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THE HYPERSONIC LAMINAR BOUNDARY LAYER
APPROACHING THE BASE OF A SLENDER BODY

G.R. Olsson* and A. F. Messiter?
The University of Michigan, Ann Arbor, Michigan

An asymptotic description is obtained for the ac-
celeration of a laminar hypersonic boundary layer
approaching a sharp corner, assuming small inter-
action with the outer inviscid flow. Viscous forces
are neglected except in a thin sublayer, The initial
part of the expansion takes place over a distance
O(Mg%), where Mg is the external Mach number and
8 is the boundary-layer thickness, Here the trans-
verse pressure gradient is small and a solution can
be obtained analytically., Within a distance O(3F)

from the corner, the effect of streamline curvature
is essential, and a namerical solution is obtained by
the method of integral relations for a single strip.
The sclution for surface pressure is compared with
experimental results for a particular case, and an
approximate velocity profile at the corner is calcu-
lated. Possibilities for improving the accuracy are
considered, both by refining the numerical proce-
dure and by including higher-order effects.

SYMBOLS
A Constant defined in Eq. (42) B8 Similarity variable, related to
am (), byy(s) Coefficients in representations of © stream function by Eq. (9)
ande~', Eq. (53) ¥ Ratio of specific heats
co(X), ¢,(X) Coefficients in representation of 74, ¢ Bounldary~1ayer thickness, taken
Eq. (40) ‘ equal to *
do(X), 4,(X) Coefficients in representation of 5 * Displacement thickness
AT, Eq. (44) 1 Transformed normal coordinate,
E Function defined in Eq. (10) Eq. (50)
f) Weighting functions in method of 6 (qut/an)
integral relations . G Flow deflection angle
g Transformed stream function, de- u Viscosity coefficient
i fined preceding Eq. (9) ) 3 Transformed streamwise coordi-
i 0, I for wedge or cone respectively nate, Eq. (50)
k Index defining strip boundary for Den éit 4-
method of integral relations calcula- © Wedee or cone half angle
tion ’ > e .
L Length of Eody ¢ r’f;‘&nsi}‘;}a;‘nq&%)streammse coordi-
M Mach number ’ ; .
N Number of strips in method of inte- S‘flbscripts Stream function
P %iaélsgﬁiitlons calculation c Denotes value corresponding to
R R critical profile
w eynolds number based on {ree- e Denotes value at outer edge of un-
stream veloci.ty, body lgngth, and disturbed boundary layer
the&rmod;;namlc properties at the w Denotes value at body surface in un-
bhody surface :
. . disturbed boundary layer
s Streamwise coordinate, equal to® 5 Deriotes yalue at ojiltelye dge of ac-
T Temperatu‘re : celerating boundary layer
U Nondimensional velocity at outer edge Denotes value for ¥ -» 0
of sublayer . _ Denotes value for undisturbed
u, v Velocity components in x, y direc- boundary layer at ¥ = L
tions respectively Superscripts
w Transformed normal velocity com-  _ Denotes dimensional quantity
ponent defined following Eq. (52) A Denotes nondimensional function of
X,y Coordinates measured along and nor- K= (% - L)/M.R,¥L and
et w

mal to body surface respectively
Constant g"(0) = 0. 4696

¥=7/Ry; %L, Eq. (4)
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Denoctes nondirgensional function
% =(x- L)/Rw‘é L and

¥ = ¥/Ry L, Eq. (15)

t Denotes nondimensional function of
% = (X- L)/Ry* L and
y' =F/Ry % L, Eq. (25)

1. INTRODUCTION

Calculation of the flow in the near wake of a slender
body at hypersonic speed requires detailed knowledge
of the boundary-layer expansion and separation in the
neighborhood of the sharp corner at the base. Mea-
surements by Hama' have emphasized the complicated
nature of the flow immediately downstream of the
corner, His data also show the expected result that
a significant fraction of the pressure drop occurs up-
stream of the corner. The present investigation is
concerned with the details of this part of the flow just
upstream of the corner, for the case of a thin laminar
boundary layer along a slender wedge or cone at high
Mach number. For simplicity, zero wall heat trans-
fer is assumed, and the gas is considered to be per-
fect and nonreacting, with constant specific heats,
viscosity proportional to temperature, and Prandtl
number equal to one,

Since the Mach number is large, the temperature
in the boundary layer is high, the density and mass
flow are small, and the boundary-layer thickness, s,
is taken equal to the displacement thickness §* (see,
for example, Moore?). The Mach number Mg outside
the boundary layer is of order 1/r, where 7 is the
wedge or cone half-angle. Also, 3*/L = O(Ry2 ),
where L is the body length and Ry is the Reynolds
nurnber based on the iree-stream velocity, the body
length, and the density and viscosity evaluated at the
wall, Then the boundary-layer thickness is small
compared with the distance from the body surface to
the shock wave, provided that the interaction param-
eter MgRy, % is small,

