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Abstract
In this paper, we investigate the numerical solu-
tion of discrete time ,infinite horizon,stationary ,dis-
counted Dynamic Programming(DP) problem. We
introduce the worst case variant of the standard DP
operator and show that it retains the nice proper-
ties of the former.We apply this worst case formu-
lation to deterministic systems in continuous space
and show that for a class of such systems, any ar-
bitrary degree of accuracy can be attained in the
numerical solution to the DP problem. Finally we
illustrate our results through a simple orbital dy-
namics example.

1 Introduction
Dynamic programming(DP) provides a methodology
for optimal decision making under uncertainity. In
the typical DP problem, a system evolves in a contin-
uous state space S (usually S C 5ft") and the interest
is to find the fixed point of the DP operator T,

TP(x) =

inf [£(
u€A

+ a f P(y)p(y/x,u)dy]
Js

\/X 6 S (1.1)

where A is the set of control actions. C(x,u) is the
incremental cost incurred by the sytem in taking
control action u at state x, p(y/x, u) defines a prob-
ability distribution which given the current state x
and control action u specifies the probability that
the system will be in state y at the next instant and
a e (0, 1) is a discount factor. The fixed point P*
of the DP operator T is the pivotal construct of this
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methodology and is known as the optimal "cost-to-
go/value/reward" function. Unfortunately the DP
equation TP* = P* isn't usually amenable to closed
form solutions thereby forcing us to attempt the so-
lution numerically.

One method of solving the DP equation nu-
merically is to break the state and control spaces
into a finite number of the same and obtaining the
solution to the finite state DP problem that results
from this discretisation. There are a number of ways
of solving finite state DP problems like value itera-
tion (successive approximation), policy iteration and
linear programming. A comprehensive survey of the
state of the art in this field is given in Bertsekas2.

This paper focuses on the problem of discreti-
sation of state and control spaces such that a desired
level of accuracy can be attained in the cost-to-go es-
timates. This problem has been addressed before by
Hernandez-Lerma3,Chow4and Whitt5. They show
that for a class of sytems, the errors in the cost to
go estimates can be made arbitrarily small if the dis-
cretisation of the state space is sufficiently fine.The
assumptions made and the bounds obtained for the
approximation errors are similar in (3'4>5). For an ex-
haustive survey and discussion of these results, see
Rust6 .A common underlying assumption of all these
results is the lipschitz continuity of the probability
density function p(y/x,u). As mentioned in chow4

this condition need not be true in general and an im-
portant special case where the results are not valid
is that of deterministic systems where p corresponds
to a singular measure , as opposed to a density.

The main contribution of this paper is to in-
troduce a "worst case" variant of the standard DP
problem and show that for the case of determinis-
tic systems, under certain assumptions, with suffi-
ciently fine discretisation of the state space, any de-
sired level of accuracy can be obtained in the cost-
to-go estimates.In order to facilitate this , instead
of a probability density function, a step function
g(y/x, u) is introduced where
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correspondingly the DP problem boils down to find-
ing the fixed point of the " worst case or Min-Max"
DP operator T defined by

TP(x) =
inf [sup[c(z, u) + aP(y)g(y/x, u)}]U^A yes

Wo- c. c (i i\va; t o ^1.0;

This problem is solved by discretising the control
and state spaces to obtain the finite state variant
of the worst case DP equation which can in turn
be solved by any of the methods in (2). Finally
the convergence result is illustrated through a simple
example.

2 The worst case dynamic
programming operator

In this section we introduce the worst case DP
operator and discuss a few of its properties.

corresponding to IT. Let these paths be denoted by
7 = (7(0),7(1),..) such that

7* = (2.2)
(2.3)

where (w(l),w(2),..) is any probable sequence of
the noise term.

Definition 2.3 The cost to go w.r.t path 7 for
policy TT from x is defined as

(2.4),,

Definition 2.4 Now we define the cost to go from
state x w.r.t policy TT as

(2.5)

Definition 2.5 Finally we define the optimal cost
to go from state x as

P*(x)=mfPv(x). (2.6)

Definition 2.1 The continuous state,discrete time
system is defined by the equation:

= f(xk-i,Uk-l,Wk), (2.1)

where xk is the state of the system at instant k,uk
is the control action taken at instant k and wk is a
noise term whose statistics are known.

Let S denote the state space of the system.
S C 9Jra and is compact. Let A denote the con-
trol/action space (it is a subset of some function
space X).The incremental cost incurred by the
system in taking control uk at state xk is given
by the non negative and bounded function c(xk, uk).

