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Summary 

Numerical flux formulas for the convection terms in the Euler 
or Navier-Stokes equations are analyzed with regard to their 
accuracy in representing steady nonlinear and linear waves 
(shocks and entropykhear waves, respectively). Numerical 
results are obtained for a one-dimensional conical Navier-Stokes 
flow including both a shock and a boundary layer. Analysis 
and experiments indicate that for an accurate representation of 
both layers the flux formula must include information about all 
different waves by which neighboring cells interact, as in Roe's 
flux-difference splitting. In comparison, Van Leer's flux-vector 
splitting, which ignores the linear waves, badly diffuses the 
boundary layer. The results of MacCormack's scheme, if 
properly tuned, are significantly better. The use of a sufficiently 
detailed flux formula appears to reduce the number of cells 
required to resolve a boundary layer by a factor 1/2 to 1/4 and 
thus pays off. 

1. Introduction 

In finite-volume codes for the Euler and Navier-Stokes 
equations a central place is taken by the algorithm that accounts 
for the inviscid interaction of adjacent fluid cells at their 
interface. Such an algorithm combines two distinct sets of state 
quantities, representing the states on both sides of the interface, 
into one set of fluxes n o d  to the interface.1 

Physically speaking there is only one correct value for the 
flux vector. To find it we must solve the Riemann problem 
governed by the one-dimensional inviscid flow equations 

(1) Ut + f(u)x = 0 

(x measuring distance to the interface) for the initial values 

where uL and uR are the left and right interface states. If 
U(x/t; uL, uR) denotes the self-similar solution to this problem, 
the interface flux reads 

(3) 

This is Godunov's2 flux formula. 

From a numerical point of view, though, it seems wasteful to 
exactly solve the Riemann problem at every interface (the 
solution procedure is iterative); an approximate solution, tuned 
to the overall accuracy of the discretization, should do. In this 
paper we investigate how good the approximation needs to be, 
in particular when incorporated in a Navier-Stokes code. 
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The simplest recipe for a numerical flux f(uL,uR) is to 
average the fluxes corresponding to uL and uR: 

In the final update this leads to central differencing, which is 
inherently unstable: it decoupies adjacent cells. We may use the 
numerical difference between the states, Le., uR - uL, to couple 
the cells; this amounts to adding artificial dissipation to the flux. 
The freeedom in choosing a numerical flux essentially is the 
freedom in selecting the matrix coefficient Q(uL,uR) of the 

In the next section we analyze and compare several 
representative flux formulas developed for Euler codes, 
including some that cannot be written in the form \j). In the 
remaining sections we test their performance in a discriminating 
Navier-Stokes problem and summarize the results. 

2. Dissipative Promflies of Inviscid Flux Formulas 

Roe 

problem with initial values (2) for the linearized equation 
Roe's3 numerical flux is based on the solution of Riemann's 

ut + A(uL,uR) uX = 0 . (6) 
Here A(uL,uR) is a mean value of the Jacobian A(u) of f(u) with 
properties 

(i) A(u,u) = A(u) ; (7) 

(ii) A(uL,uR) has a complete set of real eigenvalues 
and eigenvectors ; (8) 

(is) A(uL,uR) (uR - uz) = f(uR) - f(uL) . (9) 

Property (i) ensures that the approximate solution tends to the 
exact solution for small data; property (iii) ensures that the 
approximate solution is exact if uL and uR can be connected by a 
single discontinuity parallel to the interface, no matter how 
large. This follows upon comparing (9) with the jump equation 

Clearly, uR - uL is an eigenvector of A(uL,uR) and V, the 
discontinuity's speed, is the corresponding eigenvalue. 

v (UR - UL) = f(UR) - f(UL) . (10) 



The numerical flux based on this "approximate Riemann 
solver" reads 

1 1 
2 f(uL, uR) = -{f(uL) + f(UR)) - IA(uL,uR)I (uR - uL) ; (111 

jAj denotes the matrix with the same eigenvectors as A, whose 
eigenvalues are the absolute values of the eigenvalues (a(k)> of 
A. (The latter represent the characteristic speeds normal to the 
interface.) 

