.998 3 11.05 0.998
VB3 4 25.80 4 25.58 1.000 4 25.85 1.000
T2 5 36.43 5 33.14 0.989 5 33.14 0.989
VB4 6 50.73 6 50.17 0.999 6 50.82 1.000
T3 7 63.97 7 55.24 0.971 7 55.25 0.971
LB1 8 69.28 8 71.62 1.000 8 71.62 1.000
VB5 9 84.08 10 83.00 0.996 10 84.24 1.000
T4 10 96.02 9 77.37 0.944 9 77.37 0.944

Fig. 2 Comparison of fifth bending mode obtained with shell and one-dimensional models.

Table 2 Thin strip: natural frequencies (in Hz) of the

first camber-bending-dominated vibration modes

Shell (2-D) 1-D with camber

No. Freq. No. Freq. MAC

17 196.1 20 199.6 0.991
19 230.9 22 227.5 0.962
21 276.2 26 261.6 0.970

Fig. 3 First camber-bending-dominated mode shape of the thin strip.
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proposed for its analysis, with the reference line passing through the
area centroid of the cross sections. The thin-wall construction,
however, implies the likely appearance of platelike components in
the deformation field, which were found to be particularly important
in two situations: 1) when the excitation comes from a distributed
loading, such as the one generated by embedded piezoelectric
actuators; and 2) with dynamic excitation at low-to-moderate
frequencies.

Material elastic constants are E33 � E22 � E11=20, G12 � G13�
E11=10,G23 � G12=2, �12 � �13 � 0:35, and �23 � 0:4 (with 1 in the
direction of the fiber, 2 in the plane of the plies, and 3 through the
thickness). All elastic plies are assumed to have piezoelectric
properties. For the piezoelectric actuation response, a prescribed
through-the-thickness constant electric field E3 is assumed on the
actuated plies, such that the free-strain deformation of a single ply is
given by d3;11E3 � �o11 in the direction of the fiber and d3;22 �
�d3;11=3 in the transverse direction. This characterization of the
electric field corresponds to the usual assumption for the analysis of
piezoelectric actuators in structural applications [28]. Two lay ups
with several actuation architectures are studied (see Table 3), in
which plies are numbered inside out and positivematerial orientation
angle is defined in the clockwise direction.

For the numerical analyses in this section, consider a� 0:5 m,
E11 � 107 Pa, �o11 � 300�". The present one-dimensional model is
compared to a (two-dimensional) composite shell finite-element
model with a similar discretization. Consider first results of a one-
dimensional model using the Timoshenko BEST description. Note
that, although in thin-wall beams shear relief effects are small,
transverse shear effects are still necessary to account for possible net
shear actuation forces. The resulting static displacements (ui) and
rotations (�i) at the beam midpoint (x1 � 10a) for the different
actuator configurations defined in Table 3 are shown in Table 4.
Displacements obtained by the one-dimensional beam model are
compared to the kinematical interpolation of the shell displacement

field at the reference line. Figure 5 includes the actual displacements
on the shell model for those cases inwhich local effects becomemore
important.

In most situations the three-dimensional displacement field
induced by the embedded actuators can be easily identified as beam
deformations; that is the case for configurations S1 (transverse
shear), S2 (extension), S3 (twist/bending), A1 (bending), and A2
(twist). However, in some cases local wall deformations are
important and the Timoshenko DOF do not capture even the average
motion of the structure. As proposed here, the one-dimensional
model is expandedwith a set of finite-sectionmodes, which accounts
for the local deformations of the beamwalls. For the box beam under
consideration, they are defined by harmonic functions at the walls,
�n � cos�k�x�=L�� (L� is the wall length and k� 1, 2. The actual
amplitude of  q does not affect the results). They define a unique
expansion of the cross-sectional warping field. The six modes in
Fig. 6 are included in the proposed one-dimensional model. It should
be remarked that the actual warping field associated with each finite-
section mode is obtained through the minimization of the cross-
sectional strain energy. The resulting displacement field associated
with each finite-section mode is obtained by adding the assumed

Fig. 4 Third camber-bending-dominated mode shape of the thin strip.

Table 3 Lay up and electric actuation for box beama

Case Elastic ply up Electric actuation

S1

(452= � 452) *); (�452=452) +(
(04) *+; (0=� =0=�))(

S2 (0=� =� =0) *+)(
S3 (0=� =� =0)*(; (0= � = � =0) +)
S4 (04) *+; (�=0=0=�)); (�=0=0=�)(
A1

(45= � 452=45) *+)(
(�=� =� =�)); (�= � =� =�)(

A2 (�= � = � =�))(
A3 (�=0=0=�))(
A4 (�=0=0=�)); (�=0=0=�)(

a* upper, + bottom,) right,( left wall; plies numbered inside out

Table 4 Displacements and rotations at center of the reference line (x� 10a) under static actuation

