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An analytical theory for spacecraft motion close to synchronously orbiting and rotating planetary satellites is

provided. The ratio rotation rate of the satellite mean motion of the orbiter is the small parameter of the theory. A

double-averaging over the mean anomaly and the argument of the node reduces the problem to one degree of

freedom in the eccentricity and the argument of the periapsis. The theory is based on the Lie–Deprit perturbation

method,which permits recovering the short- and long-period terms through explicit transformations. Anapplication

to the computation of (unstable) science orbits is presented, a case in which the transformation equations admit

dramatic simplifications.

Introduction

C ONCERNING the search for life on the solar system, planetary
satellites are pointed to as major targets by the scientific

community. Mapping missions require low-eccentricity and high-
inclination orbits close to the central body, a kind of orbit that is
known to be unstable for planetary satellites. The main perturbations
in the motion around planetary satellites arise from the nonsphericity
of the central body and the planetary perturbation. Many natural
satellites orbit synchronously the planet. Therefore, Kozai’s [1]
model for a lunar orbiter is well-adapted for studying the dynamics
around planetary satellites [2].

With Kozai [1], we consider the mean gravitational field of a
synchronously rotating and orbiting moon and take into account the
perturbations of the third body in the Hill problem approximation.
Commonly, solar system bodies show latitudinal asymmetry and we
left open our theory to the inclusion of this effect, which can play an
important role [3,4]. A double average over the mean anomaly and
the argument of the node reduces the problem to one degree of
freedom (DOF) in the eccentricity and the argument of the periapsis.
The phase space of the integrable reduced problem is made of closed
curves and equilibria, the latter corresponding to trajectories that are
known as frozen orbits. Using perturbation techniques based on Lie
transforms [5], the short- and long-period terms are recovered
through explicit transformations.

An immediate application of our theory is found for the
computation of long-lifetime science orbits. Although low-
eccentricity frozen orbits are known to exist for all the range of
inclinations, the third-body perturbations produce unstable behavior
on high-inclination orbits in a wide range of inclinations centered
about polar orbits [6]. These instabilities result in relatively short
lifetimes, on the order of one month [3]. As proposed in [7], initial
conditions can be chosen on the stable manifold of the desired frozen
orbit. Then the explicit equations of the transformations provide
initial conditions of the nonaveraged problem corresponding to
nominal orbits that, in average, follow the stable–unstable manifold
of unstable frozen orbits, increasing the lifetime of a science mission
about a planetary satellite. An advantage of the Lie transforms
approach is that it avoids the linearization procedure required by

other methods to recover the long- and short-period effects missed in
the averaging [7].

This paper is the last step in an effort to build an analytical theory
for mission analysis of science orbits around planetary satellites. The
initial studies of the double-averaged problem [6,8]were followed by
a first attempt to recover the original dynamics through explicit
transformation equations [9]. However, lacking information about
the short-period terms, the analytical solutions of [9] commonly
require a numerical refinement of the orbital elements. The
transformations for recovering both the short- and long-period
dynamics were used in [10] for the first time, but being affected by
negative powers of the eccentricity, their application was limited to
moderate-eccentricity orbits. Transformation equations in non-
singular elements are available now up to the second order.
Furthermore, for the low eccentricities and high inclinations required
for science orbits, the whole sequence of transformations may be
replaced by the single set of simplified transformation equations
provided in this paper.

Dynamic Model and Perturbation Method

When considering a synchronously orbiting planetary satellite for
which the equator coincides with its orbital plane, the problem is
invariant in a rotating frame of reference with the origin at the center
of mass of the satellite. Using Hamiltonian formulation, we write

H � �1=2��X � X� � ! � �x �X� � ��=r� � R�x� (1)

where x� �x; y; z� is the position vector of the orbiter, r� kxk,
X� �X; Y; Z� is the vector of conjugated momenta (velocity in the
inertial frame), ! is the angular velocity of the satellite around the
planet,� is the satellite’s gravitational parameter, and the perturbing
function R includes the third-body and nonsphericity perturbations.
In projective coordinates r (u� x=r, v� y=r, and w� z=r), the
perturbing function is

R� !2r2�3u2 � 1�=2� ��=r�N�r; u; v; w� (2)

with !� k!k. For the nondimensional part N of the potential, we
take

N � ��=r�2�J2�1 � 3w2�=2� 3C2;2�u2 � v2�	
� J3��=r�3w�3 � 5w2�=2 (3)

where the scaling factor � is the equatorial radius of the planetary
moon, and J2, C2;2, and J3 are the oblateness, ellipticity, and
latitudinal asymmetry coefficients, respectively. The projective
coordinates are expressed in polar nodal variables:
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u� cos h cos � � cos I sinh sin �

v� sinh cos �� cos I cos h sin �; w� sin I sin �
(4)

where h is the argument of the node in the rotating frame, I is
inclination, �� f� g,g is the argument of the periapsis, and f is the
true anomaly.