A consequence of (9) is: if an eigenvalue of A(uL,uR) 
vanishes, the corresponding eigenvalue of the dissipation matrix 
vanishes too. This leads to a crisp representation -- with at most 
one interior state -- of steady shocks and contact discontinuities, 
if aligned with an interface (and expansion shocks, ignored 
here). 

Osher 

properties, is due to O ~ h e r ; ~  it leads to the flux formula 
Another approximate Riemann solver, with similar 

'k 

(12) 

where the integral is carried out along a path piecewise parallel 
to the eigenvectors of A(u). The differentiability of this flux has 
the consequence that steady shocks are represented with one to 
two interior states rather than zero to one interior state, as with 
Roe's flux. 

Harten-Lax/Roe 

1 1 
2 f(uL,uR) = - {f(uL) + f(uR)) - 2 I iA(u)/ du 9 

9 

Harten and LaxS observed that it is not necessary to account 
for all characteristic waves separately in the numerical flux. 
They introduced an amplitude-square weighted wave speed 
V(uL,uR): 

(13) 
(w(uR) - w(uL)) (f(uR - f(uL)) 

(w(uR) - w(uL)) ('R - 'L) 
V(uL,uR) = ' 

here w(u) is the gradient of an entropy function associated with 
Eq. (1). If uL and uR can be connected by a single 
discontinuity, V(uL,uR) equals the speed of that discontinuity, as 
follows from (10). 

The approximate Riemann solution of Harten and Lax 
incorporates three wave speeds and has little advantage over 
Roe's. It has been suggested by Roe, 6 ,  however, to replace the 
entire dissipafion matrix Q(uL,uR) by a scdar like JV(uL,uR)i: 

This formula again leads to the representation of steady 
discontinuities with minimal spread, while requiring less 
computational effort than (1 1). 

This exhausts the collection of flux formulas that recognize 
all different characteristic waves and yield zero dissipation when 
these waves are steady. 

Van Leer 

4 compromise already is Van Leer's differentiable flux-split 
formula, designed to make the dissipation vanish only in steady 
shocks. Flux splitting is writing f(u) as the sum of a forward 
flux ?(u) and a backward flux f (u), 

f(u) = f+(U) + i ( u )  , (15) 
with 
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The Corresponding numerical flux formula reads 

f(UL,UX) = f+(UL) + f luR)  ; (18) 
we may rewrite this as 

to make it look like Osher's formula (12). Although the 
integration in (19) is independent of the path, since IB(u)l is a 
perfect gradient, it is useful to imagine a path along which the 
Mach number (based on the normal flow velocity) varies 
monotonically. If uL and uR form a steady shock, one 
eigenvalue of IB(u)l vanishes somewhere in between; just as for 
Osher's formula, we find steady shock structures with one to 
two interior states. 

If, however uL and uR form a steady contact discontinuity, 
with or without slip, ]B(u)l has no vanishing eigenvalue 
anywhere along the path. This leads to the numerical diffusion 
of such a discontinuity, stopped only by nonlinear effects in the 
flow region in which it is embedded. 

Steger-Warming 

Even worse is the splitting of Steger and Warming,* 
corresponding to the numerical flux function 

1 1 
f ( u L j ~ R )  = -(f(UL)ff(uR)) 2 - (IA(uR)l UR - IA(uL)I * uL) . (21) 

In spite of the appearancc of IA(u)l in this formula, it does not 
lead to vanishing dissipation in any steady wave. The 
dissipation matrix to be considered is 

(22) 
T dlA(u)f d(lA(u)i ') = /A(u)l + u - 

du du ' 
the eigenvalues of which are discontinuous whenever the 
corresponding eigenvalues of A(u) vanish. 

RusanovlDavisNee 

Even further down the line are the numerical fluxes used by 
Davis9 and YeelO, in which Q(uL,uR) is a scalar with a value 
tuned to the spectral radilrs of A(uL,uR), e.g., 

regardless of the relative strengths of the characteristic waves. 
This formula is actually due to Rusanov." 

The dissiRation coefficient in (23) does not vanish in any 
steady discontinuity and must be considered too large for steady 
flow. A factor C < 1 may be introduced to enable the user to 
deliberately reduce the dissipztion level: 

c (k) 1 
f(uL,uR) = 7 (f(uL) + f(uR)) - - 2 k  max la (uL,uR)I (uR- uL). 