Near the corner the flow outside the boundary
layer may be approximated as a centered Prandtl-
Meyer expansion. The expansion actually begins
somewhat ahead of the corner, because disturbances
can propagate upstream through the subsonic part of
the layer. For a fluid element inside the boundary
layer, pressure and inertia forces rapidly grow
larger as the element approaches the corner, while
viscous forces remain of the same order as further
upstream, except in a thin sublayer. Outside this
sublayer, therefore, the accelerating boundary-layer
flow may be described approximately by inviscid-
flow equations. Since the base pressure is known
from experiment' to be sufficiently low, a fluid ele~-
ment initially at the surface (i.e., just outside the
thin sublayer) will accelerate at least to sonic speed
at the corner. The sonic line is not expected to in-
tersect the surface upstream of the corner, because
streamlines near the surface would have to bend
away from the wall as the pressure continues to de-
crease. In this approximation, therefore, the sonic
line is required to terminate at the corner, andthe

flow upstream of the corner can be studied without
further knowledge of the downstream flow. A sketch
of the flow details is shown in Fig. 1,
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Figure 1, Acceleration of a Hypersonic
Boundary Layer Approaching a Corner

The idea of describing abrupt changes in a bound-
ary layer by the inviscid-flow equations appears in
the literature in several different contexts. For ex-
ample, Morkovin® has observed experimentally the
effect of an expansion wave impinging upon a boundary
layer on the wall of a supersonic wind tunnel, and
finds that an inviscid-flow calculation successfully
predicts the post-interaction velocity profile except
in a thin sublayer. Lighthill® analyzes the inter-
action of a supersonic boundary layer with a weak
pressure disturbance by introducing small perturba-
tions on a parallel shear flow and neglecting viscous
forces except in a sublayer. Zakkay and Tani® use
the concept of a sublayer in studing the boundary
layer just downstream of a sharp corner, as at the
shoulder of a cone-cylinder, with the initial profile
obtained by assuming an inviscid expansion at the
corner. For the same case, an approximate calcula-
tion of changes close to the corner is given by Hunt
and Sibulkin,® using a momentum integral and assum-
ing pressure constant along radial lines,

A numerical solution of the problem to be discussed
here has been obtained by Baum,’ using a finite-
difference method to solve the boundary-layer equa-
tions, supplemented for the initially supersonic por-
tion of the flow by an inviscid transverse momentum
equation; the normal pressure gradient is zero for
the initially subsonic part. Weiss and Nelson® have
obtained an approximate solution by using a stream-
tube calculation (zero normal pressure gradient) for
the fluid which is initially at subsonic speed and a
Prandtl-Meyer expansion for the initially supersonic
part. In the present investigation, approximate
equations are derived which are expected to be
correct in an asymptotic sense for the case of a suf-
ficiently thin hypersonic boundary layer, a method is
shown for obtaining approximate numerical results,
and the procedures for studying the largest neglected
terms are considered.



In the present approach, use of the hypersonic
approximation leads to two distinct inviscid-flow
problems. If the relative pressure change is of
order one, the flow deflection §; at the outer edge
of the boundary layer is of order I/Me. If the flow

deflection 8 is also O(I/Me)inside the layer, the

streamline curvature is small and the normal
pressure gradient is approximately zero. But if

¢ =0(1) inside the layer, the streamline curva-
ture and the normal pressure gradient can no longer
be neglected., Thus two different descriptions, and
two different sets of approximate equations, might
be anticipated. It would appear that both kinds of
behavior really do occur, As the pressure p

first begins to decrease, changes in streamtube
area in the subsonic portion of the layer are domi-
nant. The boundary layer gradually becomes
thinner, and g = 0(1/Me) throughout the layer.

Here the boundary layer may be called subcritical
(see, e.g., the discussion by Lees and Reeves®).
But as theflow continues to accelerate,a critical
value f)c of the pressure is reached, For a further

pressure decrease, the spreading of streamlines
in the supersonic region will dominate. This can
take place only very close to the corner, where the
flow becomes free to turn inward. Since the base
pressure is known from experiment to be quite low,
this further pressure drop is required, and it will
be necessary that 8= O(1) in order that a sufficient
pressure decrease may OCCur.

The approximations outlined in the preceding
paragraph are expected to describe the asymptotic
behavior of the flow in the case of a thin laminar
boundary layer at high Mach number. The hyper-
sonic boundary-layer approximation corresponds
to the limit Me—' = R,~¥ and MeRw - 420, with

%/L and §/R - %L head fixed, where % and ¥ are

coordinates measured, respectively, along and
normal to the body surface, with the vertex as
origin. The two types of behavior discussed in the
preceding paragraph are obtained by taking limits
with Z/L - 1)/MeRw‘ % and (x/L - 1)/Rw— 1, fixed,

An important feature of the approximation is that
the value of Me need not be specified until the end

of the calculation, when solutions in the two limits
are combined for a particular case. The motiva-
tion for the choices of stretched coordinates, and
for the choice of a limit process to describe the
sublayer, is discussed in Section 2,

In Secticon 3 it is shown that solutions to the
corresponding approximate equations can actually
be obtained, and satisfy all the necessary boundary
and matching conditions, The existence of these
solutions provides 2 strong further justification for
the approximation procedure used. The approxi-
mate equations obtained in the first limit can be
integrated directly, and the solution is found to
break down when the pressure reaches a value
such that

