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I Introduction 

A critical assessment of the accuracy of Cartesian-mesh 
approaches for solving the Euler equations is made. An 
exact solution of the Euler equations (Ringleb'sflow) is 
used not only to infer the order of error of the Cartesian- 
mesh approaches, but also to compare the magnitude of 
the error directly to that obtained with a structured mesh 
approach. The effect of cell merging is investigated as well 
as the use of two different K-exact reconstruction proce- 
dures. The solution methodology of the schemes is 
explained and tabulated results are presented to compare 
the solution accuracies. Adaptive and uniform mesh 
refinement is evaluated for Ringleb'sjlow and the super- 
sonic flow through an d-symmetric inlet. 
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With the advent of unstructured meshes, it is becoming pos- 
sible to perform high quality calculations of flows of increas- 
ing geometric and physical complexity. This geometric 
flexibility is obtained by using an unstructured grid data 
structure that, if formulated properly, can allow mesh enrich- 
ment by cell division. In this way, unstructured solvers with 
adaptive mesh refinement can resolve disparate length scales 
on geometrically complicated domains and perhaps provide 
a means to achieve automatic mesh convergence. Mesh 
redistribution schemes have the benefit of being able to use 
existing, structured mesh flow solvers with few modifica- 
tions, but suffer from the constraints borne by the structured 
mesh data structure. As pointed out in [I], adaptive mesh 
refinement via mesh or cell enrichment is superior to mesh 
redistribution for precisely this reason, although both 
schemes can be an improvement to the non-adaptive 
approach. Through the proper formulation of data structures 
and by an efficient implementation of non-traditional algo- 
rithms, unstructured meshes approaches can compete with 
and complement standard, structured-mesh approaches. 

The method assessed here is a Cartesian-mesh approach. 
Cartesian-mesh approaches have been in the literature for a 
number of years. In [21 and [4] unsteady shock hydrody- 
namic problems were computed on a Cartesian mesh on a 
Cartesian domain. Adaptive mesh refinement was achieved 
by adding collections of cells, grouped into contiguous grids 
about fronts in the field, using front detection algorithms 



based upon pattern recognition. In [S], a similar approach 
was used to compute highly resolved, unsteady shock 
hydrodynamic problems, where the grids used were based 
upon a background, body fitted mesh. By using unique 
data structures coupled with non-traditional algorithms, 
these approaches were able to compute highly resolved 
flows with multiple fronts and length scales. 

Cartesian-mesh based approaches have been used with 
great success for computing flows about complicated 
geometries by solving the full potential equation in a 
finiteelement formulation in [6]. In this application, full 
use was made of the underlying hierarchical structure of 
the grid through the use of an octree based data structure. 
The Cartesian-mesh approach was extended to solving the 
Euler equations in a finite volume formulation in [7] for 
computing the transonic flow about multi-element airfoils, 
although no mesh refinement was performed. The basic 
premise behind the Cartesian-mesh approach is the use of 
a regular, background mesh composed entirely of Carte- 
sian cells to allow a local description of arbitrarily com- 
plex boundaries. This results in either irregularly shaped 
cells at the boundaries (for a finite volume.approach) or 
special boundary procedures (for a finite difference 
approach). For the finite-volume formulation, it is pre- 
ferred to "cut" the geometry out of the background mesh, 
resulting in irregularly shaped cells upon which a flux bal- 
ance must be performed. It is the treatment of the bound- 
aries and the resulting irregularly shaped cells that has 
been a pacing item for the finite volume form of this tech- 
nique. In [8], a unique method of cell cutting for the finite 
volume variant was shown and impressively demonstrated 
for an unsteady, geometrically complicated flow. 

In [3,8,9,lO,ll,l2,13] reliance upon a locally structured 
background mesh was used for gradient reconstruction and 
to help formulate the flux balance on irregular boundaries 
and coarse/fine mesh interfaces. This close coupling to the 
background structured mesh is advantageous when refine- 
ment is made by adding grid patches, but truly local refine- 
ment could result in patches of only single cells. In [14] a 
linear reconstruction technique (Green-Gauss reconsauc- 
tion) was used on the Cartesiancell mesh. This recon- 
struction technique is locally second order accurate, and is 
used in many unstructured mesh approaches. This decou- 
pling of the reconstruction process from the flux computa- 
tion sets this approach apart from the previous Cartesian- 
cell work in that a true decoupling from the background 
mesh was achieved, resulting in what at first appears to be 

an unstructured mesh approach. But, by exploiting the 
hierarchical properties obtainable through the genesis of 
the mesh, the resulting approach can be more aptly named 
a hierarchically-structured, Cartesian-mesh approach. This 
approach was applied successfully to investigate many 
interesting flow fields [15,18.211, but the accuracy of the 
approach has not been benchmarked. Since this approach 
would like to promise automatic mesh generation along 
with automatic mesh convergence, the accuracy of the 
approach needs to be closely examined 

This study performs a critical assessment of a Cartesian- 
mesh approach by using an analytical solution to the Euler 
equations (Ringleb's flow) and directly compares the solu- 
tion accuracy to that obtained with a (streamline-aligned) 
structured mesh calculation. The effect of adaptive mesh 
refinement is evaluated using Ringleb's flow, which is 
smooth and analytic, and the non-smooth supersonic flow 
through an axi-symmetric, mixed compression inlet. The 
framework of using an exact, analytic solution to the Euler 
equations allows other important procedures to be quanti- 
tatively analyzed. Two linear reconstruction procedures 
(Green-Gauss and Minimum-Energy ) are evaluated and 
the approach of cutcell data merging is outlined and 
examined in the framework of Ringleb's flow. 