This, of course, will make the quality of the results subject to 
trial and error. 



Jameson-Schmidt-Turkel 

The flux formula of Jarneson et al.,I2 although not written in 
terms of interface values, is related to (24) and treats steady 
discontinuities correspondingly. For the flux at the interface 
between cells i and i + 1 we may write, with minor adjustments, 

In part this is consistent with 

in part with 

1 1 
2 2 

ly = ui + -(uitl- Ui) = - (Ui + Ui+J , 

u = u .  - R i+1 

1 1 
z (u i+ l -u i )= - (u i+u i+ l )  2 I 

(27a) 

(27b) 
1 

the coefficient C again is user-specified. This flux, however, is 
not fully satisfactory; an extra dissipation term must be added to 
suppress nlimerical oscillations near discontinuities. In the 
schemes discussed before, such a term does not enter the flux 
formula; instead, non-oscillatory interpolation is used to 
compute interface values from the discrete solution. 

MacCormack 

Consider, finally, the flux formula of the most popular 
finite-difference scheme, viz. MacCormack'~'~ explicit method. 
This basically is a second-order time-accurate scheme; a 
one-dimensional variant of the scheme includes the flux 

UR = ui+ 1 - 2 (ui+2 - Ui) ; 

('W 1 -  
fitIn = $f(Ui) + f(Ui+@ 9 

with 
* At 

Ax 
u = Ui - - (f(ui+l) - f(Ui)) . 

Molding this in the form (5 )  we get 

(29) 
1 At - 

- -- A(ui,u i) A ( U ~ , U ~ + ~ )  ( u ~ + ~  - ui) ; 
2Ax 

for steady-state calculations one often uses the maximum 
time-step locally allowed, i.e., 

Ax 
(At)i = - 

(k) ' m a l +  I 
k 

This formula lacks dissipation: if some characteristic speed 
vznishes near x = xi, the corresponding eigenvalue of the 
dissipation matrix vanishes quadratically, as the latter contains 
two factors (A(ui) + O(Ax)). This is known to lead to nonlinear 
instabilities;14 in practice an extra dissipation term is added with 
a scalar coefficient proportional to the second pressure 
difference (the same term is used for Jameson's flux). Such a 
term in particular increases the dissipation at the foot and the 
head of a shock, thus suppressing numerical oscillations; a 
contact discontnuity, across which the pressure is constant, is 
not affected. 

3. TestinP in a Navier-Stokes code 

Practical comparisons of different flux formulas have been 
made by some of the authors cited above7,9,10 and (among 
others) by Anderson et al.,15 but are mostly limited to Euler 
applications and the aspect of shock resolution. It appears that 
even formulas (24) and (25) ,  with C properly trimmed, yield 
acceptable profiles for steady grid-aligned shocks, with three 
internal cells, The quality of numerical representations of 
slipkontact surfaces may deteriorates more strongly because in 
these linear discontinuities there is no intrinsic steepening 
mechanism counteracting the numerical diffusion. The Euler 
solutions considered, however, were not discriminating in this 
respect. 

This situation changes drastically once Navier-Stokes 
solutions are sought: attached boundary layers must now be 
resolved where the perfect-slip consideration used to be applied. 
To study the interference of numerical dissipation with the 
modeling of physical dissipation, we conducted a series of 
numerical experiments using different formulas for the inviscid 
fluxes in the same carrier code. This implicit code has been 
described previously16 and is set up to compute two- or 
three-dimensional viscous or inviscid flows over conical bodies. 
Assuming conical flow reduces the computation to two 
dimensions; for a circular cone at zero angle of attack the 
solutions become one-dimensional, varying only with the angle 
8 between streamline and cone surface. All pertinent 
conclusions can be drawn from the one-dimensional 
conical-flow results, a selection of which is shown in the figures 
below. 