The Hamiltonian equation (1) is expressed as a perturbed two-
body problem:

H �H0 � �H1 � ��2=2�H2 � ��3=6�H3 (5)

where the formal parameter � manifests the order of each
perturbation. The zero order is the Keplerian:

H 0 ���=�2a� (6)

The first-order perturbation corresponds to the Coriolis force:

H1 ��!kx � Xk cos I ��!
�����������������������
�a�1 � e2�

p
cos I

�� �
2a

�
!

n

�
�2

�������������
1 � e2
p

cos I� (7)

where the elements a and e are the instantaneous semimajor axis and

eccentricity, respectively, andn�
�����������
�=a3

p
is the instantaneousmean

motion of the orbiter. The effects of the oblateness and ellipticity of
the satellite and the planetary perturbation remain at second order in
!=n:

H2 ��
�

2a

�
!

n

�
2 r2

a2

��
1

2
� �2

a5

r5

�
�2 � 3s2 � 3s2 cos 2��

�
�
3

4
� 9�2

10

a5

r5

�
�2s2 cos 2h� �1 � c�2 cos�2� � 2h�

� �1� c�2 cos�2�� 2h�	
�

(8)

where we set C2;2 � �3=10�J2 from equilibrium theory [11], and the
function

�� J1=22

�!=n� ��=a� (9)

expresses the relative importance of the oblateness and third-body
perturbations. For brevity, we use the notations c 
 cos I and
s 
 sin I.

Despite J3 vanishing in equilibrium theory, we consider a possible
latitudinal asymmetry of the satellite for which the effect is of third
order in !=n:

H 3 ��
�

2a

�
!

n

�
3

�3
a4

r4
s

�
9

2
�4 � 5s2� sin �� 15

2
s2 sin 3�

�
(10)

where

� � J1=33

�!=n� ��=a� � �
J1=33

J1=22

(11)

We limit our theory to those regions in phase space in which both �
and � are of the first order.

We use Deprit’s [5] perturbation method to stepwise construct our
analytical theory. Basically, Deprit proposes to find a Lie transform
T : y! y0 from “new” to “old” variables such that it transforms an
initial Hamiltonian

H �
X
i�0
��i=i!�Hi�y�

expanded as a power series of a small parameter � into a new one

H 0 �
X
i�0
��i=i!�H0;i�y0�

in which, usually, one variable is eliminated after truncation up to a
certain order. The transformation is constructed term by term using
the recurrence

Hi;j �Hi�1;j�1 �
X
0�k�i

i
k

� �
fHk;j�1;Wi�1�kg (12)

Terms Hi;0 are obtained by simply replacing old with new variables
in the corresponding terms Hi; the structure f; g stands for the
Poisson bracket:

fF ;Gg � rxF � rXG � rXF � rxG

where F and G are generic functions of the variables y� �x;X�
(coordinates x and conjugate momenta X), and the coefficients Wi

define the generating function of the transformation by its series
expansion:

W �
X
i�0
��i=i!�Wi�1

The transformation equations

y �
X
i�0
��i=i!�Y0;i�y0�

are likewise constructed from Eq. (12) by noting that Y0;0 � y0,
Yi;0 � 0 (i > 0).

Double-Averaged Problem

For our perturbation theory, we use Delaunay-type variables ‘, g,
h, L, G, and H, where ‘ is the mean anomaly and the momenta are
functions of the orbital elements:

L� �������
�a
p

; G� L
�������������
1 � e2
p

; H �G cos I (13)

The average over the mean anomaly is performed up to the third
order by a Lie transform:

T ‘: �‘; g; h; L;G;H� ! �‘0; g0; h0; L0; G0; H0�

We start the algorithm by transforming the Hamiltonian
equation (5) into

H �
X
i�0
��i=i!�Hi;0

where Hi;0 �Hi�‘0; g0; h0; L0; G0; H0� for i � 3 and Hi;0 � 0
otherwise. After successive applications of Eq. (12), up to the third
order, the averaged Hamiltonian over the mean anomaly is

H 0 �H0;0 � �H0;1 � ��2=2�H0;2 � ��3=6�H0;3 (14)

where H0;0 ���2=�2L02�, H0;1 �H0;0"�2��, and

H0;2 �H0;0

"2

8

��
4�02

�03
� 2� 3e02

�
�4 � 6s02�

� 6

�
12�02

5�03
� 2� 3e02

�
s02 cos 2h0

� 15e02�2s02 cos 2g0 � �1 � c0�2 cos�2g0 � 2h0�
� �1� c0�2 cos�2g0 � 2h0�	g

H0;3 �H0;0"
3
9

2
�0
�
� 03

�06
e0s0�4 � 5s02� sin g0

� e02
�
5

4
� �02

5�04
1� 2�0

�1� �0�2
�
��1� c0�2 cos�2g0 � 2h0�

� �1 � c0�2 cos�2g0 � 2h0�	
�

with "� !=n0, � �H0=L0 �
��������������
1 � e02
p

c0, and ��
�������������
1 � e2
p

is the
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eccentricity function. With the prime notation, a prime in any
element or function means that it is expressed in the new variables.

Thus, e0 �
���������������������������
1 � �G0=L0�2

p
, c0 �H0=G0, and so on.