11 A Cartesian-Mesh Approach 

The approach presented here solves the Euler equations of 
compressible fluid dynamics using a cell centered, finite 
volume, upwind scheme. A linear reconstruction of the 
primitive variables is used to determine the state quantities 
at cell to cell interfaces which are then used to compute 
the flux using an approximate Riemann solver. ?frpically a 
coarse, base mesh is generated, upon which a solution is 
obtained. Then, based upon this (coarse) solution, the 
mesh is adaptively refined, and a new solution is found on 
this refined mesh. This process is repeated a number of 
times, solving and then refining, until a specified degree of 
adaptation is achieved. This automatic, adaptive mesh 
refinement, coupled with the automatic mesh generation, 
attempts to gain grid converged solutions with minimal 
user intervention. The following sections briefly outline 
the approach. 



1I.a Mesh GeneratiodData Structure 

One objective of this approach is to create a mesh genera- 
tion procedure that can be automated for complex geome- 
tries. In addition, the resulting method and data structure 
should easily allow for mesh refinement and mesh coars- 
ening. The approach presented here is based upon using 
Cartesian cells of unit aspect ratio that are "cut" into irreg- 
ular cells whenever the boundary of a body intersects any 
of its surfaces. By using Cartesian cells of unit aspect 
ratio, and by splitting these cells into 4 children the result- 
ing mesh is highly uniform and smooth in uncut regions. 
The mesh generation proceeds automatically, once the 
geometry is suitably defined, by finding the intersections 
of the body surfaces with each cell boundary, and deter- 
miningwhether these intersections (if any) satisfy a simple 
set of cell cutting rules. If a cell is intersected, and it 
doesn't satisfy the cell cutting rules, it is refined (split into 
4 cells). This proceeds recursively over all current cells in 
the mesh, only refining the offending cells, until the result- 
ing mesh is suitable for the cutting of the geometry. Arbi- 
trary numbers of bodies can be used to form the geometry, 
where each body can be represented by discrete (pointwise 
data) or arbitrary functional descriptions. The staggered 
biplane configuration computed in [7] is used here to illus- 
trate the mesh generation process. Figures 1 and 2 show a 
portion of the domain before and after cutting the geome- 
try out of the background mesh. 

l--rnm- 

FIGURE 1. Staggered Biplane mesh: Prior to Cell 
Cutting. 

FIGURE 2. Staggered Biplane mesh: Immediately 
After Cell Cutting. 

As opposed to using an array or some other approach 
using "flat-lists", a hierarchical data structure is used to 
store the mesh. The data structure is based upon a binary 
tree, where each node of the tree represents a cell at some 
stage of the cell spawning process. Figure 3 is an illustra- 
tion showing the stages of splitting a Cartesian cell isotto- 
pically into four children. Referring to this figure, consider 
cell A, which is first split in x. This results in 2 cells, B and 
C, that are the children of A. If the= are then split in y, the 
result is a set of 4 children, cells D, E, F and G, that are 
contained geometrically within the parent cell, A, and 
hierarchically below A in the tree. 

FIGURE 3. Illustration of Cell Spliuinmree Structure 



The data structure mimics this hierarchical nature by hav- 
ing a pointer to the cell parent and two pointers to its chil- 
dren, in addition to geometric data (cell centroid and cell 
size) and tree level data. It should be noted that if the mesh 
were everywhere Cartesian, all geometric data could be 
directly inferred from the tree. Another useful property of 
the tree data structure is that cell-to-cell connectivity can 
be inferred from the tree via logical tree traversals based 
on centroid compares and face-matching procedures. The 
resulting computer code is written in ANSI standard C to 
take advantage of dynamic memory allocation, dealloca- 
tion and self-referential data structures. 

1I.b Flow Solver Formulation 

The Euler equations are solved using a cell centered, finite 
volume, upwind based scheme. Roe's approximate Rie- 
mann solver [20] is used to formulate the equivalent one- 
dimensional flux through the cell-to-cell interfaces. The 
states at these interfaces are found using a two-dimen- 
sional interpolation of cell primitives that is formed using 
linear reconstruction. Two reconstruction procedures are 
explained and investigated here: Green-Gauss and L2 
(also known as MinimumEnergy). The resulting schemes, 
when applied in one-dimension, are similar to Fromm's 
scheme. When a limiting procedure is used, the recon- 
structed states are limited using a minimum-modulus type 
limiter. A generic multi-stage scheme is used to drive the 
residuals to zero. The solution methodology follows the 
standard finite-volume approach, in that the procedure can 
be broken into 3 separate stages: reconstruction, flux com- 
putation and evolution. A brief outline of each segment is 
given below. 

