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This paper presents a general statistical treatment for power flow analysis in a complex structure. The
nominal power flow is computed using the characteristic constraint (CC) modes of the component structures.
These CC modes are built from component mode synthesis (CMS) of finite element models, and they form a
highly-reduced order basis for capturing the motion of the interface between components — and thus the power
flow. The power flow statistics are then calculated over an ensemble of systems due to the variation of structural
system parameters. Each modal response is expanded in a basis of quadrature polynomials or locally linear
interpolation (LLI) functions in these uncertain parameters. The system equations for the reduced order CMS
model with uncertainties are derived using Galerkin's method. These equations have the same form as the
nominal power flow equations, but the number of equations is increased by a factor equal to the order of the
polynomials (when using quadrature polynomials) or the number of nodes in the parameter space (when using
LLI functions). Thus, the ensemble-averaged power flow can be calculated by solving this new set of equations,
instead of using Monte Carlo simulations. A cantilever plate and a L-shaped plate are used as example structures
for the demonstration of these statistical approximations. In general, this statistical treatment provides efficient
and accurate modeling of parameter uncertainties, which is critical for mid-frequency vibration analysis.

Introduction
In the mid- to high- frequency range, vibration response

becomes both expensive to compute and highly sensitive
to uncertain physical details of the system. Moreover,
many processes that excite noise and vibration are sta-
tistical or random in nature. Statistical energy analysis
(SEA),1"3 a widely-used vibration analysis method in the
high-frequency range, addresses these challenges by tak-
ing a statistical approach to power flow analysis. Power
flow is a scalar measurement of the vibration energy trans-
mitted from one part of the structure to the other parts of
the structure. It is the core concept for SEA to analyze
the energy flow among the component structures. How-
ever, SEA becomes less accurate in cases of intermediate
or low modal density, which occur in the mid-frequency
range. On the other hand, a general statistical treatment
based on finite element model (FEM) often employs Monte
Carlo simulation techniques to evaluate the statistical mo-
ments of the response and power flow. While this approach
is versatile and accurate, it incurs prohibitive computational
cost. Therefore, the objective of this paper is to present an
efficient alternative for statistical power flow analysis by
improving upon these methods.

A characteristic-mode-based power flow analysis
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method has been presented the authors.4 This paper adds a
statistical perspective to the nominal power flow equations
shown in Ref. 4. The nominal power flow equations were
formulated from a component mode synthesis (CMS)5'6
approach. In CMS, a component model, such as an FEM,
is constructed and analyzed separately for each component
structure. The Craig-Bampton method of CMS provides
an excellent framework for predicting power flow, since
the Craig-Bampton constraint modes capture fully the
motion of the interface between component structures.
However, since there is necessarily one constraint mode
for each FEM degree of freedom of the interface, the cost
of this CMS method is still prohibitive for a sufficiently
fine mesh. Consequently, a secondary modal analysis
reduction technique (SMART) was developed to further
reduce the size of the CMS model. For the purpose of
predicting power flow, the SMART approach may be
applied to the interface between components. In particular,
an eigenanalysis is performed on the constraint-mode
partitions of the CMS mass and stiffness matrices. The
resultant eigenvectors are called characteristic constraint
(CC) modes.7 Reference 4 showed that the power flow is
accurately calculated by this reduced-order CMS model
with relatively few CC modes.

There are always uncertainties associated with the math-
ematical modeling of the structural behavior, which result
from the numerous idealizations and assumptions made
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when modeling the geometry, the boundary conditions, and
the constitutive behavior of the materials involved. Struc-
tural systems with uncertainty are usually investigated by
stochastic approaches, where the uncertain parameters are
described through a joint probability density function (pdf).
Monte Carlo simulation is often employed to provide accu-
rate results for the statistical moments that require evaluat-
ing multiple integrals over the uncertain parameter space.
However, in general, the Monte Carlo method is computa-
tionally expensive. An alternative integration technique is
Gaussian quadratures or, in multi-dimensional cases, cuba-
tures. Some previous studies8'9 employed weighted resid-
ual methods with those quadrature polynomials to inves-
tigate the response variability of general dynamic systems
due to the uncertain system parameters. In this paper, this
method is employed to compute the ensemble-averaged
power flow based on the reduced-order CMS model. In
addition, an extension that uses locally linear interpolation
functions as a basis to approximate the modal responses
is also introduced. These new formulations are seen to
accommodate different sources of uncertainties as well as
provide much faster convergence of power flow statistics
compared to Monte Carlo simulations.