A new Lie transform

T h: �‘0; g0; h0; L0; G0; H0� ! �‘00; g00; h00; L00; G00; H00�

is used to eliminate the argument of the node. Note that n0 � �2=L03

is constant in the truncatedHamiltonian equation (14). Therefore, the
formal parameter � is not needed any longer, its role being assumed
by the real parameter:

"� !=n0 � L03!=�2 (15)

Then we write the Hamiltonian (14) in the double-prime variables as

K �
X
i�0
�"i=i!�Ki;0

where Ki;0 �H0;i��; g00; h00; L00; G00; H00� for i � 3, and Ki;0 � 0
otherwise. After truncation to the third order, we get

K 00 � K0;0 � "K0;1 � �"2=2�K0;2 � �"3=6�K0;3 (16)

where K0;0 ���2=�2L002�, K0;1 � 2�00K0;0, and

K0;2�K0;0

1

4

��
4�002

�003
�2�3e002

�
�2�3s002�

�15e002s002 cos2g00
�

K0;3�K0;0

9

8

�
9�002

5�005
�00s002

�
6�002

5�003
�2�3e002

�

�3

4
�00�50e002��2�17e002�s002	

�9

4

�
6�002

�005
�5

�
�00e002s002 cos2g00 �4� 003

�005
e00s00�4�5s002�sing00

�

Details on the averaging and the required generating functions,W‘

for averaging the mean anomaly and Wh for the elimination of the
node, can be found in Appendices A and B.

The double-averaged Hamiltonian equation (19) represents a 1-
DOF integrable system in the argument of the periapsis and the
modulus of the angular momentum vector. The phase space of the
integrable reduced problem is made of closed curves and equilibria,
the latter corresponding to trajectories that are known as frozen
orbits.

Transformation Equations

For 	 2 �‘; g; h; L;G;H�, the Lie–Deprit algorithm also provides
the explicit transformation equations from averaged to nonaveraged
variables as power series

	�
X
i

��i=i!�	0;i

in the small parameter �. The coefficients 	0;i are computed from the
recurrence Eq. (12) by replacingHi;j with 	i;j and taking into account
that 	0;0 � 	0 and 	i;0 � 0 (i > 0). It results in

	� 	0 � �f	0;W1g � ��2=2��ff	0;W1g;W1g� f	0;W2g	 � � � �

Thus, for given initial conditions 	00 in the double-averaged
problem, we undo the second transformation

	0 � 	00 � "�	00 � �"2=2�
	00 �O�"3�

by computing the first- and second-order corrections

�	00 �
n
	00;Wh

1

o
; 
	00 �

n
�	00;Wh

1

o
�
n
	00;Wh

2

o

from Eqs. (B3) and (B6). We obtain the first-order correction
(�L00 � 0)

�‘00 �15

32

��
4�6

5
�002�36�

002

25�003

�
s002 sin2h00

��2��002���1�c00�2 sin�2g00 �2h00���1�c00�2 sin�2g00 �2h00�	g
(17)

�G00 � 15

32
L00e002��1 � c00�2 cos�2g00 � 2h00�

� �1� c00�2 cos�2g00 � 2h00�	 (18)

�g00 � 15

32�00

��
2c002 � 6

5
�002 � 12�002

25�003
�5c002 � 3�

�
sin 2h00

� �c00 � �002��1 � c00� sin�2g00 � 2h00�

� �c00 � �002��1� c00� sin�2g00 � 2h00�
�

(19)

�H00 ��15
32
L00
��

2� 6

5
�002� 24�002

25�003

�
s002 cos 2h00

�e002��1� c00�2 cos�2g00 � 2h00� � �1� c00�2 cos�2g00 � 2h00�	
�

(20)

�h00 � � 15

32�00

��
2 � 6

5
�002 � 24�002

25�003

�
c00 sin 2h00

� e002�1 � c00� sin�2g00 � 2h00� � e002�1� c00� sin�2g00 � 2h00�
�

(21)

equations that supplement those published in [9] with the correction
to the mean anomaly. The second-order corrections of the second
transformation involve many more terms and are in Appendix C.

Once we recover the long-period perturbations, we can proceed
with the next transformation to get the initial conditions in the
original problem. BecauseW‘

1 
 0, in accordance with Appendix A,
the second-order transformation equations are

	� 	0 � ��2=2�
	0 �O��3�

and second-order corrections to Delaunay elements are Poisson
series, such as


H0 � "
2

32
L0
� X
l�1;2;3

X
m��2;0;2

X
n��2;2

Ul;m;n cos�lu0 �mg0 � nh0�

� 24�02

5�03

�
12s02�‘0 � f0� sin 2h0

�
X
l�1;2;3

X
m�0;2

X
n��2;2

Fl;m;n cos�lf0 �mg0 � nh0�
��

(22)


h0 � "2

32�0

� X
l�1;2;3

X
m��2;0;2

X
n��2;0;2

Ul;m;n sin�lu0 �mg0 � nh0�

� 8�02

5�03

�
12c0�‘0 � f0��5 � 3 cos 2h0�

�
X
l�1;2;3

X
m�0;2

X
n��2;2

Fl;m;n sin�lf0 �mg0 � nh0�
��

(23)

for which the coefficientsFl;m;n andUl;m;n are given (without primes)
in Table 1.
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The transformation equation for H and h, Eqs. (22) and (23), are
the shortest Poisson series involved in recovering the short-period
effects. Other transformation equations have hundreds of terms and
these are omitted, for brevity.