Definition 2.2 A control policy is defined as
a sequence of control actions i.e. a policy TT =
(7r(0),7r(l),..) where ir(k) belongs to A and is the
control action chosen by the system at instant k.

Consider any x € S and any policy -K.
Note now that if policy TT were applied to the
sytem starting at x, due to the uncertainity in the
system there would be more than one path from x

that
Now we define a step function g(y/x, u) such

Definition 2.6 We denote the next state set of
some x under control action u by T(x, u) and define
it as

T(x, «) = (y € S\g(y/x, «) = !). (2.8)

This leads us to the definition of the worst
case DP operator T:

TP(x)

y€S
(x,u) + /3P(y)g(y/x,u)))

= inf( sup (c(x,u) + 0P(y))),

(2.9)
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With the above definitions we state and
prove the following proposition,

Again note that G(x,u,P) is bounded and
non negative V u € A. Hence from lemmal and

Proposition 2.1 The worst case DP operator T is (2.15)
a contraction mapping w.r.t the sup norm i.e

oo <
where \\P\\oo = sup|P(z)|.

x€S

\TP(x)-TP(x)\
< sup\G(x,u,P)-G(x,u,P')\

Proof : To prove this result we need to quote a
lemma from Hernandez-Lerma(3) p!23. (2 131 and (2 161 =>

Lemma 2.1 Let X be any arbitrary nonempty set
and let u and v be functions from X to 3? bounded
from above(i.e supu and supv exist) then

(2.16)

\TP(x)-TP'(x)\ <

| sup u(x) — sup v(x)\ < sup \u(x) — v(x)\. (2.10)
x€X x€X x€X

sup|TP(z)-rP(z)|
x€S

< /3||P-P'
(2.17)

Let q.e.d

G(x,u,P) = c(x,u)+ sup j3P(y). (2.11) Next we state and prove the following
y€r(x,u) proposition

where P is any bounded functional from 5 into 3t.
Then

\G(x,u,P)-G(x,u,P')\
= /3\ sup P(y)- sup P'(y)\,

(2.12)Vx e 5.

(2.12) and lemma 2.1

Proposition 2.2 The optimal cost to go from any
state x 6 5 satisfies

*(x) = P*(x).

Proof: By definition we have that,

(2.18)

\G(x,u,P)-G(x,u,P)\
< (3 sup |P(y)-P'(2,)|,

y€T(x,u)

< /3sup|P(2/)-P'(j/)| = P\\P-P'
yes

Note now that :

TP(x) = inf G(z,u,P),

hence

\TP(x)-TP'(x)\
= | inf G(x,u,P) - inf G(x,u,P')\

(2.13)

(2.14)

(2.15)

fe=o

= inf (c(x, 7T0) + ft sup ̂  J3k

7 fc=o
= infinf(c(a;,u) + sup

P*(x) = TP*(x) Vx

q.e.d

(2.19)

= inf(c(x,«) + /3 sup P*(y)), (2.20)

(2.21)
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By Propositonl and the contraction mapping
theorem(S) , there exists a unique fixed point of T
in S. Hence it follows from Proposition 2 that the
fixed point is P*, the optimal cost to go.

Definition 2.7 We define a stationary policy as a
control policy under which the control action taken
at a particular state is the same regardless of the
instant it is taken.

Notice that the optimal control policy defined
by P* i.e.

u* (x) = arg inf (sup(c(x, u) + (3P(y)g(y/x,«)))
U€A y£S

Vx 6 5.(2.22)

defines a stationary policy. Hence to search for the
optimal policy it is sufficient to search in the space
of stationary policies. We also state without proof
another proposition,

Proposition 2.3 The operator Tw defined by

T"P(x) = sup (c(x,TT(Z)) + /3P(y)),Vx £ 5,
!/er(z,ir(x))

(2.23)
where TT is any stationary policy, is a contraction
operator and Pv is its unique fixed point.

Note : Pv is a function from S into 3J where Pv(x)
is as previously defined for all x in S.