This paper is organized as follows. In the second sec-
tion, the nominal reduced order model is presented. In the
third section, the ensemble-averaged power flow is defined.
In the fourth section, the quadrature polynomials are intro-
duced. Then Galerkin's method is applied to the reduced-
order CMS model using quadrature polynomials as a basis.
Next, the matrix equation for the ensemble-averaged power
flow is formulated, and numerical examples are shown.
The first example is the cantilever plate system shown in
Ref. 4 and 7, in which the variations of component modal
stiffnesses are considered. In the second example, the vari-
ation of a physical parameter is considered and its effect
on power flow is studied for a L-shaped plate. In the fifth
section, the ensemble-averaged power flow is formulated
using Galerkin's method with locally linear interpolation
functions. This approximation is demonstrated numerically
by examining the L-shaped plate with three random phys-
ical parameters. This work is then summarized in the final
section.

Nominal Reduced Order Model
The nominal model (i.e., without uncertainties) is briefly

described in this section in order to provide a platform
for deriving the statistical approximations. In this paper,
the finite element model (FEM) of the full structure is
divided into separate component FEMs. The mass and
stiffness matrices from each component FEM are first par-
titioned into the interface submatrices, the interior (omitted
DOF) submatrices, and their coupling submatrices. Then,
the Craig-Bampton method of component mode synthesis
(CMS) is used to generate a reduced order model of the
global structure. The Craig-Bampton method utilizes two
sets of substructure modes: component normal (N) modes,
<frf, and constraint (C) modes, <l>f, where i denotes the

i-th component structure. The component FEM matrices
are transformed by 4>f^ and <I>f such that only the compo-
nent modal DOF and the interface DOF are retained. The
retained DOF are then used to couple respectively the mass
and stiffness matrices of the connected component struc-
tures into those of the entire structure. This synthesis yields
the modal velocity vector, v°MS, of the synthesized sys-
tem to be partitioned as

v°M5 = I v^

where nss is the number of substructures contained in
the global structure. The corresponding synthesized CMS
mass and stiffness matrices have the following forms

CN
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0
0
0

(2)

(3)

where component modal matrices rnf^ and kf, for i =
1,2,..., nss, are diagonalized and their sizes depend on
the number of modes one selects for the frequency range
of interest. However, the number of constraint-mode DOF,
or the size of matrices, m° and kc, is equal to the num-
ber of DOF in the interface of the FEM, so it is determined
by the finite element mesh. If the mesh is fine in the inter-
face region, then the constraint-mode partitions of the CMS
matrices may be relatively large. Hence, the authors7 pro-
posed a technique to further reduce the CMS matrices by
performing a modal analysis on the constraint-mode DOF

^n =
for n = 1,2,3,... (4)

These eigenvectors, t/>n, may be transformed into the finite
element DOF for component structure i using the following
transformation

where \£ = [t/^ t/>2 • • • /0nCC] is a selected set of the in-
terface eigenvectors with ncc indicating the number of the
selected eigenvectors. ncc is relatively small compared to
the number of the constraint-mode DOF. /3f is the ma-
trix that maps the global (system) interface DOF, vc, back
to the local (subsystem i) DOF, vf. Furthermore, 4>f °
are referred to as the characteristic constraint (CC) modes,
because they represent the characteristic physical motion
associated with the constraint modes. The benefit of us-
ing CC modes is shown in the efficient computation of the
power flow through the interface between the connected
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component structures. Relatively few CC-mode DOF are
employed in this calculation compared to the number of
interface-node DOF in the FEM.

Finally, the CMS matrices can be transformed by CC
modes such that the reduced order CMS matrices can be
obtained with the same form4 as Eqs. (2) and (3) and the
unknown velocity vector \-ROM now is partitioned as

VROM = F VCCT
 VJ (6)

where superscript CC indicates that the partition is associ-
ated with the CC modes. The equations of motion of the
reduced order CMS model (ROM) can be expressed by

•i- [-u2MROM + (1 + jn) KROM] VROM = fROM

(7)
The mass matrix, MROM, the stiffness matrix, KROM,
and the applied force vector, fROM, can be explicitly writ-
ten as

MROM

™CN ™<m m:n33

0
0

0

0 0
0 kf 0
0 0 k^

0 m^*.L*.nSS

0
0
0

0 0

fROM _ I" fCCT fNT

where

(8)

(9)

C ]T do)

and

(11)

(12)

The partitions of the ROM matrices can be used to formu-
late the power flow. The power flowing out of component
structure i at a discrete frequency u through the interface
with other directly connected component structures can be
defined by