_S w2 —
J M- ndy-=o (1)
4]

where M is the local Mach number. This integral
appears in Lighthill's® work, and its importance
has also been noted by Lees.’” The approximate
equations obtained in the second limit are solved

by the method of integral relations for a single
strip, and the sublayer equations are studied in a
similar way. In Section 4 the predicted surface
pressure is compared with experiment' for a parti-
cular case, and an approximate velocity profile at
the corner is calculated. Possibilities for improve-
ment are considered, both by refining the numeri-
cal procedure and by including higher-order effects.
2. ASYMPTOTIC REPRESENTATIONS

A decrease in pressure initially causes the boun-
dary layer on the wedge or cone to become thinner,
and it is expected that the corresponding flow de-
flection is Of I/Me) throughout the layer as well as

at the outer edge. The thickness &* continues to
decrease until a critical value of the pressure p

is reached such that d§ */dp = 0. Since small
changes in the initial profile would not be sufficient
to bring about this condition, along a streamline the
required relative changes in pressure, density, and
velocity will be of order one. Since the approximate
continuity equation must show a balance between
streamline divergence and change in mass flux, it
follows that the initial part of the expansion takes
place over a distance 4 X = O(MeRW“ %»L) upstream

from the corner. The ratic of this distance {o the
body length is of the same order as the ratio of the
boundary-layer thickness to the distance between
the body surface and the shock wave, The present
work is concerned only with values of the para-
meters such that M_R_~ %is small,

Thus it is appropriate to introduce stretched co-
ordinates _ ) :

[N

:_Y—/R

W

~

1
R=(x-LYM_R_*L, ¥ L (2)

and to study a limit

1
e

M >0, R -0, M R =0
e W e w

(3)
& ¥ fixed
Since a p/p =0(1), T/T, =0(M;), and 8 =O(1/M),

the asymptotic representations in this limit are ex-
pected to be of the form

—— AA —y w2 A A
u/ue u(x§) 4 B N, P& +

1A A @
- - = A LA o~
V/_ﬁe'vMe V(XY +- , p/pw'-vp(x,y)-!- *



where U, v are the velocity components in the x,

v directions, respectively; p,s and T are the
pressure, density, and temperature; and the sub-
cripts w, e denote conditions in the undisturbed
boundary layer, at the wall and at the outer edge,
regpectively.

The approx1mate equatlons to be satisfied by the
functions U, ¥, p, and # are obtained from the full
Navier- Stokes equations by taking the limit (3),
and are most convemently expressed in terms of
von Mises coordinates s,% defined by

A AN A A
S:,;\( 3 I\U?_‘ pu, WQ:_PO (5)
Since the upstream intluence of the corner is
small, the {low is nearly two-dimensional both for
the wedge and for the cone. The approximate con-
tinuity and normal momentum equations are

FAYEAY

(v/u}&\/ BA =0 (6)

AA
- (]-ll pu )S ’ l'!/
where 1, p, and pare now to be regarded as
Iunctmns of s and ¥ The entropy of a fluid
element is approximately constant, and, because
the wall heat transfer is zero and the Prandtl
number equals one, the total enthalpy is uniform:

A
b-eqy by, F+lav/v-nlp/h=1 (7
where E (\?f) will be expressed in terms of the
initial velocity profile. The approximation Me>> 1

has been used to evaluate the total enthalpy. Equa-
tions (6) and (7) are inviscid-flow equations with
zero normal pressure gradient; essentially the
same equations were described as "inviscid
aoundary-layer equations™ in a study by Cole and
Aroesty "' of boundary layers with strong blowing.
The largest neglected terms in Egs. {6) and (7) are
O(MQR “%) and O(M ).

Initially the velocity profile is the boundary-
layer profile for a wedge or cone, evaluated at
X = Lt

G0, ) = g' (B) @)

Here g is defined by

X
8 = ( ”d

where x =%/Land r = X; j =0 for a wedge and

j = 1for a cone. The function g (8) is the Blasius
solution, satisfying g"' +gg" =0, £(0) =g'(0) =0,
and ¢’ {=) = 1. Atx =1,

r‘j fy(
0

S v dY
NN

A 1
dy = [2/(25+1)])% g'(p) {9}

Thus 8 = constant along v o= = constant, and each
value of 8 1dentsz1es a streamline. Since P (- =,0)
=landp /P U = (y-1)/27, E(¢ ) is given by
e we
N
E@) = [y )Y

-1 2y (1 - g (10)

At the wall the boundary condition to be imposed is

$(s,0)=0 (11}
and the no-slip condition must be dropped because
viscous effects do not appear in the approximate
equations. At the outer edge of the boundary layer
the pressure and {low deflection are related by the
hypersonic small-disturbance approximation for a
simple wave (given, e,g., by Liepmann and
Roshko'”). Since p = p (s),

N z2 -
Brs)=Tty-172y1[14 3 (v- 1) % (5.00)] 2V V- D1y

As the pressure continues to decrease, the
spreading of streamlines in the supersonic portion
of the boundary layer become dominant. Since the
base pressure is sufficiently low, the further re-
lative changes in pressure, density, and velocity
must be of order one. Relative changes in stream-
tube area must also be of order one., Because the
outer edge of the layer is effectively constrained,
the change in streamtube area can only occur if
g =0(1) for a distance O(R“; % L} upstream from

the corner. The same conclusion would be reached,
by studying the equations in a more formal way.