3 Bounds on errors in the cost-
to-go approximation

In this section we present results which state that
for a deterministic system,under certain assump-
tions,any arbitrary degree of accuracy can be
attained in the cost-to-go estimates if the degree of
discretisation is fine enough. We start by defining
the deterministic system and making assumptions
on the dynamics of the system.
System The dynamics of the system is governed by

where x(k) is the state of the system at the kth
instant and u(k) is the control action chosen at the
kth instant.
State Space
The state space 5 is a subset of 5Rn. It is further
divided into a finite number of non-empty subsets

N
\JSj = 5, (3.2)

(3.3)

Control/action space: The control space
is assumed to consist of a finite number of control
actions and denoted by A. The control actions
are assumed to be elements of some function
space X. (usually however they are elements of W
where p denotes the number of inputs to the system).

It is easy to see that the system defined by
(3.1) is the sytem in (2.1) without the noise term.
However in this special case of a deterministic
system there are a few notable changes:
For any policy TT that is applied to the system
starting at some a; € S there can be only one path
corresponding to the policy ,from x, and hence

k=l

where

= f(xk-l,TTk-l),

= x.

Also the DP operator changes to

TP(x) = inf (c(x, «) + 0P(f(x, u))).

(3.4)

(3.5)

(3.6)

(3.7)

All the other results presented in the previous
section still remain valid for this system with the
abovementioned changes at the appropriate places.

For every Sj, we fix an arbitrary element in
that set and call it the exemplar BJ corresponding
to that set.

This leads us to define the dynamics of the
discrete system. If the continuous system makes
a transition from a point in set Sj to some point
in Si we say that the discrete system has made
a transition from ej to ej.Also by taking control
action u at any point in set Sj , the incremental
cost incurred by the system is defined to be C(BJ,U).
Consider now the state space Sd = {ei,e2,...,ej\r}.
Sd is a subset of K™ and its dynamics can be
formulated as in (2.7). Hence all the results that
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were presented in section 2 are applicable to this
system.But since we have a finite state space for
this system, the following notation is added:

Tu(i,j)= max g(x/y,u); (3.8)

Let TT be a stationary policy in continuous space.
Then the discretised version of this policy in the dis-
cretised domain mentioned above is denoted by

TT(X) = ir(x) if x e Sd

7f(z) = 7r(ej) if a; € Sj
(3.9)

(3.10)
A 3.1 Let TT be a stationary policy that asymptoti-
cally stabilises the origin of the system (3.1) and vf
its discretised counterpart. The dynamics of the sys-
tem Xk = f ( x ( k — l),n(x(k — 1))) is lipschitz with
respect to the state i.e.

Vx,yeS 3 KJ <oo3
||/(x, 7r(z))-/(y,7r(y))||<A7||z- 2,11 (3-H)

Similarly for the discretised version of the policy w,
the lipschitz inequality holds with the same lipshitz
constant KJ . (this is for notational convenience)
Further we assume that these constants over the
space of all such asymptotically stabilising stationary
policies is uniformly bounded above by a constant Kf
i.e

sup KJ < Kf < oo (3.12)

A 3.2 Let TT and n be as described above. Then we
assume that 3 NI < oo B Vn > NI

sup \x(k) - x(k)\ < Ksp(n), (3.13)
k

where (XQ = x,Xi, ..Xk..) is the trajectory of the sys-
tem from x under policy TT and (x0 = x,xi...) is
the trajectory followed by the system under policy TT.
Note that NI is independent of the policy TT.

A 3.3 The. incremental cost function is Lipschitz
in the domain S w.r.t the state of the system under
policies TT as above i.e

V x,yeS 3 K? <oo 9
\\c(x,*(x)) - c(y,ir(y))\\ <K?\\x-y\\. (3.14)

The lipshitz condition is assumed to hold for the
discretised version of the policy TT with the same
lipshitz constant and these constants are uniformly
bounded above over the space of all such a.s. sta-
tionary policies i.e.

<KC < oo (3.15)

Consider the division of the state space as de-
scribed previously into N sets and let the exemplars
corresponding to them be (ei, 62, ..,

Definition 3.1 we define the diameter of the dis-
cretisation as

p(N) = max[ sup \\x - y\\]. (3.16)

We also have the convention that p(N) > p(N + 1).

Let the optimal policy obtained by running
the DP algorithm on the discrete state space
Sd = (ei,e2, ...,en) be denoted by 7rn.

A 3.4 The optimal policy in continuous state space
,TT* renders the origin of the system (3.1) asymptot-
ically stable. In addition Brj < oo 9 V n > TJ, the
optimal policy corresponding to Sd = (ei,...en), 7rn
renders the origin of the system asymptotically sta-
ble.