The full transformation equations are, of course, required for
computing ephemerides from the analytic theory. However, relevant
applications to mission design only require choosing initial
conditions from the double-averaged problem and computing the
corresponding conditions in the original nonaveraged problem. In
such cases, for given values of the integrals L00 and H00, a point (g00
and G00) of the double-averaged problem maps onto a torus of the
nonaveraged problem. This means that we are free to choose any
value of h00 and ‘00 for computing the initial conditions in the original
problem. We will show that a careful selection of h00 and ‘00

dramatically simplifies the transformation equations.
First of all, the mean anomaly is not an argument of the second Lie

transformation equations (17–21) and (C1–C6), because it is cyclic
after the Delaunay transformation. Therefore, one can trivially set
‘00 � 0 (and f00 � u00 � 0). In addition, for given initial conditionsg000 ,
G000 , H

00
0 , and L

00
0 , the root-finding problem h0 
 h00 � "�h00�h00� �

�"2=2�
h00�h00� � 0 will provide a value h00 � h000 such that h00 � 0.
The “reduced” (‘00 � h00 � 0) transformation equations are

‘�� 1

2
"2
�
1

e0

�
2�02

5�02
�4 � c02� � 4

�
� 6 � 20e0 � 3e02

�
�0 sin 2g0

(24)

g� g0 � 1

2
"2
�
1

e0

�
2�02

5�04
�4 � c02� � 4

�
� 3

4
� 8e0 � 9e02

4

� �02

10�04
�3�12 � 5c02� � 16�2 � c02�e0	

�
sin 2g0 (25)

h� 1

2
"2
�02

5�04
�3� 4e0�c0 sin 2g0 (26)

L� L0 � 1

2
L0"2

�
�02

5�06
�2� 3c02��2� �0��1� e0��1� e0 � �0�

� e
0

4
�4� e0� � 3

4

�
4�02

5�06
�4 � c02��1� e0�3

� 2 � �4� 3e0�e0
�
cos 2g0

�
(27)

G�G0 � 1

2
G0"2

�
�02

5�04
�4 � c02��3� 4e0� � 8e0

� 3

2
�1� e02�

�
cos 2g0 (28)

H �H0 � 1

2
H0"2

�
�02

5�04
3�3� 4e0� � 8e0 � 3

2
�1� e02�

�
cos 2g0

(29)

Note that Eqs. (24) and (25) contain negative powers of e0. For e0 
 ",
this does not cause trouble, simplymeaning that corrections to g0 and
‘0 are affected by first-order terms.

Divisions by the eccentricity for smaller values of e0 should be
avoided, and it can be done in different sets of uniformly regular
variables [12–14]. Following [12], we use the set (F,C, S, L,H, and
h), whereF� ‘� g is the mean distance to the ascending node, and
C� e cos g and S� e sin g are semi-equinoctial elements.

As for the Hamiltonian, the Lie transform applies to any other
function of the coordinates and momenta. Therefore, Deprit’s
recurrence equation (12) is at hand again to build the transformation
equations forF (respectively,C and S) by simply replacingHi;j with
Fi;j (respectively, Ci;j and Si;j), where F0;0 � F0 (respectively,
C0;0 � C0 and S0;0 � S0) and Fi;0 � 0 for i > 0 (respectively, Ci;0 �
0 and Si;0 � 0). In the new set of elements, the transformation
equations (26), (27), and (29) are complemented with

F� F0 � "
2

2

�
3

4
� 6�0 � 4

�
2� 5�0 � 1

1� �0
�
e0

�
�
9

4
� 3�0

�
e02 � �02

10�04

�
36 � 15c02 � 32e0 � 4�4 � c02�

�
�
4� �0 � 1

1� �0
�
e0
��

sin 2g0 (30)

C� C0 � "
2

2

1

4

��
2�02

5�04
�24� 15c02 � A1e

0 � �16� 7c02�e02�

� 14 � 10e0 � 22e02 � 13e03
�
cos g0 � A2 cos 3g

0
�

(31)

S� S0 � "
2

2

1

4

��
2�02

5�04
�21c02 � �60� 9c02 �A1�e0 � �8� 5c02�e02�

� 22� 8e0 � 30e02 � 11e03
�
sing0 �A2 sin3g

0
�

(32)

where

A1 � 42� �27=2�c02 � �4� 6c02���0 � 1=�1� �0�	 (33)

A2 � 2 � 6e0 � 6e02 � 3e03 � 2�02

5�04

�
7�4 � c02�

�
�
66 � 39

2
c02
�
e0 � �44 � 15c02�e02

�
(34)

Table 1 Coefficients Fl;m;n and Ul;m;n in Eqs. (22) and (23)

m n l� 1 l� 2 l� 3

Equation (22)
F 0 �2 �6es2 0 0

2 �2 �3e�1� c�2 �3�1� c�2 �e�1� c�2
U 0 �2 �6es2 �18e2s2 �2e3s2

�2 �2 �15e�1 � ��2�1� c�2 �3�3� 2���1 � ��2�1� c�2 �e�1 � ��2�1� c�2
2 �2 �15e�1� ��2�1� c�2 �3�3 � 2���1� ��2�1� c�2 �e�1� ��2�1� c�2

Equation (23)
F 0 0 �60ce 0 0

0 �2 18ce 0 0
2 0 30ce 30c 10ce
2 �2 �9�1� c�e �9�1� c� �3�1� c�e

U 0 0 12ce�5� 3�2� �36ce2 4ce3

0 �2 �6ce�5� 3�2� 18ce2 �2ce3
�2 0 �30ce�1� ��2 6c�3� 2���1� ��2 �2ce�1� ��2
�2 �2 �15�1� c�e�1� ��2 �3�1� c��3� 2���1� ��2 ��1� c�e�1� ��2
�2 2 �15�1� c�e�1� ��2 �3�1� c��3� 2���1� ��2 ��1� c�e�1� ��2
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Application: Computation of the Science Orbit

The high-inclination, low-altitude orbits required by science
missions around planetary satellites are known to be unstable. To
maximize the orbit lifetime with minimum control, tours on the
stable–unstable manifold of selected frozen orbits in an averaged
model have been proposed [7]. The stable–unstable manifold tours
can also be designed in the nonaveraged problem [15], in which
simple repeat-ground-track orbits were demonstrated to be a feasible
option, enjoying long lifetimes even in ephemeris models [16].