It will be evident from the solutions that the system
(6), (7, (8), (11), and (12) is not capable of des-
cribing the flow all the way to the corner. If new
approximate equations are really to describe a
different type of behavior, it is necessary that the
effect of streamline curvature be retained, 1t is
assumed that p, 7 , and u undergo relative changes
of order one, and the order estimates for ¢ and

X - L are obtained by requiring the appropriate
balance of terms in the ¥-momentum equation and
in the continuity equation, Further justification for
these ideas is provided by the result {in Section 3)
that solutions can actually be obtained satisfying all
the prescribed conditions.

Thus the critical point, where d3*/dp becomes
zero, is located at a distance o(MeR“; % L} from the

corner, i.e., at X = 0, and the remaining part of the
upsiream expansioh should be described in terms of
coordinates

1 EX
-z -2

X=(X-LYR_"?L , F=73/R

- L (13)

The appropriate limit is

M -0, R -+
e W

¥, ¥ fixed



The boundary-layer thickness will be expressed by
5 =8 /Rw‘ wL, and is approximately constant in

the limit (14) because d § */dX ~ g;<< 1for M, >> 1
The assumed asymptotic representations are

w/u ~T(X, ¥+ B/, u ~B(X,. V) +-

_ (15}

v/ue ~TF(¥, ¥+ -o»"ﬁ/‘pw ~PUE, ¥y 4+
The approximate equations to be satisfied by

these functions are obtained from the full Navier-

Stokes equations by taking the limit (14), A

convenient form is

(P, + (aav)?: 0., (UM + (swv’-)?: 0 {16}

T2V + [2y/ty-01B/F=1, T=EFY 07

where E is again given by Eq. (10),
surface it is required that

At the body

V(% 0)=0 (18)
and the no-slip condition is again lost. At the
outer edge ¥ =4 , the flow deflection is small,
so that in the first approximation it is required
that

(19)

It will also be necessary to require that P (X, 5 ) be
bounded and nonzero. To obtain initial conditions
upstream it is assumed that for any given flow
quantity the solution obtained in the limit (3) for
&% fixed can be matched asymptotically with the
solution obtained in the limit (14) for X fixed. That
is, it is assumed that both solutions are valid
approximations for some class of intermediate
limits such that
X—= - , {20)

®IM —~0 , F/f(M ) fixed
e e

where 1 << (M, )<< M, for M >> 1 (Kaplum' ),

In the first approximation the matching appears
straightforward, and the matching conditions to be
used are simply.

(-0 F)=0 (0, 7)) Pl TI=B(0), ¥(-0T)=0 (21)
where u and p are defined by Eq. (4), and the
result p = p (X) has been used.

Since it is assumed that a common region of
validity exists for the solutions obtained in the two
limits (3) and (14), composite solutions may be
formed which are uniformly valid approximations
in the region of interest - = <x €0, For each flow
quantity the composite expansion is formed by
adding the two solutions and subtracting the common
part:

/8, ~ 8T +TET) - 80, F)
p/3,~BR) +B(XT) - B(0) (22)

In the limit for x fixed, v/G, is small, and so the

solution obtained for X fixed is already uniformly
valid to order one.

Since the no-slip condition is violated by solutions
to the approximate equations given above, a thin
viscous sublayer must exist in which viscous,
pressure, and inertia forces are all of the same
order of magnitude. If the sublayer were studied
in the hypersoenic limit M - = , it would be ne-

cessary to consider one sublayer solution for %
fixed and another for ¥ fixed. In a first approxima-
tion it is doubtful that anything is gained by this in-
creased complication, Therefore the procedure
chosen is to consider a limit RW—W with Me fixed.

This means that the matching conditions for u and p
at the outer edge of the sublayer are expressed in

terms of the composite expansions given in Eq, (22),
and the X coordinadte is stretched by a factor RW' 4L,

It is now necessary to specify MP, because X is to be
replaced by Me‘ "X, but a value of Rw still is not

required. As in ordinary boundary-layer theory,
an order estimate for the sublayer thickness, which
will be a proper stretching factor for the ¥ coordi-
nate, is found by requiring a balance between in-
ertia and viscous forces in the momentum eguation.
This estimate is O(R %L), and so it is appropriate

to introduce a stretched y coordinate .
(23)

The limit to be considered is therefore

¥

.y, (24)

R —+~ow ;
W

The asymptotic representations are

M, fixed

/W, ~ U(F) WETy
(25)

oy~ ¢ (Zy) 4

where U (%) is the expression for ﬁ/ﬁ obtained

from the composite solution (22) by settmg y 0,
and pt has been written as pt (%) in anticipation
of the approximate ¥-momentum eguation pt =0,

The approximate continuity, X-momentum and
energy equations are

LR U -
{p' Uul)y + (p Uv )YT =0 (26)
pJr UuT(UuT);(. + p‘r UZvTuT T=
(27)
tat
-dp [aF+ U’ u T)y‘-'



vu' ¢ 2y/iy-D1p 70 21 (28) . i —_FR,
N - T 9
The viscosity #' =& /uw will be assumed linear in i
T/ 'I‘w. The boundary and matching conditions are .
] . . ﬂ-m_/“—-__vf—‘_\._‘____/——-_;-——u__
uT (%,0) = V—T (¥, =0 , uT(g-, o= 1 {29) b

and the pressure 'pf(i\c) is found from the composite
expansion (22) for P, evaluated at § = 0. A condi-
tion on the behavior of the sublayer solution for

¥ - -» will be given later.