.4 3.5 For all stationary policies K that render the
origin asymptotically stable(a.s) there exists a set fiff
containing the origin such that V x, y e fiw

<k'f \\x-y\\. (3.17)

where kj < 1, i.e in the set fiff any two solution tra-
jectories can only come closer to each other and that

sup k J = kf < 1 (3.18)

Definition 3.2 given a particular stationary policy
that renders the origin a.s we define the diameter of
the corresponding set flv as

«)= sup ||ar-p||. (3.19)

We also assume that this diameter is uni-
formly bounded below i.e. Beoo 9

(3.20)

A 3.6 Let the time taken by the trajectory from
state x €. S to reach within eoo/2 of the origin under
policy TT be denoted by t£0(aO-
We assume that

sup sup t^ (x) < ̂  < oo. (3.21)

With the above definitions and assumptions
we make the following proposition,
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Proposition 3.1 Given a stationary policy IT that
renders the origin of the system a.s.

< oo, JVoo < oo) independent of -K 3

\P*(ej) - P,(x)\ < (3.22)

Proof : Let (XQ = z,xi,Z2,...) denote the trajec-
tory followed by the system from XQ = x under
policy TT.
Let the path followed by the discretised version of
the policy be (x0 = z,zi,...). Then by (A 3.2) ,we
have that Vn > NI

sup\\Xk-xk\\<Ksp(n).
k " " - v '

TT .. ,. „ ,. / A o o\ iu AHence it follows from (A 3.3) that

K K

(3.23)

(3.24)

Let E(x) denote the exemplar corresponding to
the point x. In the discretised system there ex-
ists a path corresponding to (XQ = a;,xi,...)given
by ((E(x0), ...)). Let this path be denoted by 7.Then

It follows from (A 3.3) that
'

(3-25)

(3.26)

which means that

.5 , , p7, ,,
* *(j) ^^)|<

^oose

t t -i
f~ + fc/°° + "" +

N00=max(N1,N2)

(3.30)

(3.31)

^ followg from (3.24,3.26,3.30) and the triangle
inequality

'z(ej) - P,(x)\ < K*p(n) Vn>N0

K*=(-^
q'e-d

/-i _ a\

„. „ , .. ,. „ .Finally we make the following proposition:

Proposition 3.2 V e,- and x e 57- ,v 3 3 '

(3.33)

(3.34)

(3.35)

Proof: We have that

infP^fx) =P*(z),ff

By definition , it follows that V 6 > 0, 3 irs

Pvs(x)<P*(x) + 6,

Hence it follows that

We have that Pjt(ej) = P£(GJ) for some path fj, in '
the discrete system. e

From (A3.1, A 3.3) we have (3-37)

< CK/+fc/~1 + ..- + l)2/»(n) (3.27) Let ?rn denote the optimal policy generated by
running the dynamic programming algorithm on
the discrete system with Sj = (ei,..en). Hence by

However 7 enters within £«- of the origin in ««, time (A3.4);3.36 ^a proposition3.1 it follows that for
steps(A 3.6). Hence it follows from (A 3.5) that if > m^ni^ jy \ w™ e c.

1 AT —i ~~ * *' OO/) -̂ Jwe choose jV2 9
, * . |P»,(crf)-P*(a:)|<A(n) + * (3.38)

~
2 + , + ^ + i} , ———— ̂ -

(3.28)
thenVn>AT 2 ,—

|P*(ej) - Pffn (a) | < A(n). (3.39)
. . , , „ ... ,Also, by definition, we have

(3.29) P*(x) < Pw*(x).
(3.40)
(3.41)
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(3.38), (3.39) =>

- A(n) - .5 < P*(x) <

P*(e,-) - A(n) < Pff- erf) + A(n).

A(n) + 6,
(3.42)

(3.43)

(3.40) - (3.43) =>

|P*(ej) - TV (ej)| < 2A(n) + S. (3.44)

But

(cj)rP*(x)| < |P(e,-) -P»«(ej)
+|P»,(ej)-P*(aOI

3.38

<
3.44

(3.45)

Note that the inequality (3.45) holds V 6 > 0. Hence

3A(n) =
Vn > (3.46)

which completes the proof of the proposition.
q.e.d

4 An illustrative example
For the purposes of illustration of the results
presented in the previous sections we chose a simple
orbital dynamics problem. The objective of the
exercise is to put a satellite into a prescribed orbit
around a massive body.