= - Hm [Re{t|(a;;r)*vf
(13)

where E± [ ] denotes the expected value with respect to
time, t^ is the traction force vector, and vp is the corre-
sponding velocity vector on the interface. The power flow
results are formulated with respect to the CC-mode degrees
of freedom (DOF) instead of the much larger set of inter-
face DOF. The detailed derivations were presented by the
authors in Ref. 4. An alternative formulation that may yield

efficient computation is achieved by projecting the power
flow onto the global modes of the ROM. First, an eigen-
analysis is performed

(14)

where the eigenmatrix T can be partitioned as

'£ ]T d5)r= Y
The mass and stiffness matrices can be diagonalized by us-
ing F. As a result, Eq. (7) can be transformed to

jo;
] v = f (16)

where

M = TTMROMT, K = TTKROMT, f = T TfROM

(17)
Considering time-harmonic excitation, the power flow can
be formulated in terms of v

(18)

where Cj is the damping of substructure i projected onto
the global modes of the ROM

Ci = 7
CC T Re [zf °] 7CC + 7? T Re [zf ] 7f (19)

where zfc is the impedance matrix of substructure i as-
sociated with CC modes, and zf the impedance matrix of
substructure i associated with component modes. Further-
more, {{is given by

f. _
X2 —— ff + 7C°T^ (20)

where fpc is the applied force on substructure i associated
with CC modes.

Approximations of Ensemble-Averaged
Power Flow

The uncertainties associated with the system require
non-deterministic modeling of the system parameters in
order to predict the statistics of the forced response. It
is assumed that the system is represented by an ensem-
ble — a population of similar systems with statistically-
described variations in properties. A set of uncorrelated
random variables are used to quantify the uncertainties as-
sociated with the discrete parameters of the ROM. There-
fore, the ensemble-averaged power flow spectral density,
E0 [Hi(a;; 0)], relative to this uncorrelated set of random
variables, 0S, for 5 = 1,2,..., n0, is given by

-

t4(u;;0;T)'v?(u;;0;:r)]}](21)
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where 0 = [ #1
E0 [ - ] indicates

#2
rp (

<9ne ] and the operator Galerkin's Method

I f [ ' ] f [ p ( 0 . )Je2J0l s=l

where p(6s] is the probability density function (pdf) of
6S. The challenge in evaluating the ensemble average thus
becomes performing multiple integrals over the parame-
ter space. Furthermore, EQ [t*vf ] in Eq. (21) can be
expanded in terms of CC-mode velocity vector vcc, for

*

-Ee [ff c cc (22)

A general numerical integration scheme other than Monte
Carlo methods is needed for the evaluation of the three
terms on the right-hand-side of Eq. (22).

Galerkin's Method with Quadrature
Polynomials

Gaussian Quadratures
The Gaussian quadrature method is a commonly used

numerical technique to approximate an integral. The treat-
ment of Gaussian quadratures consists in finding a set of
polynomials, Pi (0S), for i = 1,2,.. ., satisfying the or-
thogonality relationship over a weight function W (Os)

L (23)

where Pj and Pj are polynomials of order i and j, respec-
tively. If the weight function is given by

W ((9.) = 1 for - 1< 0. < 1 (24)

the normalized Legendre polynomials will satisfy Eq. (23),
and they are defined as

This set of polynomials also satisfy the following recur-
rence relation

9sPi (0.) = LiPi-i (0,) + (08) (25)

where
Li = , (26)

v/(2i-l)(2i-f 1)
This choice of weight function is equivalent to assigning to
each random variable Os a uniformly distributed pdf over
the range [—1,1]. Some other classical, well-studied, or-
thogonal polynomials are associated with different pdfs to
enable fast convergence of the integration. For example,
Hermite polynomials are suited for a normally distributed
pdf.9

The quadrature rules suggest that, for a given pdf, one
can find a corresponding set of orthogonal polynomials as
a basis to approximate the unknowns — modal velocities
— in the ROM matrix equations. By applying Galerkin's
method, the integral will be reduced to an algebraic matrix
equation, and then the modal velocities can be solved in
terms of the random parameters at each discrete frequency.
As a result, the statistical moments of power flow can be
evaluated using these modal velocities.