3. SOLUTIONS ‘ ‘ /

The solutions to Egs. (6) and (7), subject to the 2
boundary and initial conditions (8), (11}, and (12), _ : / 5,/3,
are conveniently expressed in terms of a trans- | .
formed X-coordinate defined by ______——-—“"’-' ’
S
¢—1+z(\!-1)V(Soo) (30) .
. 3 .2 -1 Q

where the function v (s, ) is to be determined.

i L/Mg§,
Solutions in terms of ¢ are found to be

B=Tev-vizv) e 2v/ty- (31) Figure 2. I-jg?tf;‘df;;;:lo' U/ T,
. 3 ={l - g'z)_ 4)2/(\* —11) . (32) ' Iljs-ing Eqs. (32) and (33), togt:;-ther with the de-
4= '[.1 -t - g))? N (33) f;:itéor};;f t(gg)}ocal Mach numb;ér M, one can re-
& = f(ds/de) " f{I> (1/Sﬁ)¢d@ {34) dsf'.d¢ = ¢! (ll— ¢:)"’{{'(1 —.M_‘Z‘)‘dﬁf
0

=3 /R ! : )
By the definition (30) of ¢ v ~-2{-¢ )/ (v -1) as where § = /Rw L. As the boundary layer ac

\I, 4 « The transformatmn equation relating s and celerates, a value ¢ = t;bc is reached at which

¢ 1s then obtained by letting ¥ - = in Eq. (34): this integral equals zero, and the solution cannot

. o L be carried further. This is the critical point, and
1 -1 AN 2 the constant of integration is chosen such that s =0
ds/de = -3 -1y (1 - 1/545), d 35) g
s/do = -3 (v- 1) {1l -9 f ( rPily LA there. The critical value of ¢ is found to be ¢ =

0. 9805, not much different from one, but the

For a given value of &, the integrand is a known corresponding values of pressure and, especially,
function of \i! and the mtegratmn over ¥ can be Mach number at the wall do show significant change:
cartied out numerlcally Thus the right-hand side 7 , '
may be regarded as known for each value of ¢, and pC/ P, = 0.871 M(‘) e 7 0. 448 (36)
integration over ¢ can also be carr1ed out, Numer- !
ical results for p, 5 , M, and { o> Where the sub- where f)c/ﬁe is the ratio of the critical pressure
script 0 denotes values at ¥ = 0, are plotted in to the pressure in the undisturbed boundary layer,
Fig. 2. and Mo c is the Mach number at ¥ = 0 for the
' critical profile. The boundary-layer thickness has

It is'of 1nterlest to note the asymptot1c behavmr been reduced by a factor 0. 885, The manner in
fors»-» . Sinceg' (B )~apas 8> 0 which the flow quantities change as ¢»¢ canbe
Rosenhead ' h =
( ~ (192 4 a)’gwqg. e)rs :15 gj%gﬁ Alltsioélg‘is that seen if the r1ght -hand side of Eq (35) is expanded for
[2/(23 + 1)] 5af dB as g - 0, and so the largest small [¢ - ¢ci . One fl?ds ds/d¢ =0 - )’ and
term for ¢ — 1 in the integral in Eq. (35) is therefore s = Ogé - )]as b P Then, for Voo

Of (1 - )3, provided thaté < 1 for !5l< « dso0. 0 -8 =‘(’)(M gl o Hile © o
(accelerating flow). It is then found that ¢ ~ 1 - ane s =% %% e e Isi %), while for s
(v -1 0 "@2j+ 1) s 7as s> @ . with ¥ fixed, Eq. (34) gives ¢ =0(Me_' ls| 7},



That is, the flow deflection inside the boundary layér
becomes large compared with Me‘I as s -» 0. Also,

from Eq. (31), B,/B, - 1 =0( |sl% Yas s -0,

The solution to Egs. {18) and (17), subject to the
boundary and initial conditions (18), (19), and (21),
has been carried out approximately by the method
of integral relations (see, for example,
Belotserkovgkii and Chushkin '*) for a single strip
0 §= 6c' A formulation for an arbitrary

number of strips has also been attempted; this is
discussed briefly in Section 4 and in detail by
Olsson and Messiter.'®

For an N-sirip calculation the continuity and
momentum equation are first integrated across
each of the N strips:

Y
JoOoFEL T e v - h e (3D
Vi1
Yk
Jommgayep_te v P B e (99)
V-1
where in general§ = & (X); Yy = k8 /N, k=1 2,
. N; andp = B(Z, 0}, o =P, ks/N), etc.