The equations of motion of the satellite
around the massive body is governed by the follow-
ing differential equations:

r = vrt (4.1)
t;r = vl/r - k/r2 + ur, (4.2)
lig = —VrVg/r + Ug, (4.3)

the massive body, vg represents the tangential veloc-
ity of the satellite and ur and ug represent the con-
trol input to the system.Please refer to Greenwood7

for further clarifications about the dynamics of the
system. The sytem is further normalised so that
k=l.
As can be seen from the equations of motion, the
state space of the system is 3-dimensional. We dis-
cretise the state space by taking equispaced points
along each axis and forming the corresponding
grid.The continuous time dynamics of the sytem are
discretised using a sample time of r = 0.05(27r).The
system is given a choice of two control actions: to
take no control action or to give an impulse such
that the satellite goes into a circular orbit at the
current radius (this is achieved by resetting the states
of the satellite so that it goes into a circular orbit).
This kind of control action is imparted through a
radial and/or a tangential thrust. The magnitude
of the control is denned to be the square root of
the sum of the squares of the radial and tangen-
tial thrusts. The circular orbit with radius one is
the goal state and is given a zero cost. The steady
state values of the state variables in this orbit are
r = 1, vr = 0, and vg = 1. The incremental cost
of being at a particular state at a given instant is de-
fined as the sum of the square of the distance of the
current state from the goal state and the square of
the magnitude of the control action.The DP problem
is solved under these conditions.

trajectory for r=1.3 and vfl = 0.3

90 1.5

trajectory for r=1.3 and vft = 0.4
90 1.5

trajectory for r= .3 and va = 0.6

Figure 1: Optimal trajectories for the same initial
vg but different initial radius

where
r refers to the radial distance of the satellite from the
massive body,t>r refers to its radial velocity around

Let N denote the number of divisions along
each axis i.e. we discretise r,vr and vg into N discrete
levels each.Hence note thatthe total number of states
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trajectory forr=1.1andvfl = 0.4

90 1.5

trajectory for r=1.3 and vg = 0.4

90 1.5

trajectory for r= .4andve = 0.4

! 0 1.5

trajectory for r= .45 and vn = 0.4

Figure 2: Optimal trajectories for same initial radius
but different initial vg

Figure 3: Surface plot of the estimation error in cost
to go for 27 states

in the discrete system is going to be N3. In fig.l
, the optimal trajectories learnt by the system are
shown for a series of initial conditions with the same
initial radius but different angular velocities. Fig.2
represents optimal trajectories for initial conditions
with the same initial tangential velocity but different
initial radius.Both these cases are for N= 5.As can
be seen from the figures the optimal strategy is to
take no control action till the unforced orbit crosses
the target orbit when the system thrusts and resets
the states of the sytem so that the satellite goes into
orbit at the target radius. This tallies well with what
is known about mimimum energy control in these
cases. Also notice that the satellite doesn't go into
orbit exactly at r = 1, this nebulousness of the orbit
is due to the uncertainity that is introduced into the
continuous system by the discretisation of the state
space.

Figs. 3-6 represent the estimation error in
the optimal cost to go for the case of N = 3 ,5 and
7 respectively. The optimal control policy for this
example is to follow an unforced orbit till the target
orbit is reached where the thrusters are fired to go
into the target orbit. The actual cost- to-gos were
calculated according to this policy. Fig.5 is a close
up of fig.4 and helps to bring out the features of fig.4
better which are otherwise drowned by the scaling.
As can be seen from the figures , there is a contin-
uous improvement in the error plots from N = 3 to
N = 7 as is to be expected. Please pay particular
attention to the scales of the plots in order to appre-
ciate the dramatic difference from a coarser grid to
a finer one.Hence it is reasonable to expect that the

errors become progressively lesser as the fineness of
the grid increases, which is predicted by our results
in section 3.

5 Conclusion
In this paper we have presented the worst case vari-
ant of the traditional DP operator and have dis-
cussed a few of its properties. We have also pre-
sented results which show that the optimal cost to
go can be approximated arbitrartily well for deter-
ministic systems by chosing a sufficiently fine degree
of discretisation. However several issues reamain to
be addressed , the logical next step being to extend
these results to stochastic systems. Also, equispaced
discretisation of the state space(as was attempted
in the example) may not be enough to get over the
curse of dimensionality and hence we should look to-
wards finding an algorithm which would adaptively
discretise the state space using some of the parame-
ters in section3.We consider our work as a stepping
stone hi this direction.
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