The equation of motion of the ROM, Eq. (7), with the
random parameters 9 can be cast in the form

; 0) = fa (u) for a = 1, 2, ..., nROM

b=l
(27)

where vb (uj\ 6) is the &-th component of the velocity vector
VROM . ya (tj) is the a-th component of the applied force
vector fROMi and zab (a;; 6) is an impedance component
of the ROM, which can be explicitly expressed by

; 0) = [- (0) + (1+ jrj) kab (0)} (28)

where mab is an element of the mass matrix ~M.ROM and
kab is an element of the stiffness matrix K^OM. Equa-
tion (27) is general and does not show the special form
of the ROM, where some of the impedance components
are null. This general formulation is intended to accom-
modate different sources of uncertainty from a variety of
cases. In addition, quadratic polynomial approximation is
used to represent the impedance components

ne

Zab(u', 9) = ZQab (^) + / ^ ^la&r (^) #r
r=l

r=l s=l

Polynomials of higher degree or cubic splines may be desir-
able to approximate more dramatic variations. Generally,
it should be noted that the approximation in terms of 9
cannot be derived analytically from an arbitrary FEM. The
coefficients in Eq. (29) are usually obtained numerically by
least-square fit. This process is itself computationally in-
tensive. Consequently, it would be a trade-off to obtain an
approximation with only low degrees of polynomials if the
system varies smoothly due to the uncertainty. Considering
a uniformly distributed pdf, each modal velocity Vb (a;; 9)
is approximated by Legendre polynomials as

vb (a;; 9) = £
0<|l|<nP

for 6=l,2,...,n*OM

8=1

where

(30)

(31)
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np is the order of approximation in the random space of
variables 0. It can be shown that the number of unknown
coefficients, Wbili2...i e (cj), in the approximation is8

(32)

After substituting Eq. (30) for vb and Eq. (29) for zab in
Eq. (27), one can apply Galerkin's method due to the or-
thogonality of Legendre polynomials. With the help of
Eqs. (23) and (25), Eq. (27) can be reduced to

6=1 r=l

r=l s=l

r=l

for a = 1,2, ...,nROM (33)
s=l

where LI are the coefficients given by Eq. (26). The un-
knowns Wbili2...i e can be rearranged into an nROM x nd

dimensional column vector w, which can be described by
its CC-mode and component partitions as

wcc- w{ .N'1w = w~~ wy w2

Eq. (33) can be put in a matrix form as

Zw = f

(34)

(35)

The components of the matrix Z correspond to all the
impedance coefficients on the left-hand-side of Eq. (33)
and can be partitioned as

z =
0
0

where zcc (u) = SUli ^? ° M is sum of me CC-mode
partitions of the component impedances. The components

of the column vector f correspond to the modal forces on
the right-hand-side of Eq. (33) and can be written as

_ r fccj
(37)

where fcc = ]Ci==i ^?° is sum of the CC-mode parti-
tions of the external component forces. Using the partitions
shown in Eq. (36) and Eq. (37), one is now able to approx-
imate the right-hand-side of Eq. (22) as follows

Ee [vco' (u; 6) z?c' (u,; 0) vcc (u,; 9)]

= 2~nSwcc* (w)zfc* (w)wccf(w) (38)

f (a;; 9) mfN* (9) vcc (w; 9)]

= -2-n"juwf (LJ) (39)

(40)

Furthermore, solving for the unknowns, w, from Eq. (35)
and substituting them into Eqs. (38), (39), and (40), one
can obtain the ensemble-averaged power flow as

Ee pi to 9)} = tr JRe [§<Y] } - tr

where

C^Re^+cAnf^zf-1

Y-fEf^+^mrzf-1^
, -i

(41)

(42)

(43)

a=l a=l

(45)
i—l

Variation of Modal Parameters
The cantilever rectangular plate shown in Fig. 1 is now

used as an example structure. For the purpose of this study,
this structure is considered to be made of two directly con-
nected substructures — Plate 1 and Plate 2. The FEM and
the CMS models were built and the frequencies were care-
fully examined in Ref. 7. In addition, the deterministic
frequency response of power flow in this structure has been
investigated in Ref. 4.

