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Maximizing Payload Mass Fractions of Spacecraft
for Interplanetary Electric Propulsion Missions
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Optimization of a spacecraft’s interplanetary trajectory and electric propulsion system remains a complex and
difficult problem. Simultaneously solving for the optimal trajectory, power level, and exhaust velocity can be
difficult and time consuming. If the power system’s technology level is unknown, multiple optimizations must be
conducted to map out the trade space. Trajectories with constant-power, solar-power, variable-specific-impulse, and
constant-specific-impulse low-thrust propulsion systems are analyzed and optimized. The technological variables,
power system specific mass, propellant tank coefficient, structural coefficient, and the launch vehicle are integrated
into the cost function allowing for maximization of the payload mass fraction. A classical solution is reviewed that
allows trade studies to be conducted for constant-power, variable exhaust velocity systems. The analysis is expanded
to include bounded-power constant specific impulse systems and solar electric propulsion spacecraft with constant
and variable exhaust velocity engines. The cost function and mass fractions are dimensionless to allow for scaling
of the spacecraft systems.

Nomenclature
a = thrust acceleration, m/s2

a0 = nominal acceleration spacecraft can deliver at
launch, m/s2

a∗ = characteristic acceleration, m/s2

C3 = launch energy, km/s2

c = exhaust velocity, m/s
c∗ = optimal exhaust velocity, m/s
f (C3) = launch-vehicle mass fraction
G = gravitational vector, m/s2

g = gravity constant defined as 9.8 m/s2

Isp = specific impulse, s
J1 = payload mass fraction
J2 = quadratic cost function for constant-power variable Isp

k1 = control variable that determines the power fraction
utilized by the spacecraft

k2 = path and time-dependent function that determines the
maximum power fraction as a function of the power
level at launch

m = spacecraft mass, kg
mprop = propellant mass, kg
mps = mass of power system, kg
m∗

prop = propellant mass fraction
ṁ = mass flow rate, kg/s
Pj = jet power, W
Pppu = power into power processing unit, W
r = position vector, m
T = thrust, N
t = time, s
tburn = engine on time, s
Z = power weighted burn time, s
Ż = current-power-to-initial-power utilization ratio
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α = power system’s specific mass, kg/W
β = jet-power-to-spacecraft-mass ratio, W/kg
β∗

0 = optimal initial jet-power-to-mass ratio, W/kg
� = power mass fraction of spacecraft
�V = velocity change imparted by engine, m/s
�V ∗ = normalized �V
ζ = launch mass utilization factor
η = propellant tank coefficient
ηengine = efficiency of electric propulsion engine
ηppu = efficiency of power processing unit
� = structural coefficient
τ = integration dummy variable
φ = tank and structural coefficient scaling factor
ψ = propellant and tank scaling factor

Subscripts and Superscripts

f = final state

0 = initial state
· = time derivative

I. Introduction

O PTIMIZATION of electric propulsion (EP) spacecraft systems
is an active and computationally difficult field of research. In

particular, optimization of a combined trajectory, power, and propul-
sion system is computationally intensive because either a set of
coupled two-point boundary-value problems has to be solved or a
nonlinear programming problem has to be solved while optimizing
over system-level parameters. Furthermore, if the power system’s
specific mass changes, the problem has to be resolved as the pre-
vious solution cannot necessarily be generalized. An alternate and
conceptually simpler solution is to map out the system parameter
space by computing a trajectory for every combination of Isp, power,
and C3. The brute force method is simple and robust, but requires
a significant amount of computational effort. Also, the brute force
method does not provide any insight into the problem of systems
optimization.

This paper focuses on maximizing the payload mass fraction
for various types of ideal EP engines to facilitate preliminary
trade studies. The types of EP systems analyzed are constant-
power variable Isp, solar-power variable Isp, constant-power con-
stant Isp, and solar-power constant Isp. The power system’s spe-
cific mass α is varied to see how it affects the engine parameters,
power level, propellant mass, and launch C3. The formulation in
this paper assumes the efficiency of the engine is constant and
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independent of Isp. The variables that are optimized are C3, Isp,
and Pj .

The most common trajectory optimizers maximize the final mass
or minimize the propellant mass for a given mission.1−4 Only op-
timizing the propellant mass can lead to an underutilization of the
spacecraft because the power system might be nonoptimal. Previ-
ous research has optimized the propulsion and power system,5−7 but
there has been limited focus on trade studies. This paper addresses
all four types of low-thrust systems and nondimensionalizes the cost
function. Nondimensionalizing allows for the solution to scale de-
pending on the requirements of the mission. Furthermore, the goal
of this paper is to facilitate trade studies instead of optimizing a
single design point.