Case Model u1, mm u2, mm u3, mm �1, deg �2, deg �3, deg

S1 2-D=1-D —— 0:02=0:03 �1:42= � 1:39 —— —— ——

S2 2-D=1-D 0:70=0:69 —— —— —— —— ——

S3 2-D=1-D —— 2:11=2:10 �6:08= � 5:98 —— 0:14=0:14 0:05=0:05
S4 2-D=1-D —— 0:08= � 0:04 0:04=0:01 0:07=0:07 —— ——

A1 2-D=1-D —— �4:21= � 4:15 —— —— —— �0:10= � 0:10
A2 2-D=1-D —— —— —— �0:17= � 0:17 —— ——

A3 2-D=1-D —— —— —— —— —— ——

A4 2-D=1-D —— 0:09= � 0:11 —— —— —— ——

Fig. 5 Displacement field of shell model under active static loading

(displacements magnified by 100).
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shape function and the computed warping influence coefficients of
Eq. (15), that is, �n �wqn . As with the classical deformation
measures, the displacement field keeps the averaged value (the
integral over the cross section) of the assumed shape functions.

With that information, the one-dimensional reduced model is now
rebuilt and solved for the different configurations, including the
finite-section modes shown in Fig. 6. The three-dimensional
displacement field is constructed from both the cross-sectional and
longitudinal results using Eq. (27). The resulting displacement field
(magnified by a factor of 100) for several configurations defined in
Table 3 is shown in Fig. 7, in which it is compared to the
corresponding results from built-up shell finite-element models.

As it can be seen, the present approach captures both the
longitudinal (long-scale) deformation as well as the local (small-
scale) wall deformations for distributed loading, all within a one-
dimensional solution framework. Figure 8 includes a direct
comparison of the deformed cross section at the center of the beam
(x� 10a) for cases A3 and A4. An excellent correlation can be
observed. Regarding the selection of the finite-section modes, it is
important to emphasize that the local minimization at the cross-
sectional level corrects the prescribed mode, and details in the
original definition of the finite-section modes should not essentially
affect the final solution.

C. Linear Vibration Analysis of a Box Beam

This example investigates the vibration characteristics of the
aforementioned box beam (laminate A in Table 3). Three different
one-dimensional models are considered: 1) a generalized (classical)
Euler–Bernoulli beam model, which includes only 4 elastic degrees
of freedom (extension, twist, and bending in two directions) and 6
inertial degrees of freedom (three displacements and three rotations);
2) a generalized Timoshenko beam model, which adds the effect of
transverse shear strains to the previous elastic description; and 3) the
present approach, where the six additional cross-sectional
deformations that were defined in Fig. 6 are added to the generalized
Timoshenko model. Each finite-section mode adds two elastic states
and one inertia state, defined by q and q0 in Eq. (16) and _q in Eq. (17),
respectively. Finally, results shown here correspond to�����������������
E11=�a

2
p

� 104s�1.
For lay up A, beam bending and twist responses are decoupled

when the reference line is located at the area centroid. Therefore, the
first vibration modes can be identified as VB, LB, T, or wall (W)
modes. Table 5 includes the natural frequencies of the first 12
vibration modes, as obtained by the different structural models and
the correlation index among the correspondingmode shapes, defined
by the modal assurance criteria index.

These results show that significant improvements can be obtained
with the additional one-dimensional degrees of freedom. At higher
frequencies, local displacements appear on the beamwalls, which are
not captured by the two-dimensional warping influence coefficients
of the Timoshenko DOF, that is, w� and w� in Eq. (15). Adding
finite-sectionmodes that explicitly account for the wall deformations
provides a much better approximation to the actual vibration
characteristics. A clear example of this is the third vertical bending
mode, which is shown in Fig. 9 for the different models.

The lowest lateral bending modes involve displacements of the
relatively stiffer lateral walls, and they show no significant local
flexibility effects. Therefore, this is a situation in which the
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Timoshenko BEST description of the one-dimensional deformation
provides a very good approximation to the free vibration
characteristics. This is no longer the case for the torsional modes,
as shown in Table 5. Also, Fig. 10 shows the second torsional mode
shape obtained by the different solutions. A substantial difference
can be observed between the solutions given by the different one-
dimensional formulations. This occurs because the description of the
deformation used in beammodels based on the classical BEST DOF
does not capture the relatively largewarping deformations associated
with the torsional dynamics of a thin-walled beam. A much better
approximation was found by adding additional elastic degrees of
freedom throughfinite-sectionmodes, as shown inFig. 10.However,
despite the improvement, there is still a 20% error in the estimation of
the natural frequencies with respect to the shell model. Two main
reasons for this error are as follows. First, finite-section modes are by
definition approximations to the actual elastic field, and therefore
carry some error with them. Adding additional elastic states may
improve the results. And second, the present theory does not include
Vlasov’s warping constraint in the torsional curvature, as described
for instance by Volovoi and Hodges [17], which is believed to be
responsible for the errors in the torsional modes.