Each of the functions #\W and U’V is then repre-
sented through some simple dependence on ¥, such
that the integrations over ¥ can be carried out
easily, and N + 1 unknown functions of ¥ are intro-
duced in each of the representations, For example,
a suitable representation might be a polynomial of
degree N with functions of ¥ as coefficients. In
general these representations may be evaluated at
each strip boundary in order to relate the new
functions of X to the values of the flow quantities
there. Additional relations are provided by the
entropy and total enthalpy equations evaluated at
the strip boundaries, and by the boundary conditions
at y=0and y = 5. The resulting system of equa-
tions can be regarded as a system of firsi-order
ordinary differential equations in X for the flow
variables at each of the strip boundaries.

A polynomial representation clearly will not be
a guitable representation for W because in the
hypersonic approximation FooasV-6. As
V-3, 0r 8- =, the proﬁle g' (8 ) has the be-
havior™ g'(# )~ 1-0.331(¢"'+... exp (-2¢7),
where { =8 - 1, 21678, From Eqs (32) and (33)
it is seen that 1/ =0O{1 -{) as G » 1. Using the
known behavior of g(# ), the expression (9) re-
lating 8 and ¢ , the definition {5) of ¥ , and the
solution (33) for {4, one finds

)
~ A
1-5/6=0{( -0 [-log (1-D]} (39
as U —» 1 with & fixed. These results suggest the
correct initial behavior for Fias ¥ - 1. Asin
other applications of the method of integral rela-

tions to boundary-layer problems (see, for
example, Ref. 15), this behavior is approxtimated
by omitting the logarithmic factor above, There-
fore, as Y3 , 71 is assumed to be O (1 - ¥/ o }

initially, and the representation to he chosen has
this behavior for all ¥. For a one-strip calcula~
tion the choice is

R R ‘“1 B P L

PR = (1 - §/8_ ) [e (%) +cy(X)F/6.] (40)
It is convenient also to introduce the notation
A= ¢, () + ¢, (x}). Using the representation (40)

for 71, one finds that the stream function ¢ is
expressed by

¥= [ puay

== 5 [A log (1 -?jacu cl(?c‘)'v,?/acl (41}

The asymptotic behavior of 1 - '37/5 as ¥ » « can
be found from Eq. (41), Subst1tut1on in Fq. (40) and
in p/p =(F/p )7 then gives

Blp_~(af AC)Y exp [(A_- A) (y&/AAC 8_)

- y{c1,e/ A - c1/A)]

where c c=C (-9, c:p(—,y) and p, =

p(-=,9

= B(O). t p/p is to remain bounded and nonzero as
¥ o,
' A = ¢ (¥) +er(¥) = constant (42)
-1
‘13‘6 = p_ exp [-ya (CI,C- Cl)] {43)
where f’; =P (X, 8) and A is to be determined.

Since 1/F=O(1 - W), the velocity U for ¥ —» 3, has
the form (1 - W~{function of ¥) exp ( - ¥ /A 5.

It also follows from Egs. (37), (40), and (42) that
» V and therefore #0°V are bounded and nonzero
for ¥ »1. The representation chosen for » UV is

.

PIV = d (%) +duF) /5 (44)
The dependent variables for the one- stmp calcu-
lation now include the four flow quantities U, V, B,
and 7 evaluated at ¥ = 0 and the four coeff1c1ents
Cys Cis do, and d, . It is convenient to eliminate

all the flow variables at ¥ = s, except for p. Thus

there are nine dependent variables. The available
equations include the entropy and total enthalpy
equations at ¥ = 0; the boundary condition at ¥ = 0;
and the representatmns for #Tand 74 v evaluated
at ¥ =0

= [(y-1)/2v] po\’
. (45)
w? +[2v/(y-Dlp /e, =



= ¢ =p.u , d =D
Q O o Q Q

At¥ =3
Vv =0 has been used to show thaté= 5o

where u, = V(x, D), etc. the condition

= constant,

and the entropy and total enthalpy equations,
combined with the representation of # 1 for ¥ - Bc’

have been used to obtain the relations (42) and (43).
The remaining two of the necessary nine eguations
are the integrated continuity and ¥-momentum
equatlons (37) and (38), specialized to the case
=1, The representation for # UV may be used

to replace the right-hand side of the integrated
continuity equation, and further simplification
follows since Vo © do =0

c. = & 4, d/ =-2 5(: ([)6 - Po) (46}

By combining these equations and replacing X by

the wall mach number M, as the independent vari-
able, one finds the pair of differential equations

) /aM_ = dp u (e -p,)

. -1
x(L-MIM 1+ (y-ME]T (4T
(a3 o Q
~ N a2
A%/dM_ = §_p u(1-M)
=1 1 1 21-1
xidy | "M [l+§(\(—1)Mo] (48)

The origin of coordinates is located by the condition
M (0) =1, Once a value of A has been chosen, the

right—hand side of Eq. (47) depends only on M .

The integration is started at the critical value
My =M, = 0, 448, given in Eq. (36), and is
H

continued until Mo =1, Numerical results are

discussed in Section 4.

The initial profile assumed for # U can be shown
to be consistent with the integral condition (1} for
a critical point only for a single value of A.
Expansions for AMO = M0 -M . - 0 give

-1

~ 1 - z
Py = Py ~YP M, [1430v-1M]

-1 -2
X - -1
[1-4 Po,cuo,c (Mo,c )] AMO

0
as = a [ (/FT) & ¢
0

i 2

~ (&8 /ve) [ (aB/AB) M7 - 1) dY
0

It is required that 43 = o(aP,). Since Mg = Mc (y}
satisfies the integral condition (1), and smce aPis
expected to increase monotomcally with ¥, it is
necessary that a4 p - Apa =o{aMgas a M, ~ 0.