The system parameters referred to in this paper are the spacecraft
optimization parameters C3, Isp, and Pj . The technological param-
eters are α, �, and η. The trade studies are conducted over α. The
technological parameters are the variables that the designer cannot
easily or directly control. Generally these variables are determined
by the current level of technology. The system parameters are the
variables that the spacecraft designer or mission designer has active
control over. While trade studies could also be conducted over η and
�, these two parameters have a weaker effect on the optimization
than α, and they can be estimated fairly easily.

II. Engine Models and Motivation
The large power demands of EP spacecraft make the power system

a significant fraction of the vehicle mass. The EP engines affect
the motion of the spacecraft through the acceleration term in the
equations of motion (1), where G is the gravity vector and a is the
thrust acceleration vector:

r̈ = G(r, t) + a(t) (1)

Because power is correlated to thrust, the power system has a direct
effect on the dynamics. We define a simple model of an EP engine
that relates the jet power to the thrust acceleration term in Eq. (1).
The jet power is defined as the power utilized by the engine that
results in thrust. The jet power can also be thought of as the power
after all efficiency losses have been taken into account. The thrust
acceleration is given as the thrust provided by the engine divided by
the mass of the spacecraft:

a = T/m (2)

The thrust is related to the jet power of the engine by Eq. (3):

T = 2Pj/c (3)

Pj = ηppuηengine Pppu (4)

More commonly, Isp instead of c is used, where the definition of Isp

is

Isp = c/g (5)

Isp is a measure of how fuel efficient an engine is. At a constant
power, as Isp increases (decreases) thrust and propellant consump-
tion decrease (increase). The mass flow rate of the engine is given
as

ṁ = −T/c = −2Pj

/
c2 (6)

Substituting these relationships into the acceleration equation, we
obtain

a(t) = 2Pj (t)/m(t)c(t) (7)

restating the mass

m(t) = m0 f (C3) −
∫ t

t0

ṁ(τ ) dτ = m0 f (C3) −
∫ t

t0

2Pj (τ )

c(τ )2
dτ

(8)

we find

a(t) = 2Pj (t)

/
c(t)

[
m0 f (C3) −

∫ t

t0

2Pj (τ )

c(τ )2
dt

]
(9)

For an ideal variable Isp engine an arbitrary acceleration can be de-
livered simply by increasing or decreasing the Isp to the appropriate
value.

The bounded-power constant Isp case assumes that the power is
limited and that the Isp is constant. For solar-powered missions,
the power varies with time and the distance from the sun and for
radioisotope-thermal-generator (RTG)-based missions the power
level varies with time. For this reason, a function k2, which is a
known function of position and time, is introduced, giving

Pj (r, t) = k2(r, t)Pj0 (10)

Additionally, at any given time the spacecraft might not utilize the
available power. For this reason, a second control variable k1 is
introduced. The variable k1 can vary with time and represents the
fraction of available power that is utilized by the engine. This gives

Pj (r, t) = k1(t)k2(r, t)Pj0 (11)

where

0 ≤ k1 ≤ 1 (12)

The control is k1 while k2 is a function of the power source. For
convenience we define the following states:

Ż = k1k2 (13)

Z(t) =
∫ t

t0

k1(τ )k2(τ, r) dτ (14)

This simple EP engine model captures most of the parameters that
affect the propellant mass.

III. Variable Isp

Variable Isp implies that the exhaust velocity can be modulated.
For an ideal variable Isp engine any acceleration can be delivered
simply by increasing or decreasing the Isp to the appropriate value.
If a variable Isp engine with a fixed C3 is used, only one optimal
trajectory has to be found, regardless of the technological factors, as
these factors simply scale the solution. If the C3 and the trajectory
are optimized, the solution will be different for each technological
parameter set.

