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Abstract 

In various practical structural design problems, 
decision of a layout of structure or stiffeners in the 
given design space satisfying some design 
requirements is the most difficult task for design 
engineers. Since they must consider many possible 
conditions for safety, performance and so on. It is also 
very difficult to solve the layout (topology) problem 
by any conventional structural optimization techniques 
because its mathematical modeling of topology is so 
complex. To solve the problem, we employed the 
new topologyfiayout optimization technique based on 
the homogenization method introduced by Bendsge 
and Kikuchi. This method gives the minimum 
compliance design under a certain material constraint. 

In this paper we shall study a class of multi-loading 
problems for topology optimization by the 
homogenization method, and several car body design 
problems are solved to justify the validity and the 
strength of the present method for engineering 
applications. 

1. Introduction 

A new type of approach for shape and topology 
optimization based on the homogenization method was 
introduced by Bendsge and Kikuchi [ 11 and followed 
by Suzuki and Kikuchi [Z] and Suzuki [3]. While 
conventional shape optimization technique can handle 
only boundary shape, the new approach can represent 
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arbitrary topology as well as shape just by displaying 
the gray scale representation of the density of 
void/solid computed by the present method with 
supplying a design domain, loading and support 
conditions, and the amount of materials, as shown in 
Figure 1. It has great advantage from designer's point 
of view over conventional methods that the new 
method does not require any initial topology and shape 
to be defined as spline functions before optimization. 

Figure 1. Problem definition and the solution by the 
homogenization method 

In most of the previous work, only one loading 
condition is considered. But in engineering 
applications it is necessary to consider several loading 
conditions as well as support conditions. 



2.1 Shape and Topology Optimization Based on 
The Homogenization Method 

The main idea of topology optimization is that 
infmitely many microscale voids (holes) are introduced 
to form a porous perforated medium that yields a 
structure, and the homogenization method was used to 
determine the averaged elasticity tensor of the 
perforated medium of rectangular microscopic holes. 
If the neighborhood of a point is identified with voids, 
structure is not placed there. On the other hand, if no 
void exists over there, solid structure is formed. 

The elasticity tensor G homogenized and optimally 
rotated is a function of the sizes of the rectangular 
holes, and the angle of rotation 8 .  The design 
variables are the distribution of two sizes of holes and 
a rotational angle. These distributed functions are 
discretized using the finite element method. 

If porosity does not reach the limit values, porous 
perforated medium is placed there, see Figure 2. An 
optimization problem for the shape and topology is 
defined by solving the optimal porosity of the medium 
over a design domain specified. The mean compliance 
is used as the objective function, and the upper limit is 
given on the total amount of material to form a 
perforated composite. This optimal void/material 
distribution problem for a single load case can be 
written as 

subject to 

Equilibrium Equations 

where N indicates the dimension of the space in which 
a structure is placed, and t are the applied body 
forces in the design domain Q and tractions on a 
portion of the specified boundary Ft, respectively. p is 
the mass density of the porous perforated structure, 
and u is the solution of the equilibrium equations 

N 
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Figure 2. Optimal Distribution of Microstructure 

2.2 Multiple Load Problem 

Let us extend this formulation for multiple loading 
conditions. The problem can be interpreted as a multi- 
objective problem in which there are several objective 
functions to be minimized or maximized. There are 
several approaches for the multi-objective problem. 
The most typical approach is to use some linear 
combination of the objective functions such as 
modified global criteria approach [4]. Another typical 
approach, the Bmethod is defined by introducing an 
additional design variable that is the upper bound of all 
the objective functions [ 5 ] .  There are also other 
effective approaches such as the K-S function 
approach [6]. Here, we shall use the maximum of 
the density of the compliance of multiple loadings as 
the objective function. In other words, we shall 
minimize the worst objective function. This approach 
may provide the safest design from the designer's 
point of view. Mathematically, this is defined by 
using the new objective function defined by 

N 
F(u) = Maximize 

load case p 
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And optimization problem can be defined as 

subject to 

Equilibrium equations for each load and 
support 

The difficulty of this formulation is that the function 
F(u)  is not necessarily smooth, and then minimizing 
F(u) may yield non-smooth optimization problem in 
which differentiability of a function does not hold in 
some points in the feasible space of the design 
variables. This non-smoothness often requires very 
delicate handling, since most optimization techniques 
assume computation of the sensitivity of the objective 
function. 