To move in average on the stable manifold of an unstable frozen
orbit one could choose initial conditions directly from the averaged
problem. However, the long and short-period effects that are missed
in the averaging will prevent, in general, the desired result. A
linearization of the problem allows to computefirst-order corrections
to recover the averaged effects [7]. On the contrary, the linearization
is unnecessary when performing the averaging by Lie transforms.
The explicit transformation equations from the averaged to the
nonaveraged problem are available as power series in the small
parameter. The transformation equations of the elimination of the
node allow to recover the long-period perturbations, and those of the
averaging of the mean anomaly incorporate the short-period effects.

The computation of stable–unstable manifold tours requires only
to choose initial conditions from the double-averaged problem and
compute the corresponding ones in the original, nonaveraged
problem. Then, in addition to Eqs. (17–21) and (C1–C6), the reduced
version Eqs. (24–29) of the first Lie transformation are enough for
our purposes. Furthermore, for the low eccentricity and high
inclination required by mapping orbits one can neglect higher-order
terms, highly simplifying the transformation equations. Thus, up to
the second order of this paper, for small enough h00 and ‘00 after trivial
simplifications, one finds

L� L00�1� "002�3=20��5� 8�002� cos 2g00	 (35)

G� L00��00 � "002�3=20��5� 8�002� cos 2g00	 (36)

H � L00��00 � "00�3=40��5� 6�002��1 � �002�	 (37)

‘� "00
�
"00

e00

�
2 � 4 � �002

5
�002
�
� 3"00

�
sin 2g00 (38)

g� g00 � "00
�
"00

e00

�
2 � 4 � �002

5
�002
�

� 15�00

8
� "00 153

640
�5� 18�002�

�
sin 2g00 (39)

h� 0 (40)

As before, the eccentricity appears in denominators of the
transformation equations of the mean anomaly and argument of the
periapsis, and the set �F;C; S; L;H; h� of nonsingular elements is
recommended for very low-eccentricity orbits, where

F� F00 � "002�3=40��35 � 24�002� sin 2g00 (41)

C� C00 � "002�1=20���35� 24�002� cos g00 � �5� 28�002� cos 3g00	
(42)

S� S00 � "002�1=20��55 sing00 � �5� 28�002� sin 3g00	 (43)

complement the transformation equations (35), (37), and (40).
The long-period corrections to the elements F00, C00, and S00 are of

order higher than two for science orbits. Therefore, they are not

needed in the computation of Eqs. (41–43), and we do not find it
necessary to provide corresponding expressions. Thosewhoprefer to
use the full expressions Eqs. (30–32), may recover the long-period
terms by computing F0 � ‘0 � g0, C0 � e0 cos g0 and S0 � e0 sing0
from Eqs. (17–21) and (C1–C6), which are free from negative
powers of the eccentricity.

Equations (35–40) show that for the low-eccentricity and high-
inclination orbits required by the science mission, the most sensitive
orbital elements are the argument of the periapsis and inclination—if
one reasonably assumes that a small correction to the mean anomaly
does not notably affect the long-term dynamics. Then, a first-order
approach is to choose a00, e00, I00, g00, from the double-averaged
problem, set a� a00, e� e00, h� ‘� 0, and compute

I � I00 � " 3

40
�5� 6�2� sin I00

g� g00 � "
�
"

e

�
2 � 4

5
�2

�
� 15

8
cos I00

�
sin 2g00

(44)

Equations (44) are derived from Eqs. (36) and (37) and Eq. (39), in
which second-order terms "002, e2, and "00c002 were neglected.

As illustration of the procedure, we consider a science orbit around
the Galilean moon Europa, where �� 3202:7 km3=s2,
!� 2:05 � 10�5 rad=s, �� 1565 km, J2 � 4:355 � 10�4 from
[17], and C2;2 � �3=10�J2 from synchronous-moon theory.

Central Body with Equatorial Symmetry

In this example, we do not consider a possible latitudinal
asymmetry of Europa and, therefore, frozen orbits exist with zero
eccentricity [6]. For a reference circular frozen orbit 120 km above
the surface of Europa and 75 deg of inclination, one gets

L00 � 2323:05 km2=s; H00 � 601:249 km2=s (45)

which produce

�00 � 0:773594; "00 � 0:0250551; �00 � 0:258819 (46)

The corresponding flow in the double-averaged phase space is
illustrated in Fig. 1, in which the dotted contour corresponds to the
Hamiltonian valueK00 of the reference, frozen orbit, and its stable and
unstable manifolds obtained after introducing the values of Eqs. (45)
and (46) in Eq. (16).