The primitive variables are reconstructed in each cell 
using a linear reconstruction. The process of reconsmc- 
tion to arbitrary degrees of accuracy on unstructured 
meshes is presented in detail by Barth in [16,17] and by 
Godfrey etal. in [19], of which a distilled presentation of 
the L2 reconstruction is shown below. The process of 
reconstruction can be considered as the discrete inverse of 
a cell averaging process. In other words, given the distri- 
bution of a function within a cell, one can compute the cell 
average by 

Reconstruction solves the inverse of this p r o b l e ~  find the 
expansion about the cell centroid to k-th order, u (x, y) , 
using the cell averaged data of the cell to be reconstructed 
and a set of support cells. The support of cells used in the 
reconstruction is typically taken to be nearest neighbor 
cells; that is cells that share a face andlor a vertex with the 
cell where the reconstruction is desired. 

Minimum-En- Reconstructiqn 

k By expanding u (x, y) in terms of zero mean basis 
polynomials, conservation of the mean of the object cell is 
ensured, resulting in the general expansion 

where the y . are constructed such that their cell average is 
iden tically Are. The reconstruction process finds the a. 
above by minimizing the least square nor, S, with respkct 
to the neighbor cell averages of the 4. That i s  minimize 
with respect to the a. 

J 

Thib  results in a linear system for the a. 
J 

where 

For a given mesh, the Li. is only dependent upon the 
geometry, so it can be inderted beforehand. This prepro- 
cessing of the reconstruction makes it efficient in that only 
a simple sum is needed to compute the reconstructed solu- 
tion. For the work considered here, the expansion is taken 



out only to k=l, resulting in a linear expansion, with the 
meaningful expression for the reconstruction 

It should be pointed out that this reconstruction needs no 
special ordering of points, requires a minimum of two 
neighbors and is obtained by a simple summation over 
the support cells. This results in a second-order accurate 
reconstruction of the local solution in a cell and recon- 
structs linear functions exactly. Unless noted otherwise, 
all calculations were computed using this reconstruction 
procedure. 

Green-Gauss reconsauction is another type of linear 
reconstruction that is commonly used in unstructured 
grid solvers. Green's theorem applied to a scalar func- 
tion relates the volumetric integral of the gradient of the 
function to its surface integral over the surface of the 
bounding volume. If the gradient is assumed to be con- 
stant over the cell the reconstructed gradient can be 
found as 

The line integral in (8) is ordered counterclockwise, 
which requires the neighbor cell averaged data also to 
be ordered counter-clockwise. The line integral is com- 
puted using second-order Gaussian quadrature which 
results in a summation o ler the (ordered) neighbor cells. 
The reconstruction ob'ined is second order accurate, 
reconstructs linear functions exactly, and has a margin- 
ally smaller truncation error than the Minimum-Energy 
reconstruction on shictly uniform Cartesian meshes. 

Flux Corn~utation 

The Euler equations are solved using a standard, cell 
centered, finite-volume scheme. After converting the 
divergence of the fluxes into a surface integral, the time 
rate of change of the cell averages of the conserved vari- 
ables is 

This surface integral is approximated using 2nd-order 
Gaussian quadrature. It is pointed out in [17] that it is nec- 
essary to use a quadrature of at least the same order as the 
reconstruction order, and that the accuracy achieved using 
a quadrature of higher order does not warrant the extra 
effort. Second order Gaussian quadrature results in evalu- 
ating the kernel of (9) at the midpoints of all the edges rep- 
resenting the mesh. Replacing the right hand side of (9) 
with the numerical quadrature, the semi-discrete form of 
the equations is reduced to 

The sum is taken over all faces of the cell, and the left and 
right states of the Riemann solver are found using the 
reconstructed solutions in each cell evaluated at the Gauss 
points. The numerical flux, a, is formed in the face nor- 
mal coordinate system in a standard upwind formulation, 
where the numerical flux difference is formed using Roe's 
linearized Riemann solver. 

Since obtaining steady-state solutions is the goal, a spa- 
tially varying time step is used by advancing all cells in 
the mesh at a constant Courant number. This is quite nec- 
essary since cell cutting and mesh adaptation can mult in 
widely varying cell areas across the mesh. A generic 3 
stage explicit scheme is used to drive down the residuals, 
with stage coefficients of (O.18.0.5,l.O) and a Courant 
number of 1.3. 

1I.c Mesh Adaptation 

Adaptive mesh refinement is achieved using the retine- 
ment criteria presented in [21] and [IS]. Briefly, refine- 
ment is based upon a statistical description of two 
refinement parameters that characterize the local corn- 
pressibility and rotationality of the fluid. These parameters 
are 



characteristic cell length is taken to be 
Cells are relined that have cell lengths greater 

than some user specified value and either refinement 
parameter is greater than its standard deviation from 
zero. Cells are a candidate for coarsening if both pararn- 
e:ers are less than some fraction of the standard devia- 
tion from zero (taken here to be one tenth). 