Now suppose that each substructure is subjected to mod-
eling errors of material properties. In addition, component
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16 in 8in

12 in Plate 1 Plate 2

\\\x\\\\\\\x\\\\\x\\\\\\\\\\\
Fig. 1 A cantilever rectangular plate partitioned into two
substructures. The dimensions and material properties are
the same as those used in Ref.:10 2024-T3 aluminum, Young's
modulus E = 10. 5x1 06 psi, Poisson's ratio v = 0.33, density
p = 0.101 lb/in3, thickness t = 0.125 in.

modes in the mid- to high-frequency range may be more
sensitive to these modeling errors. Consequently, the com-
ponent modal stiffnesses of each substructure are assumed
to have uncertain variations from the nominal case. These
uncertainties are incorporated into the model by assum-
ing that each component mode group is associated with
a random variable with uniform distribution. Thus the
impedances in Eq. (27) are

__ n tr\ . _ n

kab + ———

(46)
where mab and kab are the mass and stiffness coefficients,
77 is the damping coefficient and Siab is given by

c, if nc

0, otherwise
<nc

(47)
where ncc is the number of retained CC modes and HJ is the
number of retained component modes for the jth substruc-
ture. Two cases of variation strength are considered so that
c is chosen to be 0.05\/3 and O.lOv^, which correspond
to standard deviations equal to 5% and 10% of their nom-
inal values. For both cases, the ensemble-averaged power
flow from Plate 1 to Plate 2 is calculated while Plate 1 is
subjected to rain-on-the-roof excitation (the excitation that
is spatially uncorrelated). The numerical calculation is car-
ried out by using Monte Carlo simulations and two other
approximations using Eq. (41) with polynomials of order 3
and order 5 (np = 3 and 5 in Eq. (30)). The Monte Carlo
results are calculated from the power flow equation4 with
10,000 realizations, which is more than the number needed
for the convergence of the solution. Thus the Monte Carlo
results are used here as a benchmark for comparing other
approximations.

Figure 2 shows that for e — 0.05\/3, the results using
polynomials of order 3 are in good agreement with the
Monte Carlo results. However, in the case e — 0.10\/3,
as shown in Fig. 3, this approximation could not provide
accurate results for this larger range of uncertainties. On
the other hand, the Monte Carlo results in Fig. 3 are well
approximated by using polynomials of order 5. Since using

higher-order polynomials results in finer resolution over
the random parameter space, more dramatic changes in the
modal response can be captured using the approximations
with higher- order polynomials.

102

10'1

400 500
Frequency (Hz)

Fig. 2 The ensemble-averaged power flow from Plate 1 to
Plate 2 calculated by Monte Carlo methods and the polyno-
mial approximations. The standard deviations of component
modal stiffnesses are equal to 5% of their nominal values.

t
fid-

300 400 500
Frequency (Hz)

Fig. 3 The ensemble-averaged power flow from Plate 1 to
Plate 2 calculated by Monte Carlo methods and the polyno-
mial approximations. The standard deviations of component
modal stiffnesses are equal to 10% of their nominal values.

Variation of Physical Parameters
The calculation of Y in Eq. (43) induces considerable

amount of computation effort since it requires inverting a
full matrix. Thus, the statistical approximation is now ap-
plied to an alternative power flow formulation that uses a
basis of global modes of the ROM. Even after the expan-
sion resulting from Galerkin's method, all the coupling el-
ements in the system impedance matrix are still very close
to the diagonal, resulting in a banded matrix. As a result,
this new formulation yields more reduction of computation
cost.

If the platform is now chosen to be Eq. (16) instead of
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Eq. (7), then Eq. (27) can be reduced to

za (co; 9) vs (u; 9) = fs (w; 0) for s = 1,.., nROM

(48)
where z89 for s = 1,2, ...,nR°M

9 are the diagonal ele-
ments of the impedance matrix Z

(49)

where K and M are given by Eq. (17). When the uncer-
tain parameters 0 are incorporated into this platform, vs is
approximated by polynomials in terms of 0 with unknown
coefficients that can be re-ordered to be w8. By applying
Galerkin's method with Legendre polynomials to Eq. (48),
an equation similar to Eq. (33) may be derived and put into
matrix form:

where f^ (a;) is the expanded force vector and Ci
the expanded damping matrix.

Plate 1

(u) is

zsws = fs for s = 1,2,..., nROM (50)

Then the unknown vectors, ws, can be solved from
Eq. (50). Next, Eq. (18) can be expressed as

nROM

n*(w; 0) = - ]T Re [/<>; 0) * v.(u; 0)}
s=l

~\ E £ er(w;0)*$r.(w;0)e.(w;
r=l s=l

where Ji89 Cirs, and vs are components of matrices f^,
Ct, and vector v, respectively. Furthermore, the ensemble-
averaged power flow is represented by

Re

n n -

-5 £ £2 T^i T^i Jn
Cr8(u>',0)va(u]0)(Kl (52)

where fi denotes the domain_of 0. Next, the following
assumptions are considered: fis(u] 0) and Cirs(u', 0) are
approximated in terms of 0 using quadratic polynomials;
and every component of 0 is uniformly distributed over the
range [—1,1]. As a result, the modal velocities vs(u] 0)
can be approximated by Legendre polynomials as

VS (U' 0) =
0<|l|<nP

for a= l,2y...,nflOM

a=l

(53)

Analytical solutions of Eq. (52) can be obtained by apply-
ing Eqs. (23) and (25). In the end, the ensemble-averaged
power flow can be expressed in terms of ws (u) as

Fig. 4 The finite element mesh of the L-shaped plate. The di-
mensions and material properties are: Young's modulus E =
2.9 x 107 psi, Poisson's ratio v - 0.3, density p = 7.324 x 10~4

lb/in3, thickness t = 0.4 in.