In his classic text Marec8 shows that maximizing the payload is
equivalent to minimizing the integral of the acceleration squared J2

with the assumption of a constant-power, variable Isp, and a con-
stant C3. Prussing9 shows that an optimal trajectory using J2 as the
cost function must satisfy a fourth-order differential equation that is
solely a function of time and position. Prussing’s results make the
problem simpler to solve because the adjoint equations do not have
to be integrated; however, this reduction only exists if a constant-
power, variable Isp engine is used. The payload mass fraction J1 is
constructed by taking the final mass and subtracting the power sys-
tem mass, propellant tank mass, and structural mass, then dividing
by the launch vehicle’s zero C3 mass:

ψ = 1 + η (15)

φ = � + η (16)

J1 = mpayload

m0

= m f

m0

ψ − φ f (C3) − α
Pj0

m0

(17)

J2 =
∫ t f

t0

a(τ )2

2
dτ (18)

α = mps

Pj ηppu ηengine

(19)
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In Eq. (17) α is the power system’s specific mass. We make the usual
assumptions that the tank mass scales with the propellant mass, pa-
rameterized by the coefficient η and that the spacecraft structural
mass is a fraction of the launch mass, parameterized by the struc-
tural coefficient �. Here f (C3) is the launch-vehicle’s throw mass
fraction as a function of C3. We require f (0) = 1, which implies
that m0 is the throw mass of the launch vehicle for a zero C3. The
f (C3) function allows us to maximize the payload mass fraction
while taking into account launch-vehicle performance.

For the variable Isp case we use β as a state variable. We differ-
entiate β with respect to time and obtain

β = Pj (t)/m(t) (20)

β̇ = Ṗj/m − ṁ Pj

/
m2 (21)

For space propulsion systems the following relationships also apply:

T = ma = −ṁc (22)

T = 2Pj/c (23)

We substitute Eq. (22) and (23) and the definition of β into Eq. (21),
giving

β̇ = (Ṗj/Pj )β + a2/2 (24)

We solve Eq. (24) and find

β(t) = β0

Pj (t)

Pj (0)
+ Pj (t)

∫ t

t0

a(τ )2

2Pj (τ )
dτ (25)

If we assume that Pj can be written as Pj = k2(t, r)Pj0, then Eq. (25)
simplifies to

β(t) = k2(t, r)
k2(t0, r0)

[
β0 +

∫ t

t0

a(τ )2k2(t0, r0)

2k2(τ, r)
dτ

]
(26)

We define the integral portion of Eq. (26) as

�β =
∫ t

t0

a(τ )2k2(t0, r0)

2k2(τ, r)
dτ (27)

β f = k2(t f , r f )

k2(t0, r0)
(β0 + �β) (28)

We substitute Eq. (28) into the J1 cost function and obtain

J1 = f (C3)[β0/(β0 + �β)ψ − φ − αβ0] (29)

To maximize J1, we must minimize �β. However, for every value
of �β there exists a β∗

0 that will further maximize J1. We take the
partial of Eq. (29) with respect to β0 and set the resulting equation to
0 giving us the value of β0 that maximizes the original cost function
J1 as a function of �β:

β∗
0 =

√
�βψ/α − �β (30)

We substitute the value of β∗
0 into the original cost function giving

J1 = f (C3)
[(√

ψ −
√

α�β
)2 − φ

]
(31)

In its new form we see that the payload mass scales with the initial
mass, and for a constant C3 minimizing �β will maximize J1. If the
launch vehicle is included, then J1 must be minimized instead of
J2. We apply Marec’s assumption of a constant power, k2 = 1, and
obtain

�β =
∫ t f

t0

a(τ )2

2
dτ

which is the same as what Marec derived. Different power systems
can be analyzed, by changing the functional forms of k2. For exam-
ple, we can model the solar flux as (r0/r)2, which yields

�β =
∫ t f

t0

[r(τ )a(τ )]2

2r 2
0

dτ

Once a(t) is known, the exhaust velocity can be computed using the
relationship

c(t) = 2β(t)/a(t) (32)

Although Marec’s derivation is useful for constant-power systems,
such as nuclear reactors, it does not apply to solar- or RTG-
powered missions. In this section, we have recovered Marec’s orig-
inal result and generalized the result to encompass different power
systems.

IV. Bounded Power Constant-Isp

The use of a constant Isp fundamentally changes the structure
of the problem. Although the state variable β can still be used,
minimizing �β no longer maximizes the payload mass fraction
because the acceleration profile cannot be chosen arbitrarily. For
this reason, we abandon the preceding formulation and write the
payload mass as

ζ = 1 − � (33)

ψ = 1 + η (34)

J1 = f (C3)ζ − ψ(mprop/m0) − α(Pj/m0) (35)

where ζ represents the mass fraction available at launch. The pay-
load mass fraction is then given by

J1 = f (C3)ζ − ψm∗
prop − α 1

2
a0c f (C3) (36)

We differentiate the propellant mass fraction m∗
prop with respect to

time and obtain

ṁ∗
prop = ṁ/m0 = T/m0 c (37)