The following figures illustrate the Cartesian-mesh 
approach for the staggered biplane configuration com- 
puted in [7]. The two elements are NACA 0012 airfoils, 
staggered 1/2 chord length in the chordwise and pitch 
directions. The free stream Mach numb is 
Mm = 0.7 and the configuration is at a = 0 
degrees. The computation is made through 4 levels of 
refinement beyond the base mesh. Figures 4 and 5 show 
a portion of the adapted flow field and mesh. 

FIGURE 5. Adapted mesh: Staggered Biplane 
Configuration 

111 Accuracy Assessment: Ringleb's Flow 

Ringleb's flow is a hodograph solution to the Euler equa- 
tions [22], and has been used to assess the accuracy of 
other structured- and unstructured-mesh approaches 
[17,19,231. A variety of flows can be attained, depending 
upon the choice of parameters used. The solution is 
parameterized in terms of the total velocity, q, and strearn- 
line constant, k as 

FIGURE 4. Pressure Contours: Staggered Biplane 
Configuration 

All structured and Cartesian calculations reported in this 
study were converged to a drop in the L2 norm of the 
residual of the continuity equation of at least 6 orders of 
magnitude. All of the calculations were performed on 
IBM RS6000 workstations. The aggregate processing 
rates for the Cartesian-mesh calculations on a Model 
560 were approximately 200 p se~onds/ce~teration 
for the (un-limited) Ringleb's flow calculations and 
approximately 300 p seconds/cell/iteration for the (lim- 
ited) supersonic inlet calculations (shown in a later sec- 
tion). 



where the density, p , is made non-dimensional by its 
stagnation value and all speeds are made non-dimen- 
sional by the stagnation sound speed. The flow angle 9 
is related to the streamline constant and total velocity by 

The flow in the first quadrant is computed that is 
bounded by the streamlines k = 0.75 and k = 1.5 . 
The outflow boundary is situated along the y = 0 line 
of symmetry and the inflow boundary is along the ise 
velocity line of q = 0.5 . The resulting flow has a sub- 
sonic inflow and a mixed supersonic/subsonic outflow. 
Figure 6 shows contours of the Mach number of the 
flow field obtained with these parameters. As can be 
seen from the figure, the flow can be visualized as a 
transonic, accelerating flow contained between two 
curved streamlines. 

OUTFLOW 

FIGURE 6. Mach Number Contours of Ringleb's 
Flow 

If one defines the error for the i-th cell as 

- 
ei - IFi - pexact (zip yi) 1 

then the L norms of the error are 
P 

First, an assessment of the order of accuracy and the mag- 
nitude of the error using the Cartesian-mesh approach is 
made. The order is inferred by evaluating the behavior of 
the error norms with increasing mesh refinement, while 
the magnitude of the error is assessed by comparing the 
error norms directly with those obtained from a structured 
mesh solver. This accuracy assessment provides a frame- 
work to quantitatively analyze other relevant pmedures. 
The accuracy of the Green-Gauss and Minimum-Energy 
are compared to each other, and the pmess of cut cell data 
merging is evaluated. 

The structured-grid flow solver uses Fromm's differencing 
of the primitive variables on a coordinate-by-coordinate 
basis. Roe's linearized Riemann solver is used to compute 
the fluxes through the cell interfaces. Care is taken in the 
formulation of the boundary procedures so that a direct 
comparison of the two codes yields meaningful results. 
Slip boundary conditions are applied by extrapolating the 
pressure to the Gauss points in a manner consistent with 
the interior scheme. At the subsonic inflow, a boundary 
procedure based upon constant total conditions and an 
extrapolated Riemann invariant (as in [%I) is used. Roe's 
approximate Riemann solver is used at the mixed super- 
sonic/subsonic outflow boundary The left and right states 
are supplied to the flux function from extrapolated and 
exact conditions evaluated at the Gauss points. 

IIIa Structured Grid Results 

The meshes used for the structured grid calculations have 
a family of coordinate lines lying along the exact solution 
streamlines. The other coordinate line family was gener- 
ated using a sinusoidal blending of the streamline and iso- 
velocity constants. A sample structured mesh is shown in 
Figure 7 with 400 cells. A sequence of successively finer 
meshes of 10x10,20x20,40x40 and 80x80 cells were used 
to compute Ringleb's flow, upon which the solution error 
norms were computed.'The norms are tabulated in Table I. 



TABLE I. Structured Grid Error Norms 

form Cartesian meshes. The uniform meshes are generated 
by recursively refining a set number of levels below the 
root of the tree, and then cutting the geometry out of the 
mesh. The number of levels below the root cell character- 
izes the fineness of the uniform meshes, which we will 
refer to as the mesh base level, Lo. 

By plotting the logarithm of the norms a 'nst the loga- 
rithm of the characteristic cell size. 1 / $" N, one can 
infer the order of the truncation error form the slope of 
the plot. A least-squares c w e  fit of the data gives 
slopes of the L , L and Loo norms of 2.08,2.09 and 
1.97 respective 1 y, in %I 'cating that the structured scheme 
is uniformly 2nd order accurate. It should be noted that 
the mesh used here is quite beneficial: with a closer 
examination, one can see that by virtue of the mesh gen- 
eration, not only is one family of mesh lines aligned 
exactly with the flow streamlines, but clustering is 
achieved near the place of minimum radius of curvature 
of the left wall. Indeed, in a later section, it is shown that 
the adaptively refined mesh is clustered in this region. 