The second application considers the variations of phys-
ical parameters of the system and their effects on the
ensemble-averaged response of power flow. The example
structure is the L-shaped plate that consists of two rectan-
gular plates as shown in Fig. 4. Each plate is considered
as a substructure. A variety of uncertainties may be as-
sociated with this structure, such as uncertainties in the
connection angle or the thicknesses of the plates. A finite
element model of this plate was constructed using NAS-
TRAN quadrilateral plate elements (element CQUAD4, 4
nodes/element, 6 DOF/node). The finite element mesh
yields 4158 DOF and an upper frequency limit of approxi-
mately 1000 Hz.

The thickness of Plate 1 is considered to be uncertain
in this case study. The variation from the nominal value
of the thickness is assumed to be associated with a uni-
formly distributed random parameter. Three finite element
models are used such that the thickness of Plate 1 varies
from -10% to +10% of the nominal thickness. After the
global modal impedances and forces are computed for each
FEM, quadratic polynomial approximations in terms of the
random parameter 0, such as Eq. (29), are obtained by a
least-square fit. For modal quantities in high modal density
regions, this approximation is coarse so that a cubic spline
approximation may be more suitable. However, for very
large systems, this process, which includes rebuilding the
FEM, could require considerable computational effort.

Plate 2 is excited along the free edge lengthwise. The ex-
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Fig. 5 Nominal and ensemble-averaged power flow from
Plate 2 to Plate 1 of the L-shaped plate system.
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results. It is seen from Fig. 6 that the polynomial approx-
imations have slower convergence around some resonant
frequencies and at frequencies above 400 Hz. The same
phenomenon was also seen in Fig. 3 in the previous sec-
tion. Even though the approximation with polynomials
of order 20 is needed to closely match the Monte Carlo
results, the approximation with polynomials of order 5 pro-
vides a very good estimate of the ensemble-averaged power
flow throughout the frequency range shown. Yet this low-
order approximation yields at least two orders of magnitude
fewer arithmetic operations relative to the Monte Carlo
simulations. When the order of approximation is increased
to 20, the computation time is still one order of magnitude
less than that of Monte Carlo simulations.

Galerkin's Method with Locally Linear
Interpolation Functions

The nominal power flow can be formulated using the CC
modes or the global modes of the ROM. As mentioned
in the previous section, the formulation using the global
modes of the ROM is more suitable for deriving statisti-
cal approximations since the resultant approximations will
be more computationally efficient. Therefore, the nominal
power flow obtained from Eq. (18) and its correspond-
ing system equations of motion, Eq. (16), are considered
here. The modal velocities are approximated by a set of
piecewise (locally-based) functions in place of the globally
orthogonal polynomials. This results in a finite-element-
like discretization over the random parameter space. This
method will not necessarily yield faster convergence of the
solution, but it permits the use of low-degree polynomials
as the basis functions and thus allows a simpler and more
general implementation.

Let fi be the domain of 9. It is assumed that each compo-
nent of 9 is only probable within the range [—1,1] such that
0 is a hypercube. Any bounded pdf can be assigned to this
random variable set 9. Furthermore, fi is assumed to con-
sist of subdomains fie such that f) = U"=i ^e» where nE

indicates the number of elements (subdomains) that consti-
tutes the entire parameter space. It is assumed that £&, a
component of the velocity vector v, may be approximated

0 100 200 300 400 500 600
Frequency (Hz)

Fig. 6 Comparisons of the ensemble-averaged power flow
calculated by Monte Carlo simulations and the approxima-
tions using Legendre polynomials of order 5 and order 20.
The thickness of Plate 1 is varied from -10% to 10% of its
nominal value.

ternal excitation is considered to be distributed sinusoidal
point forces, of which the phases are assigned randomly so
as to excite a large number of modes. The nominal value
of power flow from Plate 2 to Plate 1 is first calculated and
shown in Fig. 5. The ensemble-averaged power flow is also
shown in Fig. 5 with 2000 realizations. This result has con-
verged such that it is used as a benchmark for comparing
other approximations. As can be seen in Fig. 5, the mean
response is vastly different from the nominal response for
frequencies above about 350 Hz. The implication is that
the modes in this frequency range are more sensitive to un-
certainties and polynomials of higher order are needed to
capture the dramatic change.