2.3 Formulation for the Multiple Load Condition 

A method frequently used to avoid a non-smoothness 
of the objective function is the upper bound approach 
that introduces a dummy variable J3 such that 

Minimize /3 

subject to 
pedoraticm (7) 

N 
f i P U i P d r  2 0 

i=l 

for all load cases p (8) 
Equilibrium equations for each load and 
support 
jnp(x)dsZ I a (9) 

Now that objective function p is differentiable with 
respect to all design variables. The Kuhn-Tucker 
conditions are derived using the following Lagrangian. 

where, 

Here, the vector represents { a i ,  . . ., a ~ } .  The 
Kuhn-Tucker conditions are 

dL dL 
-6a, = 0 , -68 = 0 
da, ae 
for all 6a, = ai* - a, , 68 = 8" - e ,  
a,*,ai,8*,8 E H'(Q)  , o I ai*,a, 2 1 
aL I3L 

~ 6up = 0, - 6vp = 0 for each load casep 
dUP JVP 

Although these formulations are mathematically 
reasonable, it is hard to make an algorithm of the 
optimality criteria method that yields a resizing rule, 
since there are too many constraints and hence too 
many optimality criteria to be satisfied. 

In order to overcome this difficulty, another approach 
is introduced by modifying the objective function 
shown by (4) and by using another objective function 
that is smooth. Noting that Vi satisfies equilibrium 
equations of each load case, an B then 

N 

i, j ,k, l=l  
N 

i=l 
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if all the displacement boundary conditions are 
specified as zero. Hence our problem (4) - (6) can be 
written as 

N 
Minimize Maximize 

load case p 
i ,  j,kJ=l 

perforation 

subject to 

Equilibrium equations of each load 
(15) 

We may use the internal energy as an objective 
function instead of the external work. Since (13) 
yields the mean compliance of each is the same to 
twice of the strain energy, we shall introduce the 
function 

N 
aximize 

load case p 
i ,j ,k,l=l 

defined by the maximum strain energy density of all 
the loads of the multiple load problem, and then we 
shall introduce an approximation of the problem 
{ (14),( 15) I : 

Migimize P(u) 
pe orahon 

subject to 

Equilibrium equations of each load 
I,p(a)dR I a (17) 

It should be noted that this new problem is not 
equivalent to the original one, but we have the 
following relation: 

N 

Maximize 
load case p i,j,k,l=l ax, axi 

ax, axj 
Maximize 

(18) 
Hence 

Minimize Maximize 
N 

perforation load case p 
i,  j,k,l=l 

ax, ax, 
2 Minimize j Maximize 

perforstion f2 loadcnsep 

For numerical solution technique, the sensitivity of the 
load case which gives the maximum value of strain 
energy density for each point in design domain is used 
in the update rule of sizes of holes, and the principal 
stress direction of the same load case is used in 
determining the rotational angles of microstructure. 

3. Three-Bar Frame Structure ComDarison of Two 
Obiective Function 

3.1 Problem Definition 

Three bars are placed as shown in Figure 2: two bars 
are placed with 45 degree to the ceiling symmetrically, 
and a bar is vertical to the ceiling. Three loadings 
shown in Table 1 are applied. For this calculation 
circular cross section beam elements with bending and 
shear stiffness are used. This problem was first solved 
by Sheu and Schmit [7] as the three bar truss problem. 

Figure 2 
P2=30 

Configuration of three-bar beam problem 

Table 1 Loading Conditions 

3.2 MP Solution with the Original Formulation 

2 5 0 2  



The problem with original formulation by (7),(8) and 
(9) is solved using mathematical programming method 
[SI. Design variables are cross sectional areas of each 
element. The upper limit of the volume was set to 
10.0. Table 2 shows the initial and final values of 
design variables, the objective functions and the 
volume of the structure. 

Table 2 Mathematical Programming Solution with the 
Original Problem Formulation 

3.3 MP Solution with a Modified Formulation 

We solved the same problem using modified objective 
function which is the summation of maximum of all 
load cases in each element defined by equation (16). 
Table 3-A is the final values of design variables, 
objective function and volume of the model. In Table 
3-B compliances of each element in each load are 
listed. 

Table 3-A Mathematical Programming Solution with a 
Modified Problem Formulation 

Table 3-B Final Compliance Values 

3.4 Comparison of Two Objective Functions 

From the results of three-bar example, we can find that 
the modification of the objective function like (17) is 
quite reasonable to simplify the multi-objective 

problem. The objective function by (10) is 8.3% 
higher than the one for the original problem, while the 
final size of the bars is not so close despite that the 
topology of the optimum structure is the samw. 
Figure 3-A and Figure 3-B are contour plots of two 
objective functions of several sections of two of 
design variables. Basically, both objective functions 
have the same characteristics. This means the 
modification of the objective function may not affect 
too much to the optimum obtained by numerical 
computation. It is, however, noted that the 
approximation in (17) does not yield the minimum. In 
other words, the design by the approximation (17) 
results just a suboptimum solution. 