In this flow, orbits with e > 0:071 impact Europa.We fix an initial
eccentricity e00 � 0:01 and solve Eq. (16) for the argument of the
periapsis. The values g00 � 143:263 and 323.263 deg correspond to
the two stable manifold branches, whereas g00 � 36:7369 and
216.737 deg correspond to the unstable manifolds. We choose
g00 � 323:263 deg and are free to fix any values of h00 and ‘00. Setting
either h00 � ‘00 � 0 or h00 � 0:000135 deg, ‘00 � 0:6 deg makes no
appreciable differences when running these initial conditions in the
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Fig. 1 Flow in the double-averaged problem (J3 � 0).
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nonaveraged problem. In both cases the orbit follows roughly the
stable–unstable manifold path and impacts the surface of Europa
after about eight weeks, remainingwith e � 0:01 around fourweeks.
However, the latter result in h0 � ‘0 � 0, allowing us to use the
simplified first- or second-order Eqs. (35–40) and (44) for the
transformation from the double-averaged to the nonaveraged
problem.

Thus, the first-order corrections of Eq. (44) provide initial
conditions of an orbit of the original problem that, in average,
evolves much closer to the manifolds of the double-averaged
problem, improving lifetime up to more than 16 weeks,
approximately 12 of which the eccentricity is below the initial
value. An impressive improvement is found when using Eqs. (35–
40) instead of Eq. (44), remaining four months and a half with
e � 0:01 and with more than five months lifetime.

Table 2 summarizes the orbital elements after the different
corrections, and Fig. 2 shows the radius evolution in the three
different cases. The final evolution of the orbit in the reduced phase
space is presented in Fig. 3.

Central Body with Latitudinal Asymmetry

We choose the same values of the parameters L00 andH00 given in
Eq. (45) and, consequently, the values of �00, "00, and �00 given in
Eq. (46). The latitudinal asymmetry makes evident by a nonzero J3
value. Lacking of information about Europa’s J3 and with the only

purpose of providing an example we choose J3 � 2 � 10�5, which
results in � � 1 clearly satisfying the requirements of our theory of
being a third-order effect.

A detail of the reduced phase space of this example is illustrated in
Fig. 4 in which we clearly appreciate an unstable frozen orbit with
small but nonzero eccentricity and argument of the periapsis at
��=2. The dotted line corresponds to the stable and unstable
manifolds of the frozen orbit.

To show the utility of the simplified formulas in nonsingular
elements, we apply them to transform the initial conditions of the
frozen orbit e00 � 0:00270285 and g00 � ��=2, instead of choosing
an orbit of the stable manifold with higher eccentricity. Without
undoing the transformations, the propagation of corresponding
initial conditions in the original problem results in an impact orbit on
the surface of Europa after about 46 days. However, after computing
second-order correction using the nonsingular simplified trans-
formation equations (35), (37), and (40–43) for the double-averaged
elements F00 � g00, C00 � 0, S00 � �e00, and h00 � 0 and the values of
L00 and H00 given in Eq. (45), the orbit remains with almost constant
eccentricity for about four months and impacts Europa one month
later.

Table 3 presents initial conditions taken from the double-averaged
problem and those after recovering the long and short-period effects.
Figure 5 shows the radius evolution in both cases.

We must say that our theory does not provide any control over
which branch of the unstable manifold will escape the orbit.
Strategies based on the introduction of small corrections to the
argument of the periapsismay be developed to provide such a control
[7].

Tests on a variety of examples (including both cases J3 � 0 and
J3 ≠ 0) show that lifetimes can vary, ranging from around four
months to the impressive performances of the examples provided.
But improvement is always found when using either the full or the
simplified transformation equations for computing initial conditions
of the nonaveraged problem. Note that we do not claim to find the
longest lifetimes orbits. Because of the importance of higher-order
effects in the unstable dynamics, longer lifetimes may be obtained
either analytically with a higher-order theory, or numerically with a
final tuning of the argument of the periapsis [7]. Alternatively,
unstable repeat ground track orbits of the nonaveraged problemwere
demonstrated to be a feasible option, enjoying long lifetimes even in
ephemeris models [16].

Table 2 Initial orbital elements of the science orbit

Corrections a, km e I, deg g, deg h, deg ‘, deg

None 1685. 0.01 74.9992 323.263 0.00013484 0.600404
Equation (44) 1685. 0.01 75.9568 329.177 0. 0.
Equations (35–40) 1685.88 0.009999 75.8946 329.074 0. �5:16974
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Fig. 2 Radius evolution after different corrections (J3 � 0).

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
e cos g

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

e
si

n
g
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Conclusions

Future missions to planetary satellites shall deal with unstable
dynamics. Accurate values of the harmonic coefficients of
prospective planetary satellite targets will not be definitely known
until the orbiter performs a variety of measures as part of the science
mission itself. Therefore, literal expressions coming from analytical
theories may help in the design of science missions. Notably, certain
maneuvers are easily designed in the double-averaged problem, and
the evaluation of the simplified transformation equations of the
averaging given in this paper provides accurate initial conditions in
the nonaveraged problem in a straightforward way.

The theory presented here is complete up to the second order in the
small parameter. However, it must be noted that second-order terms
produce first-order corrections to the argument of the periapsis of
low-eccentricity orbits, which is a highly sensitive element when
dealing with the stable–unstable manifold dynamics. Analogously,
second-order corrections to the argument of the periapsis of low-
eccentricity orbits are expected from third-order terms, and it may
worthwhile to develop a higher-order theory than that presented here.