Figure 1 is the most discriminating, comparing solutions of 
fit-order accuracy (i.e., with interface values based on uniform 
distributions in the cells) on a sequence of grids. The numerical 
fluxes are based on Van Leer's7 flux-vector splitting (FVS, left) 
and Roe's3 flux-difference splitting (FDS, right), respectively. 
Plotted is the dimensionless temperature TR, as a function of 

8; because of the adiabatic-wall condition the difference scheme 
has to provide the proper wall temperature, which in this case 
(loo cone, M, = 7.95, Re = 0.42 x IO6, Pr = 0.72) equals 
about 11.72. With Roe's fluxes the solution has essentially 
converged on the coarsest grid (18 cells) whereas van Leer's 
fluxes considerably broaden the boundary layer and leave a 
significant error in the wall temperature even on the 74-cell grid 
The difference in performance can entirely be attributed to a 
difference in the numerical coefficients of conduction and shear 
viscosity. In the case of FDS these are negligible because the 
normal velocity component is negligible in the boundary layer: 
in the case of FVS they remain finite, scaling with the sound 
speed. Furthermore, the FVS shock is broader than the FDS 
shock, as expected. 

* The converged solutions are limited in accuracy by the 
discretization of the redundant coordinate, which is the same 
for all 6 grids. 
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The solution obtained with the FaS scheme is so accurate 
that one might be tempted to use this scheme for computing two- 
and three-dimensional solutions. It must be remembered, 
however, that the scheme after all is only fmt-order accurate: it 
will give evidence of its high dissipative power in any direction 
fcr which the flow-velocity component differs enough from 
,zero. 

Figure 2 shows the effect of using a higher-order 
interpolation to obtain interface values; the results here are for 
the fully one-sided second-order scheme (denoted by K = -1, see 
Anderson et aI.l5). For FDS (not shown) there is no further 
benefit, but for FVS there is a clear improvement in the 
representation of the boundary layer: on the finest grid the 
correct wall tempeature is reached. Moreover, the shock 
representation now rivals that of the FDS scheme. 

Figure 3 shows results obtained with a different code,16 
based cn the expIicit MacC'omack scheme with local time-step 
values. As expected, the shock is significantly wider than in 
Figures 1 and 2 ,  but the accuracy in the boundary layer is better 
than for FVS, with near-convergence to the proper wall 
temperature on the medium-fine grid. 

Figure 4 shows a blow-up of the boundary layer, with ?he 
results for the 37-cell grid taken from Figures 2 and 3, and two 
more solutions obtained on the same grid with quadratically 
interpolated interface values (k = 113, a third-order scheme) and 
FVS or FDS. The most accurate FVS results are still not as 
good as the MacCormack results (at least, in the boundary 
layer). 

. 

Finally, Figures 5 and 6 show results of the best performing 
methods on the 37-cell grid, for the flow velocity (normalized 
by cm) and the pressure (normalized by pw). 

4. Conclusions 

The analysis and numerical results presented above indicate 
that for an accurate representation of both grid-aligned shocks 
and boundary layers in steady Navier-Stokes solutions, on all 
but the finest grids, the numerical flux formula for the 
convective terms must include information about all different 
waves by which neighborning cells interact. Examples of such 
formulas are Roe's and Osher's. When tested in a computation 
of one-dimensional conical flow, the results obtained with Roe's 
:lux-difference splitting, based on the full Riemann solution, are 
far more accurate than those of van Leer's flux-vector splitting, 
which ignores entropy and shear waves. 

The performance of MacCormacks scheme in the boundary 
layer is better than that of any of the flux-vector split schemes 
tested, even the third-order scheme, but is inferior in shock 
rendition. It can not stand comparison to any of the 
flux-difference split schemes incorporating Roe's flux formula, 
regardless of the order of accuracy. MacCormacks scheme 
appears to require at least twice as many cells in the boundary 
layer as Roe's formula, and Van Leer's formula at least four 
times as many. 

There is no hope for flux formulas of the Rusanov or 
Jameson type. With careful trimming of the user-specified 
dissipation coefficient these will at best compete with the 
flux-split formula. Just as the latter, they are best suited for 
Euler codes and restricted to applications in which contacffslip 
surfaces lie outside the region of interest. 

An interesting flux formula that remains to be tested is the 
one based on Harten and Lax's dominant-wave speed; this 
promises Roe-like results at significant computational savings. 
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Fig. 6. Solutions obtained with the best-performing 
pressure plot. schemes on the 37-cell grid: 