From the definition of Eq. (14), we reduce Eq. (37) to

ṁ∗
prop = k1k2(T0/m0 c) = k1k2(a0 f (C3)/c) = Ż( f (C3)a0/c)

(38)
We then integrate, yielding

m∗
prop = a0 f (C3)

c
Z f (39)

Z f =
∫ t f

t0

k1(t)k2(r, t) dt (40)

We obtain

J1 = f (C3)ζ − ψ[a0 f (C3)/c]Z f − α 1
2

f (C3)a0c (41)

by substituting Eq. (39) into Eq. (36). We solve for the optimal
exhaust velocity by taking the partial of J1 with respect to c and
setting the resulting equation to zero:

0 = ∂ J1

∂c
= f (C3)

(
ψ Z f

a0

c2
− α

1

2
a0

)
(42)

c∗ =
√

2ψ Z f

α
(43)

We reduce Eq. (41) to

J1 = f (C3)ζ − f (C3)a0

√
2ψαZ f (44)
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by substituting Eq. (43) into the payload mass fraction. We obtain

J1 = f (C3)(ζ − 2�) (45)

by replacing a0 with the power mass fraction �:

� = 1
2
αa0c (46)

Equation (45) shows that in order to maximize the payload mass
fraction we want to maximize f (C3) and minimize �. � is the mass
fraction of the spacecraft devoted to the power system. Unlike the
variable β, � is static and does not change with time. We find

αPj0

m0 f (C3)
= ψmprop

m0 f (C3)
= � (47)

by solving for the power mass fraction and propellant mass fraction.
We obtain

a(t) = Ż
√

(2ψ Z f /α){�/[ψ Z f − �Z(t)]} (48)

by substituting the new variables into Eq. (9). Now we integrate and
replace Z(t) with �V (t) and get

a(t) = Ż
2�

α�V f
ln

(
1

1 − �/ψ

)(
1

1 − �/ψ

)�V (t)/�V f

(49)

where �V f is the total �V the spacecraft delivers for the mission.
We define

�V ∗(t) = �V (t)/�V f (50)

a∗ = 1/�V f α (51)

where a∗ is the characteristic acceleration. We rewrite the acceler-
ation function with the new variables a∗ and �V ∗ and get

a(t) = k1k22�a∗ ln[ψ/(ψ − �)][ψ/(ψ − �)]�V ∗(t) (52)

˙�V ∗ = a(t)a∗α = k1k22�a∗2α ln[ψ/(ψ − �)][ψ/(ψ − �)]�V ∗(t)

(53)

c∗ = {a∗α ln[ψ/(ψ − �)]}−1 (54)

J = f (C3)(ζ − 2�) (55)

The final transformation removes the condition that �V (t f ) = �V f ;
instead, we have �V ∗(t f ) = 1 and �V ∗(0) = 0.

A. Constant-Power, Constant Isp

Constant-power, constant Isp represents a special case of the
bounded-power, constant Isp solution. The constant-power simpli-
fication works for nuclear electric propulsion (NEP) because these
systems tend to provide relatively constant power. The simplifying
assumption is that k1 = 1 when the thruster is on and k1 = 0 when
the thruster is off. We also assume that k2 = 1. We substitute k1 and
k2 = 1 and obtain

Z f = tburn f (56)

With the new assumptions, the optimal Isp is only a function of the
burn time. The optimal exhaust velocity10 for the constant-power,
constant Isp case is

c∗ =
√

2ψ tburn f/α (57)

We substitute the burn time into the acceleration function and find

a(t) = 2�a∗ ln[ψ/(ψ − �)]

1 − 2tburn(t)α�a∗2 ln[ψ/(ψ − �)]2
(58)

The total burn time is then given as

tburn f = {2αψa∗2 ln[ψ/(ψ − �)]2}−1 (59)

B. Solar-Power, Constant Isp

With the success of Deep Space One, other missions, such as
DAWN§, are taking advantage of solar electric propulsion (SEP).
This motivates the next analysis. Like the constant-power, constant
Isp analysis we assume that k1 = 1 or 0, but now we assume that k2

is only a function of the path. For SEP missions we generally find

k2 = (r0/r)2 (60)

because the solar flux follows a 1/r 2 law; more generally, k2 can
include other factors to take into account solar heating, solar degra-
dation, or minimum power conditions that can preclude the engine
from operating after a certain distance from the sun. We obtain

a(t) = (r0/r)22�a∗ ln[ψ/(ψ − �)][ψ/(ψ − �)]�V ∗(t) (61)

by substituting Eq. (60) into the equations for acceleration. This
provides no real reduction or simplifications because the variables
are now functions of the path.