Appendix A: Averaging the Mean Anomaly

The Hamiltonian equation (5) is written as

H �
X
i�0
��i=i!�Hi;0

where the termsHi;0 �Hi�‘0; g0; h0; L0; G0; H0� for i � 3 andHi;0 �
0 otherwise. For the first order, Eq. (12) gives

H0;1 �H1;0 �
n
H0;0;W

‘
1

o
��!H0 � �

2

L03
@W‘

1

@‘0

where we assigned a superscript to the coefficients of the generating
function to manifest that it corresponds to the transformation that
averages the mean anomaly. BecauseH1;0 does not depend on ‘, we
trivially chooseW‘

1 
 0 and setH0;1 �H1;0, whereH1;0 is expressed

in the prime variables H0;1 �H0;0�!=n0��2
��������������
1 � e02
p

c0�. Therefore,
up to the first order, the transformation is the identity.

The second order of Deprit’s recurrence, Eq. (12), gives H0;2 �
H1;1 � fH0;1;W

‘
1g and H1;1 �H2;0 � fH1;0;W

‘
1g � fH0;0;W

‘
2g.

BecauseW‘
1 
 0 in our theory,

H0;2 �H1;1 �H2;0 �
n
H0;0;W

‘
2

o
�H2;0 �

�2

L03
@W‘

2

@‘0
(A1)

We choose H0;2 � hH2;0i‘0 as the average of H2;0 over the mean
anomaly ‘0, which is an implicit variable in H2;0. Part of the

perturbing function is directly proportional to r (third-body
contribution) and part is inversely proportional to it (nonsphericity
effect). Therefore, it is convenient to compute the necessary
quadratures in two steps:

hH2;0i‘0 �
Z

2�

0

H2;0;fd‘
0 �

Z
2�

0

H2;0;ud‘
0

where

H2;0;f �H0;0�!=n0�2�02�a0=r0�3f2 � 3s02 � 3s02 cos 2�0

� �9=10��2s02 cos 2h0 � �1 � c0�2 cos�2h0 � 2�0�
� �1� c0�2 cos�2h0 � 2�0�	g (A2)

H2;0;u �H0;0�!=n0�2�1=2��r0=a0�2f2 � 3s02 � 3s02 cos 2�0

� �3=2��2s02 cos 2h0 � �1 � c0�2 cos�2h0 � 2�0�
� �1� c0�2 cos�2h0 � 2�0�	g (A3)

The quadrature Z
2�

0

H2;0;fd‘
0

is solved in the true anomaly doing the changea2
�������������
1 � e2
p

d‘� r2df.
On the contrary, the change d‘� �1 � e cos u�du and the ellipse

relations r sin f� a
�������������
1 � e2
p

sin u and r cos f� a�cos u � e�
permit us to integrate the quadratureZ

2�

0

H2;0;ud‘
0

in the elliptic anomaly. Thus,

H0;2 �H0;0

1

8

�
!

n0

�
2
��

4�02

�03
� 2� 3e02

�
�4 � 6s02�

� 6

�
12�02

5�03
� 2� 3e02

�
s02 cos 2h0 � 15e02�2s02 cos 2g0

� �1 � c0�2 cos�2g0 � 2h0� � �1� c0�2 cos�2g0 � 2h0�	
�

(A4)

where ��
�������������
1 � e2
p

is the eccentricity function.
Once theHamiltonian termH0;2 is chosen, the generatorW

‘
2 can be

computed from Eq. (A1) as W‘
2 � �1=�2�L03

R
�H2;0 �H0;2�d‘0,

where, again, the quadrature is performed in two steps. We obtain

W‘
2 �

�
!

n0

�
2 L0

64

X
l�1;2;3

X
m��2;0;2

X
n��2;0;2

Ul;m;n sin�lu0 �mg0 � nh0�

�
�
!

n0

�
2 L0�02

10�03

�
�f0 � ‘0��10 � 15s02 � 9s02 cos 2h0�

� 1

4

X
l�1;2;3

X
m�0;2

X
n��2;0;2

Fl;m;n sin�lf0 �mg0 � nh0�
�

(A5)

for which the coefficients Fl;m;n and Ul;m;n, are given (without
primes) in Table A1.

Despite pursuing a second-order theory, it will be soon apparent
that the third-order term of the averaged Hamiltonian over the mean
anomaly is necessary if we want to reach the second order in the

Table 3 Initial orbital elements of the frozen orbit

Corrections a, km e I, deg g, deg h, deg ‘, deg

None 1685. 0.0027 74.9999 ��=2 0 0
Equations (35), (37), and (40–43) 1681.90 0.0003 75.8783 ��=2 0 0
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Fig. 5 Radius evolution after second-order nonsingular simplified

corrections (J3 ≠ 0).
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elimination of the node [12]. After simplifications, the third order of
Deprit’s recurrence gives

H0;3 �H3;0 � 3
n
H1;0;W

‘
2

o
� �

2

L03
@W‘

3

@‘0

where we chooseH0;3 as the averageH0;3 � hH3;0 � 3fH1;0;W
‘
2gi‘0 .