Original Objective Function Modified Objective Function 

A2 A2 
Figure 3 - A Comparison of Two Objective 

Functions ( A1 = 1.0 ) 

Original Objective Function Modified Objective Function 

A1 A1 

Figure 3 - B Comparison of Two Objective 
Functions ( A2 = 1.0 ) 

3.5 Shape and Topology Optimization Solution 

Figure 4 shows the design domain, the loading 
conditions and the boundary condition. All loads, 
material constants and geometrical data are the same as 
the ones in above. The upper limit of the total volume 
is specified to be 20% of the initial one. Figure 5 
shows the optimal material distribution in the design 
domain obtained by the shape and topology 
optimization method introduced here. Scale bar 
indicates material density in each element. 
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Figure 4 Design Domain with three different loads 

ITY -1 
x 10 

0 
Figure 5 Configuration of Optimal Material 

Distribution in The Domain 

3.6 Discussion 

The configuration obtained by the shape and topology 
optimization method is very similar to the mathematical 
programming solution using the beam model. One of 
the reason of difference is that there is no drilling 
degree of freedom in plate element. Figure 6 shows 
the material rotational angle distribution in the final 
configuration. Orientation angles in each load case 
are continuous and these angles are the same as the 
directions of the bars. As the figure shows, the load 
case number which is chosen in each element in the 
formulation of the objective function is almost the 
same as the mathematical programming solution. 
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Figure 6 Material Orientation Angle Distribution in 
Final Configuration 

4. Amlication to Car Body 

Examples discussed here are extended to find the 
optimum layout of a car body with multi loading 
condition. 

4.1 Frame Layout 

Figure 7 shows a finite element model and the design 
domain to simulate a floor reinforcement panel. In 
plane and out-of-plane loads are applied to the tip of 
the three dimensional shell model. 

4 

Figure 7 Design Domain for Floor Panel 

Figure 8 is the configuration of optimal layout of 
material distribution in the domain under the volume 
constraint 60% of initial value. This result shows that 
some amount of volume can be reduced by putting 
several holes on the panel. 
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Figure 8 Configuration of Material Distribution in the 
Domain 

4.2 Stiffener Layout on Three Dimensional Shells 

Figure 9 shows a finite element model of an 
automobile engine hood and the design domain. 
Uniformly distributed and partly distributed loads are 
applied on the shell as shown in Figure 10. 

Figure 9 Design Domain for Automobile Engine 
Hood 

Loadcase 2 

Pressure - Loadcase1 : Loadcase2 = 1 : 2 

Figure 11 shows the layout solution by the topology 
optimization. Ribs are effectively distributed on the 
shell, and x-shape structure is basically the same as the 
actual engine hood structure. This result is a little bit 
unsymmetric because of the difference of material 
coordinate system defined in each finite element due to 
the node numbering order. 

-1 
x 1 0  

DENS I T Y  

0.100 9.100 

Figure 1 1 Configuration of The Stiffener Distribution 
in The Domain 

Figure 12 shows the finite element model, loading 
conditions, support condition, and the design domain 
for another type of engine hood. Optimal stiffener 
layout is obtained as shown in figure 13 

Figure 12 Design Domain, Loading & Support 
Conditions for Engine Hood I1 

Figure 10 Loading and Support Condition for the 
Domain 
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Figure 15 is the optimal configuration of stiffener 
layout on the panel. 

Figure 13 Configuration of The Stiffener Distribution 
in The Domain 

The last example is a stiffener layout of the press door 
panel. The design domain, loading & support' 
conditions are shown in figure 14. This type of door 
is made by stam,ping and reinforcements may be 
necessary. 

1 

Figure 14 Design Domain, Loading & Support 
Conditions for Door Panel 

DENS I TY x 12 
0. IQ3 e. io0 

Figure 15 Optimal Stiffener Layout for Door Panel 

5. Conclusion 

A shape and topology optimization method for 
multiple loads is given in this paper. This is applicable 
to actual design problems in automobile design such as 
frame and stiffener layout problems of a car body. 
Although our modification of the objective function 
may not be the best, it can provide physically sound 
suboptimum solutions with simple optimization 
algoruthm. Convergence of the algorithm is very 
stable. It is also noted that Diaz and Bendsee [9] 
worked the multi-loading problem using the concept of 
linear combination without introducing approximation. 
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