V. Numerical Examples
Several example trade studies are computed to demonstrate the

utility and ease with which trade studies can be conducted. For
the NEP-based systems, an Interstellar Probe mission is used. The
technical goal of the Interstellar Probe mission is to travel beyond
the heliosphere within a reasonable time span. For the SEP-based
power systems, an Earth-to-Mars mission is used. The goal of the
Mars-based mission is to deliver as much payload as possible to
a Mars orbit in 0.5 years. For all of the examples, the phasing is
ignored, and the orbits are assumed to be coplaner. The Mars orbit
is assumed to be circular at 1.52 astronomical units (AU). The launch
vehicle selected for the Earth to Mars transfer is the Atlas V 401.
The launch vehicle for the Interstellar Probe mission is the Atlas V
551. The launch vehicle C3 curves were parameterized from NASA’s
Expendable Launch Vehicle Performance Estimation web site.¶ The
propellant tank coefficient and structural coefficient for all of the
examples are set to 0.1 and 0.05, respectively. Also, the power-
processing-unit efficiency and the engine efficiency are set to 0.95
and 0.75, respectively.

The algorithm used to solve the two-point boundary-value prob-
lem is a homotopy11-based method. First, the algorithm increases
the gravitational parameter from 0 to its full value. If SEP is used,
the algorithm increases n in Eq. (62) from 0 to 2, after the NEP
solution has been found with the gravitational parameter at its full
value:

k2 = (r0/r)n (62)

The algorithm is initialized by setting the gravity parameter to 0 and
solving the resulting problem, with the boundary conditions that the
spacecraft have 0 velocity at the final time for the Mars missions.
As the gravitational parameter is increased, the velocity boundary
conditions are also increased until they match their correct value.
For the Interstellar Probe mission, the final velocity is optimized.
After a solution is found with the correct gravitational parameter
and power system, the algorithm steps through the α space. The
current solution is used as an initial guess for the next value of α.

Figures 1–4 are the optimal mass fractions of the various systems.
As α increases, the payload mass fraction decreases. Decreasing α
always increases the payload mass fraction. The figures quantify the
actual benefit. From the figures, we can see that the power system
mass fraction does not monotonically increase or decrease with α.

For the constant Isp cases, we need to look at the optimal Isp to
quantify the technology level. For the SEP constant Isp Earth to Mars
mission, Fig. 5 is the optimal Isp and C3 as a function of α. We see
that the optimal Isp and C3 are in the range of current technology
and that as α increases the optimal solution requires a larger C3,
which indicates the importance of the launch vehicle to the optimal

§Data available online at http://dawn.jpl.nasa.gov/.
¶Data available online at http://elvperf.ksc.nasa.gov/elvMap/index.html.
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Fig. 1 Mass fraction distribution for the SEP variable Isp Mars
mission.

Fig. 2 Mass fraction distribution for the variable Isp Interstellar Probe
mission. The time to 150 AU is constrained to 15 years.

Fig. 3 Mass fractions of the various systems for the Earth-to-Mars
SEP constant Isp case.

Fig. 4 Mass fractions of the various systems for the Interstellar Probe
mission. The program terminated when the payload mass fraction is
less than 0.01.

Fig. 5 C3 and Isp as a function of α for an Earth-to-Mars transfer in
0.5 years.

Fig. 6 Isp and C3 as a function of α for the constant Isp Interstellar
Probe mission.

solution. Figure 6 is the optimal Isp and C3 as a function of α for
the NEP constant Isp Interstellar Probe mission. Similar to the SEP
constant Isp case, the optimal Isp decreases, while the optimal C3

increases as α increases. However, the range of Isp are not in the
range of current ion engines. The Isp range would most likely require
the use of new propellants.

The total run time for each trade study varies from about 2–5
mins. The trade study program is written in MATLAB® and is run
on a 1.60-GHz Pentium M processor.

VI. Conclusions
This paper incorporates the propulsion system and the launch ve-

hicle into the cost function transforming the traditional problem of
propellant minimization into a true systems optimization problem.
The examples serve to show that trade studies can be conducted with
relative ease and with little computational effort. Several example
trade studies are done to show how the various system elements
vary as a function of α. Nondimensionalizing the masses makes the
procedure general and allows the solutions to scale. We see that vari-
able Isp and constant Isp propulsion systems lead to different cost
functions. Once a trade study is conducted, explicit technological
limits can be found as a function of the mission. This allows a mis-
sion designer to know exactly what technological level is required
before a mission is feasible.
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