Now the global modal velocities are approximated by
Legendre polynomials of order 5 and 20, and then the
ensemble-averaged power flow is calculated by Eq. (54).
These results are compared in Fig. 6 to the Monte Carlo

as

vb (u; 9) = N (6) a6 (w) = (55)
e=l

where N (9) is the global (the entire random parameter
space) shape function while Ne (£) is the local shape func-
tion, with £ representing the local coordinates; a& and a^
are the corresponding global and local nodal coordinates,
which are the unknowns to be solved for. Considering a
simple case with three random variables such that

0=[0i 03 (56)
The random parameter space could be meshed by 8-node
"brick" elements and Ne (£) could be represented by

Ne (0 = [ Nf (57)
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which is a vector of linear interpolation functions such that

1
Nf = o (1 + «tifi) (1 + 3*26) (1 + Stsfs) (58)8

where Sij is a component of the matrix s such that

s =
- 1 1 - 1 1 - 1 1 - 1 1
- 1 - 1 1 1 - 1 - 1 1 1
- 1 - 1 - 1 - 1 1 1 1 1

(59)
For cases with more than three random variables, hyper-
cube elements may be used and the vector of linear inter-
polation functions can be readily extended to higher dimen-
sions. First, Galerkin's method is applied to Eq. (48) with
the provided shape function N (0), yielding:

L P(0)N(efzb( )\ 0) N (6>) a6 (w) dfl

= I,...nROM (60)

Next, noting that a&(u;) is a constant with respect to the
integration, it is taken out of the integral on the left-hand
side of Eq. (60). This integral is then expressed as the sum
of integrals over the subdomains

L p (0) N (0)T z6 (w; 6} N (0) dft

dfl

NSNS

symm NSNS

Thus, the modal impedance, zt, is discretized by Eq. (61),
and the integrations of each element impedance in Eq. (61)
are performed numerically by applying efficient Gaussian
Quadrature schemes. Similarly, the right-hand side of
Eq. (60) is given by

L
JVJ

Hence, Eq. (60) can be cast into the matrix form

fb for&-l,2,. . . ,n j R O M (63)

where zb is the impedance matrix for which the elements
are obtained from Eq. (61), and f is the force vector for
which the elements are given from Eq. (62). FromEq. (51),
the ensemble-averaged power flow is now expressed by

2
Re

ROM

- E E2 ~ ^

= \ E

6=1 c=l

n
KOM

ac

1

= 9 S Re[^M*a6M]
6=1
^ROM ROM

^ln U

6=1 c=l

where fib (u) and C^c (<*>) are defined by

ac

N(0) T

(64)

(65)

(66)

These integrals are evaluated by estimating the element-
wise integrals numerically, like the formulations used in
Eq. (61) and (62). With a&(cj) obtained as the solution to
Eq. (63), the ensemble-averaged power flow can then be
calculated from Eq. (64).

The L-shaped plate considered in the previous section is
now used for numerical demonstration of this statistical ap-
proximation. The thicknesses of Plate 1 and Plate 2 as well
as the connection angle between two plates are now consid-
ered to be uncertain. Thus, these three physical system pa-
rameters are associated with three independent, uniformly-
distributed, random perturbations, such that Eq. (56) is as-
sumed. In Eq. (56), 9i is associated with the variation of
the thickness of Plate 1, 62 is associated with that of Plate
2, and #3 is associated with variation of the connection an-
gle. It is assumed that the thicknesses of Plate 1 and Plate
2 vary from their nominal values by ±10%, while the con-
nection angle varies from its nominal value (90 degrees) by
±20%.