Thus the only consistent representation for '3 'ﬁ', of
the form assumed, has

{49)

where uo’C = (- =, 0), etc.
is A = 0.708,

of M o' the expansions for AM can he carried out

The numerical value

Since P, and '1‘)'6 are known functions

to lngher order to show that p6 - po

oF| (M - M0 C) } .Since d and ¥/4 are of the same

order, it follows from Eq. (47) that v/u =
{(MO-M )}asMeM
is consistent with transonic small disturbance

theory; the flow deflection is of the same order as
the perturbation in Mach number, or in pressure,

raised to the three-halves power. Then Egs. (44),
(47), and (48) give M_ - M_ . = O(%-?) and

v=0F ")as¥o-w.

Th1s result

The numeriecal integration of Eqs. (47) and (48)
makes use of initial conditions given in Eq. (21),
which are based on the assumption that the zero-
order solutions in terms of X and X can be so
matched. For higher-order approximations the
situation would be guite diff|er}\er_1t. As already noted,
Eq. (34) gives v/u =0 M, X %“)asx -0, but
it has just been shown that v'/ﬁe =OF® )as¥ o .
Thus these two representations of ¥/ ﬁe do not have

the same functional form and the higher-order
matching cannot be carried out. Since the expres-
stons for ¥/T o 2T€ of the same order when

X = O(Me s ) it is expected that approximate equa-

‘gons Imust also be derived for the limit in which
x/ Me*’5 and ¥ are held fixed. In this limit the

largest perturbations in the flow variabges can be
AG/4 = ~% n/eE U= i
shm;:z to be u/:e O(Me AT p/PW a O(Me 9,
? = - v/ = -3
abhh, O(Me 5}, and v/ue —(‘J(Me 5) .
first approximation the governing equations in this

limit include both the approximate momentum equa-
tion ;‘)y = 0 and the approximate boundary condition

Vmlaty=175 *

Ina

Since the coeffxcxent d,approaches a nonzero
constant as ¥ —» 0, it follows from Eq. (48} that
1-M, =O(] %12 ) as ¥ = 0. This behavior is

alsc found by Gold and Holt'in a one-strip calcula-
tion by the method of integral relations for inviscid
supersonic flow past a flat-faced cylinder.
the similarity solution for irrotational transonic
flow near a corner (for example, Fal' kovmh and
Chernov™ ), extended by Vaglio-Laurin'® for
rotational flow, would seem to suggest that the
correct behavior is 1 - M =0(|%X!%)as X -+ 0.

Apparently, integration across the layer relates
the present problem to a one-dimensional flow

However,

R



problem, because Eqg. {48} has the same form

{see Shapiro®) dM®/dx = G(x}/(1 - M*) as would

be obtained for a one-dimensional flow. In general,
G{x) is required to be zero at M = 1, but i G(x)
were to remain positive as M —1 the behavior would
be the same as predicted above, It follows that the
present theory cannot correctly predict details,

such as the shape of the sonjc line and the limiting
characteristic, for X"~ + ¥~ - 0.

Integration of the sublayer equations {26) through
{28), subject to the boundary and matching condi-
tions (29}, has been carried out using a one-strip
method of integral relations. First new independent

variables are intreduced through the transformation”

~ ¥
X ¥
¢ = [ uwpl/pydx, n=uf ofay’ (50
Cw 0
where P, = (¥ -1)/27rand U is the composite solution

(22) for G/Ge evaluated at ¥ = 0, Using

n .
LI Y R A A )
ax dx{ 3& ~ J{‘) (/e U)g dan dny }

one finds the transformed equations
{51)

t ot t \ Ml
mou + wiy -
gtV et a')

+

aM /a 52
0/ £+ u_q_r_| (52}

is the composite solution for the Mach

(22) and

where M
o

number obtained in the manner of Eqg.
evaluated at ¥ = 0, and

]
we-plU qu (1/p'+U)g dn + pft (pe/pT)
0
A . : Fyo_ .k .
set of weighting functions fk(u y=(1-u') is
then introducted,” where k =1, 2,... N, and N
will again he interpreted as the number of strips.