FIGURE 7. Structured mesh: 400 Cells 

III.b Uniformly Refined Cartesian Results 

Next, the Cartesian-mesh approach is used to compute 
Ringleb's flow on a sequence of successively finer uni- 

FIGURE 8. Uniform Cartesian Mesh, Lo = 4. 

Figure 8 shows the coarsest mesh, which is 4 levels below 
the root cell, hence at a mesh base level of Lo = 4. Uni- 
formly refined calculations were made for base grid levels 
of 4,5,6 and 7, of which the error norms are tabulated in 
Table 11. 

TABLE 11. Uniformly Refined Cartesian Error 
Norms 

A least-squares curve fit of the uniformly refined norm 
data yields slopes for the L , L2 and Loo norms of 2.02, 
1 9 1 and 1.40, respectively. bsing the two finest meshes 
one obtains slopes for the L , L2 and Loo norms of 2.16, 
1.94 and 1 AO, respectively. h e s e  slopes indicate that the 
Cartesian-cell based scheme is globally 2nd order accurate 
and that the local error is greater than 1st order accurate 
but not quite 2nd order. An analysis of the effect of the 
boundary cells upon the solution accuracy is estimated by 



computing error norms separately for the boundary 
cells, and then computing the slopes as above. The com- 
puted slopes of the boundary cell L L and Loo 
norms were 1.68,l A9 and 1.40. A&OU& the local 
error is degraded by the irregularity in the mesh due to 
the cut cells/boundaries, the scheme remains globally 
second order accurate. 

IU.c Adaptively Refined Cartesian Results 

The effect of adaptive refinement is assessed next. 
Beginning at a base uniform mesh of level Lo = 4, 
adaptation proceeds through 4 levels of refinement. The 
refinement is made according to the rotationality and 
compressibility parameters described above, although 
for this irrotational flow, the rotationality parameter is 
nearly zero and does not effect the refinement topology. 
Figure 9 shows the adapted mesh that curresponds to a 
mesh refinement of 2 levels below the base, uniform 
mesh. 

FIGURE 9. Adapted Cartesian Mesh 

The adaptively refined norms are tabulated in Table 111. 
The error norms are compared with the characteristic 
cell size in figures 10,ll  and 12 for the structured, uni- 
formly and adaptively refined Cartesian calculations. As 
is shown in Figures 10 through 12, the L1 and L2 
norms continue to behave in a 2nd order accurate fash- 
ion throughout the refinement, and the L, norm is 
appreciably reduced in the beginning stages of the 
refinement process. 

These Figures indicate that the adaptive refinement would 
require approximately twice the number of cells than the 
structured solver for a given error magnitude. What is also 
indicated is that the adaptive mesh refinement requires 
approximately 213 the number of cells for a given error 
norm than the uniformly refined (un-adapted) procedure. 

TABLE 111. Adaptively Refined Cartesian Error 
Norms 
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FIGURE 10. L1 Norms of the error 

To determine if the refinement strategy could be improved, 
the parameters that determine cell refinement and coarsen- 
ing in equations 11 and 12 were adjusted. First, to see if 
the length scale weighting of the refinement criterion are 
not tuned properly, the length scale weight powers were 
changed to 1 and to 2, but the effect was negligible. In 
addition, the cutoff parameters for coarsening and refining 
were adjusted. Cells were refined for refinement parame- 
ters greater than 1/2 and 3/2 times the standard deviation 
about zero, with no appreciable effect. Cells were coars- 



ened for refinement parameters less than 114 and 112 the The fact that the Cartesian error is appreciably higher than 
standard deviation about z m  (the default level is 1/10), the structured solver is disappointing, but if the particulars 
also to no effect. ?hese results indicate that the refine- of the flow and the structured solver are taken into 
ment procedure is tuned properly for this smooth flow, account, not too surprising. Ringleb's flow is a very 
and that no appreciable gains could be made with smooth flow and has essentially a single length scale; it is 
respect to the structured results. surmised that on the structured grid, evren a very coarse 

grid captures enough of the flow field so that refinement 
beyond this saturation will not yield much improvement 
over uniform refinement In addition, the structured mesh 
used can be viewed as being in some sense "optimal*; not 
only is one family of the coordinate lines exactly aligned 
with the seeamlines of the flow, but by virtue of the mesh 
generation, the mesh is denser in the region where the gra- 
dients are higher. Indeed, the grid alignment with the solu- 
tion streamlines can be very beneficial since the Riemann 
solver used is only one-dimensional. 

L2 
1II.d Green-Gau-inimum-Energy Reconstructions 

The Green-Gauss and Minimum-Energy reconstructions 
are evaluated for uniformly refined Cartesian-mesh solu- 
tions to Ringleb's flow. A truncation error analysis on uni- 
form Cartesian grids indicates that the Green-Gauss has a 
slightly lower truncation enor than the Minimum-Energy 
method, yet is still 2nd order accurate.This is borne out by 
the results shown in Figure 13, where all m r  noms are 
plotted versus the characteristic cell size for the Green- 

FIGURE 11. L2 norm of the error Gauss and Minimum-Energy reconstructions. 