Again, we find terms that are better integrated either in the true or the
eccentric anomaly. After some computations, we obtain

H0;3 �H0;0

�
!

n0

�
3 9

2
�0
�
� 03

�06
e0s0�4 � 5s02� sin g0

� e02
�
5

4
� �02

5�04
1� 2�0

�1� �0�2
�
��1� c0�2 cos�2g0 � 2h0�

� �1 � c0�2 cos�2g0 � 2h0�	
�

(A6)

After truncation to the third order, the averagedHamiltonian over the
mean anomaly

H 0 �H0;0 � �H0;1 � ��2=2�H0;2 � ��3=6�H0;3

is cyclic in ‘0 and, therefore, the conjugate momentum L0 is an
integral. Then the coupled motion of g0, h0, G0, and H0 decouples
from ‘0; after solving the Hamilton equations of the 2-DOF problem

dg0

dt
� @H

0

@G0
;

dh0

dt
� @H

0

@H0
;

dG0

dt
�� @H

0

@g0

dH0

dt
�� @H

0

@h0

the mean anomaly is computed from the quadrature

‘0 � ‘00 �
Z

@

@L0
H0�g0�t�; h0�t�; G0�t�; H0�t�;L0�dt

Appendix B: Elimination of the Argument of the Node

We write the averaged Hamiltonian over the mean anomaly,
Eq. (14), in the double-prime variables as

K �
X
i�0
�"i=i!�Ki;0

where Ki;0 �H0;i��; g00; h00; L00; G00; H00� for i � 3, and Ki;0 � 0
otherwise.

To the first order, Deprit’s recurrence gives K0;1�
K1;0 � fK0;0;W

h
1 g. But Wh

1 cannot be computed at this order
because the needed generating functionWh does not depend on the
mean anomaly (although the new Lie transformation indeed does
apply to it) and

n
K0;0;W

h
i

o
����2=L003�

�
@Wh

i =@‘
00
	

 0

at any order i. Then we set K0;1 � K1;0 and proceed to the second

order, where we find

K0;2 � K2;0 � 2
�2

L003
@Wh

1

@h00
(B1)

We choose K0;2 as the average of K2;0 over h
00

K0;2 � K0;0

1

4

��
4�002

�003
� 2� 3e002

�
�2 � 3s002� � 15e002s002 cos 2g00

�

(B2)

and computeWh
1 from Eq. (B1):

Wh
1 �

3L00

64

��
24�002

5�003
� 4� 6e002

�
s002 sin2h00

� 5e002��1� c00�2 sin�2g00 � 2h00� � �1� c00�2 sin�2g00 � 2h00�	
�

(B3)

Analogously,

K0;3 � K3;0 �
n
2K2;0 �

n
K1;0;W

h
1

o
� K0;2;W

h
1

o
� 3

�2

L003
@Wh

2

@h00

(B4)

We choose K0;3 as the average over h00 of the known terms in
Eq. (B4):

K0;3�K0;0

9

8

�
9�002

5�005
�00s002

�
6�002

5�003
�2�3e002

�

�3

4
�00�50e002��2�17e002�s002	�9

4

�
6�002

�005
�5

�
�00e002s002 cos2g00

�4� 003

�005
e00s00�4�5s002�sing00

�
(B5)

where � �H=L� c�. Finally,Wh
2 is computed from Eq. (B4) as

Wh
2 ��

3L00�00

128

�
6c00

�
16�002

5�005

�
3�002

2�003
� 2� 3e002

�

� 2� 17e002
�
s002 sin2h00 �

�
2�002

5�005

�
46� 16� 24�00

�1� �00�2

� 105c00 � 75s002
�
� 5�2� 9c00�

�
e002�1� c00�2 sin�2g00 � 2h00�

�
�
2�002

5�005

�
46� 16� 24�00

�1� �00�2 � 105c00 � 75s002
�

� 5�2� 9c00�	e002�1� c00�2 sin�2g00 � 2h00�
�

(B6)

After truncation to the third order, the double-averaged
Hamiltonian equation (16),

Table A1 Coefficients Fl;m;n and Ul;m;n in Eq. (A5)

m n l� 1 l� 2 l� 3

F 0 0 20�2 � 3s2�e 0 0
2 0 30es2 30s2 10es2

0 �2 18es2 0 0
2 �2 9e�1� c�2 9�1� c�2 3e�1� c�2

U 0 0 4e�2 � 3s2��5� 3�2� �12e2�2 � 3s2� �4=3�e3�2 � 3s2�
�2 0 30es2�1� ��2 �6s2�1� ��2�3� 2�� 2es2�1� ��2
0 �2 6es2�5� 3�2� �18e2s2 2e3s2

�2 �2 15�1� c�2e�1� ��2 �3�1� c�2�1� ��2�3� 2�� �1� c�2e�1� ��2
�2 2 15�1� c�2e�1� ��2 �3�1� c�2�1� ��2�3� 2�� �1� c�2e�1� ��2
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K 00 � K0;0 � "K0;1 � �"2=2�K0;2 � �"3=6�K0;3

represents an integrable system in which the 1-DOF motion of the
argument of the periapsis and themodulus of the angular momentum
vector,

dg00

dt
� @K

00

@G00
;

dG00

dt
�� @K

00

@g00

decouples from h00 and ‘00, which are integrated from the quadratures

h00 � h000 �
Z

@

@H00
K00�g00�t�; G00�t�;H00; L00	dt

‘00 � ‘000 �
Z

@

@L00
K00�g00�t�; G00�t�;H00; L00	dt

Appendix C: Long-Period Terms
and Second-Order Corrections

Next we detail the second-order corrections of the Lie
transformation related to the elimination of the node. The double-
prime notation is omitted in the right side of the equations without
risk of confusion.


L00 � 0 (C1)
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q2�1��3=5���2=�5��7�5�2� (C4)
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�
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5�3

�
3�2

�3
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��
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�
�1� c� 9c2��2

� �3� 8c��4 � �2
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�
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�1� ��2 �
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�
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