Finally, one can also identify a number of modes at low
frequencies that essentially involve the motion of the walls. These
modes are not captured by the Timoshenko DOF and are referred to
here as “wall”modes. They were included in Table 5, and their mode
shapes are shown in Fig. 11, as obtained by the one- and two-

dimensional models. In general, an acceptable correlation can be
observed among both solutions,with a higher one in the estimation of
the vibration frequencies (with errors below 4%) than on the modal
shapes (with MAC numbers as low as 0.5). This has been done with
only a few additional one-dimensional elastic degrees of freedom (i.
e., the finite-section modes in Fig. 6). As with the torsional modes,
the one-dimensional model fails to capture accurately the
constrained warping at the clamped end. The effect of higher-order
spatial derivatives of the finite-section amplitudes in reducing this
error should be investigated in further extensions of this theory (this
formulation was based on q and q0 contributions). In addition to this,
further refinement of these results is, in principle, always possible by
expanding the number of finite-section modes in the approximation
to the warping field.

As a final remark, it should be noted that all previous low-
frequency modes of the box beam could be obtained with only three
of the finite-section modes introduced in Fig. 6, that is, modes 122,
124, and 241. Furthermore, mode 241 was seen to be linked to the
twist curvature, and they could in principle be combined into a single
elastic degree of freedom in the one-dimensionalmodel. Thiswas not
done here to show the generality of the formulation.

V. Conclusions

The conventional BEST beam model has been expanded to allow
arbitrary deformations of the finite-size cross sections. To achieve

Table 5 Natural frequencies (in Hz) of laminate A.

Shell One-dimensional Euler–Bernoulli (One-dimensional) Timoshenko One-dimensional with finite-section modes

Mode No. Freq. No. Freq. MAC No. Freq. MAC No. Freq. MAC

VB1 1 3.34 1 3.34 0.998 1 3.32 0.999 1 3.33 0.998
T1 2 5.61 2 5.63 0.994 2 5.59 0.994 2 5.62 0.994
VB2 3 19.44 3 20.82 0.986 3 20.04 0.987 3 19.79 0.989
LB1 4 25.21 5 48.67 0.386 5 48.67 0.386 4 31.31 0.714
LB2 5 29.37 10 146.15 0.278 10 146.15 0.278 6 35.06 0.659
T2 6 33.29 4 34.68 0.961 4 33.36 0.965 5 33.35 0.961
W1 7 39.17 —— —— —— —— —— —— 8 40.79 0.553
W2 8 39.92 —— —— —— —— —— —— 9 41.37 0.494
VB3 9 39.99 6 57.91 0.872 6 53.24 0.878 7 40.13 0.912
W3 10 41.65 —— —— —— —— —— —— 10 42.52 0.689
W4 11 42.95 —— —— —— —— —— —— 11 44.21 0.845
W5 12 46.09 —— —— —— —— —— —— 12 46.37 0.914
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Fig. 9 Third vertical (flapwise) bending mode shape of laminate A.

Fig. 10 Second torsional mode shape of laminate A.
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this, a set of additional one-dimensional degrees of freedom has been
introduced in themodel bymeans of approximating functions (finite-
section modes) to the warping displacement field. A spatial
homogenization process has determined the reduced one-dimen-
sional description of the dynamics of a general anisotropic slender
structure that, in addition to the conventional sectional forces and
moments, also includes the force conjugates to those finite-section
modes. This results in a geometrically nonlinear theory of
heterogeneous anisotropic beams with deformable cross sections of
arbitrary shape. Finite-element solutions at both the cross-sectional
and longitudinal problems define a robust numerical solution process
for the analysis of complex configurations. For composite beams,
this refinement in the kinematical description may provide a
significant improvement in accuracy with very little modeling or
computational cost.

Numerical results using this approach have shown the power of
this approach. They compared very well with finite-element shell
models for isotropic thin strip and composite box-beam cases
presented here. Only a few finite-section modes, which are defined
numerically (in the examples, harmonic shapes for the box beam and
parabolic deformation for the thin strip), are needed to obtain a rather
complete description of the three-dimensional solid deformations,
both under distributed loads and in the low-frequency linear
vibration response. In the dynamic response, the additional finite-
section modes allow not only the capture of vibration modes that are
invisible by conventional beam models (wall modes), but also
improved the results corresponding to the bending and torsion
modes. This latter improvement can be explained because beam
models based on the BEST description are obtained by
homogenization in the spatial variables of the three-dimensional

Fig. 11 Wall mode shapes of laminate A.
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solid mechanics equations, rather than in both space and time. This
quasi-static approach to evaluating the internal energy neglects the
inertia of the cross-sectional warping and is a source of error in the
estimation of the vibration characteristics of the actual three-
dimensional solid. Adding finite-section modes allows the
circumvention of this limitation, as the contribution of the warping
deformation is included both to the strain and the kinetic energy of
the beam. However, this is still done within the scope of a purely
spatial cross-sectional reduction process, to ease both the theoretical
formulation and the numerical implementation.
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