1 0" 

----A Uniform 

10" 

10" 

cren-G~USS R i i i l  

FIGURE 12. L, norm of the error FIGURE 13. Comparison of Green-Gauss and 
Minimum-Energy Reconstructions 



m . e  Cut Cell Data Merging 

Cell merging is a process where small, cut cells on the 
mesh are merged into larger, neighboring cells. The Car- 
tesian-mesh approach routinely generates meshes which 
have a many order variation of cell areas across the 
field. This wide area variation comes about through 
mesh refinement and from cell cutting. In the grid inte- 
rior, smoothness can be imposed by only allowing a set 
number of tree level differences across faces. Smooth- 
ness can not be guaranteed at the boundaries. Typically, 
there are only a small number of very small cut cells 
introduced along the boundaries, where their areas may 
vary greatly compared to their neighbors. For steady 
state calculations, the stiffness introduced from these 
cells is reduced by using a spatially varying time step, 
but for time-accurate computations, as in [261 and [271, 
the efficiency can be greatly reduced. Cut cell merging 
is proposed to eliminate the stiffness caused by these 
few, very small cut cells that can be introduced in the 
mesh. 

Cell merging creates a new cell, which we refer to as a 
merged cell, from a larger (mother) cell and a small cut 
(fragment) cell. This combination of the two mother and 
fxagment cells into the single, larger merged cell can be 
achieved either geometrically or by a subtle change in 
the procedures used to compute the fluxes and flux bal- 
ances on the fragment and mother cells. Since geometric 
merging can (except in fortunate circumstances) violate 
the hierarchy of the grid, we merge cells using the latter 
method. Theoretically, one can show that the global 
order of accuracy is unaffected by cell merging, 
although the error magnitude is increased. On a uniform 
mesh with an equal error distribution, one can rela,e the 
un-merged to merged L norm of the error as 

3M 
1. Merged = L1(l+-) N-M 

where M cells have been merged on a mesh consisting 
of N cells prior to the cell merge. For small M/N, the 
magnitude of error is increased only negligibly, while 
the order is unaffected. The process of cell data merging 
proceeds as follows: 

Fragment cells are chosen to be the minimum area cut 
cells in the mesh. Mother cells are chosen to be the max- 
imum area cell that is a face neighbor to the fragment 

cell. For cells identified as merged cells, the merging 
changes its shape, and hence its centroid. So, the new 
merged cell centroid is computed from the fragment and 
mother cell centroids and areas. 

where the subscripts m, M and F refer to merged, Mother 
and Fragment cells, respectively. 

After all cell data has been reconstructed, the fragment 
cells data are altered so that at the interfaces between 
mother and fragment cells the reconstruction yields a 
unique value. That is, replace the fragment cell data as 

The merged cell data is used as a matter of course in the 
flux computation for the mother and fragment cells. The 
flux balance on the larger, merged cell is obtained by sum- 
ming the contributions of the mother and fragment cells to 
the merged cell 

where R represents the flux balance of equation (10). 

Here, we investigate the spatial accuracy of cell merging 
in the framework of Ringleb's flow. Adaptively refined 
calculations are made starting at a base grid level of 
Lo = 4 and refining 4 levels. At each refinement level, 
the smallest cut cell is merged into the largest of its neigh- 
bors. Figure 14 shows all error norms compared with the 
un-merged results presented in section In. In an attempt to 
gauge the increase in efficiency that could be achieved in a 
time accurate computation, the minimum time step is 
found for each grid level for the merged and un-merged 
results. The ratio of the minimum merged to minimum un- 
merged time step is shown in Figure 15, where 



Atmin, merged h = (26). 
Atmi% un - merged 

FIGURE 14. Error Norms: Merged and Un-Merged. 
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One can see that the global error is practically unaffected 
by the cell merging, while there is a slight increase in the 
local error at the third refinement level. One can also see 
that the order of accuracy remains unchanged. The gain in 
efficiency through the increase of the time steps shown in 
Figure 15 drops off with refinement level. As the grid 
becomes populated with smaller and smaller cells from the 
adaptive mesh refinement, the smallest un-cut cell sizes 
approach the sizes of the small cut cells, causing the ratio 
of minimum step sizes to decrease. 