In order to evaluate the ensemble-averaged power flow
from Plate 2 to Plate 1 by using Eq. (64), the descriptions
of fib(u] 0) and Cibc(u] 0) in terms of 0 are supposed to
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10°

300 400 500
Frequency (Hz)

Fig. 7 Comparisons of the ensemble-averaged power flow
calculated by Monte Carlo simulations and the approximation
using locally linear interpolation functions with the random
parameter space meshed by 8 x 8 x 8 elements. The thick-
nesses of Plate 1 and Plate 2 are varied from -10% to 10%
of their nominal values, while the connection angle is varied
from -20% to 20% of its nominal value.

be known a priori, such that Eqs. (65) and (66) can be eval-
uated. As mentioned previously, the element-wise integra-
tions of Eqs. (65) and (66) are performed by using Gaussian
Quadrature methods, in which discrete data points of the in-
tegrands are needed. The discrete data points of fn>(<jj; 0)
and Cibc(w, Q] are obtained by interpolating the data from
125 FEMs of this varying system. Moreover, in Eq. (64),
the number of DOF of the ROM is fixed at 83, which pro-
vides accurate results up to 800 Hz for the power flow in
the nominal system.

Figure 7 shows the results of the ensemble-averaged
power flow considering the variations of the three physical
parameters. The excitation is a sinusoidal force distributed
along an edge of Plate 2 as in the previous case. When
applying the approximation using locally linear interpola-
tion (LLI) functions, or Eq. (64), the parameter domain
is divided into 8 x 8 x 8 cube elements. In Fig. 7, it is
seen that the results from the LLI approximation closely
match those from Monte Carlo simulations using 1,000 re-
alizations. Since these results have clearly converged, the
sensitivities of the system relative to the variations of the
parameters can be further examined. Now based on this
system set-up, 63 is fixed at zero such that the only random
parameters are 0\ and #2 • The ensemble-averaged power
flow of this case is shown in Fig. 8. Next, 6\ and 9% are
alternately fixed at zero, and the power flow results are
also shown in Fig. 8. The distributions of total transmit-
ted power in the frequency range of [0,800] Hz for these
three cases are shown in Fig. 9. These sensitivity informa-
tion can be readily retrieved from this approximation. Plate
1 and Plate 2 are nominally similar, so that power flow is
strongest when the thicknesses are identical. These results
agree with the findings of Ref. 11. Furthermore, this sys-
tem is less sensitive to small variations in the connection
angle when the nominal connection angle is 90 degrees, as

0 100 200 300 400 500 600 700 800
Frequency (Hz)

Fig. 8 Frequency response of the ensemble-average power
flow for cases with two random parameters using the same
system set-up as Fig. 7.

shown in Ref. 12.

Conclusions
Considering the variations of system parameters, ap-

proximations for the ensemble-averaged power flow were
presented. These statistical approximations are based on
the nominal power flow formulations presented in Ref. 4,
which employ characteristic constraint (CC) modes to cap-
ture the motion of the interface between component struc-
tures. In this paper, each modal response was expanded in
a series of globally orthogonal polynomials or locally lin-
ear interpolation functions in terms of the random system
parameters. Then, the system equations were derived using
Galerkin's method such that the averaged power flow could
be solved for.

The approximation using globally orthogonal polynomi-
als was presented first. The choice of classical sets of or-
thogonal polynomials is based upon the pdf associated with
the set of uncorrelated random system parameters. This ap-
proximation is versatile enough to accommodate the varia-
tions of both modal parameters and physical system param-
eters. The first application considered the random parame-
ters to be associated with the component modal stiffnesses.
The approximation with polynomials of order 3 compared
very well to the Monte Carlo results for small variations
of the parameters. Yet an approximation with polynomi-
als of order 5 was needed to give satisfactory results when
the variations were large. The next application considered
the variation of the thickness of a L-shaped plate system.
The approximations of the global modal quantities in terms
of the random parameters were first obtained. Then two
approximations with polynomials of low and high orders
were shown to match the Monte Carlo results with differ-
ent degree of convergence.

Next, the approximation using locally linear interpola-
tion (LLI) functions was presented. This approximation
enables a simpler and more systematic implementation that
can be applied to a variety of systems. The system of the L-
shaped plate with three uncertain physical parameters was
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(a)

(b)

obtained using this approach.
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Fig. 9 The distributions of total transmitted power with re-
spect to two system parameters correspond to the three cases
shown in Fig. 8. (a) The power flow with respect to 9\ and 9^.
(b) The power flow with respect to 62 and #3. (c) The power
flow with respect to Oi and 63.

considered. The LLI results were seen to closely match the
Monte Carlo results. Furthermore, sensitivity analyses can
be readily performed by using this approximation.

In general, these statistical approximations are much
more computationally efficient than Monte Carlo methods
when obtaining the same degree of accuracy. In addition to
fast convergence of the mean power flow, these approxima-
tions, unlike Monte Carlo simulation, provide insight into
the behavior and sensitivity of the system under different
parameter uncertainties, since the full description of every
modal velocity in terms of the random parameters is also
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