IV Accuracy Assessment: Non-Smooth Flow 

One of the great promises of adaptive mesh refinement is 
to achieve a high level of resolution and accuracy using a 
minimum of resources. But, as is shown in the p.eceding 
example, for a flow with a single length scale, or one that 
is fairly uniform, it is hard to beat uniform mesh reline- 
ment. The following example shows that for the proper 
type of flow field, adaptive mesh refinement can give an 
appreciable gain in performance over uniform mesh 
refinement. For this study, the supersonic flow through a 
stylized axi-symmetric inlet is computed using the Carte- 
sian-cell approach on a sequence of uniformly and adap- 
tively refined meshes. The inlet studied is based upon the 
mixed compression inlet investigated in [25]. This inlet is 
designed to decelerate a Moo = 2.5 flow through a 
series of oblique shock waves which terminate at a normal 
shock wave in the diffuser. For the study here, the free 
stream Mach number is reduced to Mm = 2.0 and the 
cowl is displaced radially outward 112 cowl radius from 
the centerline. Extrapolation type procedures are applied 
at the exit boundaries, yielding a supersonic flow through- 
out the inlet. The centerbody and inner cowl surface 
shapes are made using the curve fits supplied in [25], 
while the outer cowl surface is stylized for this study. Uni- 
formly refined computations were made for base grid lev- 
els L = 6 through Lo = 9. Adaptively refined 
calcuhons were made starting at a grid base level 
Lo = 6 and relining 5 levels. Figures 16 and 17 show 
computed pressure contours and the resulting adapted grid 
corresponding to 3 refinement levels below the base mesh. 
We assess grid convergence by comparing the drag coeffi- 
cients of the uniformly and adaptively refined calculations, 
shown in Figure 18. 

FIGURE 15. Ratio of Minimum Time Steps: Merged 
to Un-Merged. 



FIGURE 16. Adapted Grid: hi-Symmetric Inlet FIGURE 18. Adaptively and Uniformly Refined Drag 
Coefficients 

V Conclusions 

In this paper a critical assessment of the accuracy of Carte- 
sian-mesh approaches has been made. We have explained 
the basics behind the hierarchical data structure that can be 
used to store the mesh data and how arbitrary geomemes 
can be represented with the Cartesian-mesh approach. The 
Cartesian-mesh approach presented here used a cell cen- 
tered, upwind based finite-volume formulation coupled 
with a particular Kexact reconstruction of the primitive 
variables. Adaptive mesh refinement was achieved using 
cell size scaled refinement parameters based upon the local 
compressibility and rotationality of the fluid. 

An exact solution to the Euler equations (Ringleb's flow) 
was used to assess the order and magnitude of the solution 
e m  The solution errors for both structured and Carte- 
sian-mesh based calculations of Ringleb's flow were com- 

FIGURE 17. Adapted Grid: Pressure Contours pared directly. Uniform refinement was performed for the 
structured-mesh calculations while both uniform and solu- 

As can be seen from the figure, the hptively tion adaptive refinements were made for the Cartesian- 

calculations become grid converged within approxi- mesh approach. 

mately 25,000 cells. The uniformly refined drag coeffi- 
cients appear to be trying to reach the same asymptote, The assessment indicated that the Cartesian-mesh 

although for this fine, uniform grid of over 150,000 approach used here was globally second-order accurate, 

cells, does not appear to have reached grid convergence. and remained so through adaptive refinement, while the 
local error was better than first order accurate, but less 
than second order. Adaptive mesh refinement was criti- 



cally evaluated for Ringleb's flow, which is smooth and 
analytic, and for a very non-smooth flow; the supersonic 
flow through a mixedcompression, axi-symmetric inlet. 
For the smooth flow, the adaptive mesh refinement was 
shown to not give a gain in accuracy for given resources 
over the uniformly refined calculations. For the non- 
smooth flow, the adaptive mesh refinement was shown 
to give a large gain in efficiency over the uniformly 
refined procedure. These results indicate that adaptive 
mesh refinement is best suited for non-smooth flows 
and/or flows with widely varying length scales. 

The accuracy of two different reconstruction proce- 
dures, Minimum-Energy and Green-Gauss, were com- 
pared directly and shown to give no appreciable 
difference. Cell data merging was investigated and was 
shown to increase the efficiency for time accurate com- 
putations by increasing the allowable time step with a 
negligible cost in accuracy. 

The authors would like to express their gratitude to Pro- 
fessor M.J. Berger for her insightful comments regard- 
ing this work. Thanks also go to Mr. B.P. Curlett for use 
of his workstation "hornet" for some of the Ringleb flow 
calculations, and to Dr. D. Rigby, Dr. P. Jorgenson, Dr. J. 
Lee and Mr. C. Steffen, Jr. for many interesting discus- 
sions. 

[I] Dannenhoffer, J.F., 111, "A Comparison of Adaptive- 
grid Redistribution and Embedding For Steady Tran- 
sonic Flows", International Journal for Numerical 
Methods in Engineering, Vol. 32,1991, pp. 653-663. 

[2] Berger, M J., "Adaptive Mesh Refinement for 
Hyperbolic Partial Differential Equations", Journal 
of Computational Physics, Vol. 53,1984, pp. 484- 
5 12. 

[3] Berger, M J. and Jameson, A., "Automatic Adaptive 
Grid Refinement for the Euler Equationsn. AIAA 
Journal, Vol. 23, NO. 4, 1985, pp. 561-568. 

[4] Berger, M J. and Colella, P., "Local Adaptive Mesh 
Refinement for Shock Hydrodynamics", Journal of 
Computational .ysics, Vol. 82,1989, pp. 64-84. 

[5] Quirk, J J., "An Adaptive Grid Algorithm for Compu- 
tational Shock Hydrodynamics", Ph.D. Thesis, Cran- 
field Institute of Technology, College of Aeronautics, 
1991. 

[6] Young, D.P, Melvin, R.G., Bieterman, M.B., Johnson, 
F.T., Samant, S.S. and Bussoletti, J.E., "A Locally 
Refined Rectangular Grid Finite Element Method: 
Application to Computational Fluid Dynamics and 
Computational Physics", Journal of Computational 
Physics, Vol. 92, 199 1, pp. 1-66. 

[7] Clarke, D.K., Salas, M.D., and Hassan, H.A., "Euler 
Calculations for Multielement Airfoils Using Cartesian 
Grids", AIAA Journal, Vol. 24, No. 3,1986, pp 353- 
358. 

[8] Quirk, JJ., "An Alternative to Unstructured Grids for 
Computing Gas Dynamic Flows Around Arbitrarily 
Complex Two-Dimensional Bodies", ICASE Report 
NO. 92-7. 

[9] Berger, MJ., LeVeque, RJ., "An Adaptive Cartesian 
Mesh Algorithm for the Euler Equations in Arbitrary 
Geometries", AIAA Paper 89- 1930-CP. 

[IOIBerger, M.J.. LeVeque, RJ., "Stable Boundary Condi- 
tions for Cartesian Grid Calculations", Computing 
Systems in Engineering, Vol. 1, Nos. 2-4, pp. 305-3 11, 
1990. 

[llIBerger, MJ., LeVeque, R J., "A Rotated Difference 
Scheme for Cartesian Grids in Complex Geometries", 
AIAA Paper CP-91-1602. 

[12]Morinishi, K., "A Finite Difference Solution of the 
Euler Equations on Non-Body Fitted Cartesian Grids", 
Computers Fluids, Vol. 29, No. 3, pp. 331-344.1992. 

[13]Epstein, B., Luntz, A.L., Nachson, A., "Multigrid 
Euler Solver About Arbitrary Aircraft Configurations 
with Cartesian grids and Local Refinementn, AIAA 
Paper 89- 1960-CP. 

[14]De Zeeuw, D., and Powell, K.G., "An Adaptively 
Refined Cartesian Mesh Solver for the Euler Equa- 
tions", To appear in Journal of Computational Physics, 
1991. 

[15]De Zeeuw, D., and Powell, K.G.. "Euler Calculations 
of Axisymmetric Under-Expanded Jets by an Adap- 
tive-Refinement Method", AIAA Paper 93-0321. 

[16]Barth, TJ., "On Unstructured Grids and Solvers", 
Computational Fluid Dynamics Lecture Series, 1990- 
03, Von Karman Institute for Fluid Dynamics. 



[17]Barth, TJ., and Frederickson, P.O., "Higher Order 
Solution of the Euler Equations on Unstiuctured 
Grids Using Quadratic Reconsauction", A I M  
Paper 9O-0013. 

[18]Powell, K.G., Roe, P.L. and Quirk, J.J., "Adaptive- 
Mesh Algorithms for Computational Fluid Dynam- 
ics". Presented at the workshop Algorithmic Trends 
in Computational Fluid Dynamics in the 1990's, 
Sept. 1991. (To appear in published proceedings, 
Springer-Verlag). 

[19]Godfrey, A.G., Mitchell, C.R.. Walters. R.W. "Prac- 
tical Aspects of Spatially High Accurate Methods", 
A I M  Paper 92-0054. 

[20]Roe, P.L., "Approximate Riemann Solvers, Parame- 
ter Vectors and Difference Schemes", Journal of 
Computational Physics, Vol. 43, pp 357-372, 1981. 

[21]Paillere, P.H., Powell, K.G. and De Zeeuw, D., "A 
Wave-model Based Refinement Criterion for Adap- 
tive-Grid Computation of Compressible Flows", 
AIAA Paper 92-0322. 

[22I6'Test Cases for Inviscid Flow Field Methods: 
Report of Fluid Dynamics Panel Working Group 
07". AGARD Report No. AR-211. 

[23]Halt, D.W. and Agmal, R.K., ''Compact Higher 
Order Characteristic-Based Euler Solver for 
Unstructured Gridsn, AIAA Journal, Vol. 30, No. 8, 
Aug. 1992, pp. 1993-1999. 

[24]Chima. R.V.. "Viscous Three-Dimensional Calcula- 
tions of Transonic Fan Performance", NASA TM 
103800. 

[25]Hingst, W.R., and Johnson, D.F. "Experimental 
Investigation of Boundary Layers in an Axisymmet- 
ric, Mach 2.5, MixedCompression Inlet", NASA 
TM X-2902. 

[26]Bayyuk, S.A., Powell, K.G. and van Leer, B., "An 
Algorithm For the Simulation of 2-D Unsteady 
Inviscid Flows Around Mitrarily Moving and 
Deforming Bodies of Arbitrary Geometry", in A I M  
11th Computational Fluid Dynamics Proceedings. 

[27]Chiang, Yu-Liang, "Simulation of Unsteady Invis- 
cid Flow On An Adaptively Refined Cartesian 
Grid", Ph.D. Thesis, University of Michigan, Aero- 
space Engineering Department, 1992. 