Equations (51) and (52) are multiplied by fk and f}_

respectively, and then added and integrated over »
from 0 to =. Setting® = 8v/3ut, changing the
variable of integration from» to ut, and integrat-
ing by parts, one finds

d L t 1 dIV{o ! t T
d?frku ®du =g 7 J n-u )i} © du
0 o 0

fl O lfi‘l
) k! }_ f St

© @

o 0
where @o is the value of e at ul = 0. If there

were no pressure gradient, it would follow from
the Blasius solution g'(g) that ut =0{ (1 - ut}x

[-log (1 - u' )14 as u? = 1. The same behavior
is assumed for a boundary layer with pressure
gradient, and the behavior is again approximated
by omitting the logarithmic factor. Thus @ is
represented by

N-1
@=(-u 'y am(ﬁ)uTm
m=0
(53}
1 N-1
6=(1-uJZ} b (g)u
m=0

where the coefficients am and bm are related by

the requirement that the representations for »
and /o be mutually consistent at strip boundaries
u, = k/N, wherek =0, 1,,.. ,N-1, For N=1

the differential equation and solutions are found
to be

R | .
d@Z/dE +6 M (dM _/dE) @F = 4

1 -n/®
L E M fM agl? W =1 e 2 (54
-1
y'=4v-ne_ yuph
1
u
x { -ahTi - 2ot
0
+
¥ du?du*

u
vte [(1-d)
0

1t follows from the definition of T and {from the so-~
lutions already obtained that U=0&" ), and
therefore M =0®™), as X » - » . Since the

mass flow between the wall and any other stream-
line is constant, the value of ¥y on any streamline
must be O(X) as ¥»- «» . Integration {rom f=-
in the result for © o gives 0 = 0(1) as X--«,

and the solution for y* therefore has the required
behavior,

For ¥=- » one would expect that the velocity
a/ @, ~ Uu' should match at the outer edge of the
sublayer with the linear term 'L'l/iie = O(F) of the

Blasius profile and not with a velocity U{X). For
X¥—-= along a streamline, ¥ = R~ Wyl o= O(Rw"f& %)
and U = 0(? “'Y are of the same order when

¥= O(R %Y, i.e., whenX/L - 1 =0(R “%Y., This

order est1mate agrees with the estimate given by
nghthxll for the upstream influence of a weak



pressure disturbance in a supersonic boundary
layer. The orders of all flow quantities for
%L -1= O(Rw' % ) can be obtained by systemati-

cally studying the full equations, and it appears that
the present results have the possibility of matching
with a soluticn to the problem studied by Lighthill.
While in the present work the perturbations in the
flow quantities decay algebraically upstream as

¥ - =, Lighthill predicts exponential decay as

o~

R %Xos-«.
w

4, DISCUSSION

Measurements of pressure near the base of a
wedge have been obtained by Hama.' The largest
free-stream Mach number considered corresponds
to values M_ =4.02, R =1.2x 10° , and 5 =

0.10 in., where §, is the boundary-layer thickness
just before the beginning of the expansion, {found
using the definition 8 following Eq. (8) and the total
enthalpy equation:

ol
i

o)
. -1
R T/L f o ap

1

2

L
2

L
=2 (1 -g'?)dp=1.6864x 2°

oy o

Although even this value of Me might be rather low

for use of a hypersonic theory, the other sources of
error to be considered seem to be at least as im-
portant. In Fig, 4 of Ref. T the ratio ﬁo/ ﬁe ; is

plotted against % for three different Mach numbers,
where ﬁo is the measured surface pressure from

Ref. 1 and f)e i is the surface pressure predicted
?

by inviscid-flow theory. In the experiments the
static pressure orifice furthest upstream from the
corner was located at a distancex - L = -1,5 in.,
where L = 4,783 in,, and it is pownted out in Ref.7
that 50 at this location is larger than ﬁe ; because

of viscous interaction. The data shown in Ref, 7
are replotted here as Fig, 3, using values taken
partly from data supplied by Hama and partly from
the figure of Ref. 7. The same data are plotted
in Fig. 4 in the form }')O/fJe vs '5{'/5’ =(®- L5
where § = R“:‘ & /Land B, is the measured pres-

sure at the orifice furthest upstream, It can be
seen from Fig. 4 that the wall pressure ratio
measurements plotted in this way are nearly in-
dependent of the Reynolds number Ry, as would be

predicted by the theory.

Also s};{own in Fig, 4 are the presgure ratio
solution p (X) plotted against ¥ = M, X for M,

= 4,02, the solution p (X, 0), and the corresponding
composite solution (22). Each has been multiplied

by Ew ueZ /i;e , 50 that the values plotted are values

of ;30/ ﬁe. The discrepancy between the calculated

composite solution and the experimental data is
seen to be | AD/P [~ 0,06 or less. This might be
regarded as a rather good result, as compared
with the accuracy usually obtained in a one-strip
calculation by the method of integral relations.
However, the apparent accuracy probably occurs
partly because the result found by the method of
integral relations comprises only part of the solu-
tion, the first part of the pressure drop having been
obtained analytically.

1.1
s A
o y FaY
b
o) | G A
e —e =) 1.0
ol
Q
L 4783 INCHES 4 | 7
Ty 0.500 INCHES 7
; 5° 6 e,
a
0.9
R, @
4
1,2 % 10%
1.5 ¥ 109 o
4.4 % 104
a
0.8
- 15 1.0 -5 o
(¥ L.INCHES
Figure 3. Hama's Wall Pressure Data
for Laminar Flow
SOLUTION FOR p(X}) ——— 19
Am o __/ WITH M, = 4,02
o . -...___.__.J
A T
\Q
° 8] \.-0,9
COMPOSITE \
SOLUTION FOR A
Mo 4,07
ST T -

0.8
SOLUTION FOR 3 (3,0),

ONE STRIP CALCULATION

~ B,
| | "
HAMA'S DATA! 0.7
M, R,
A 1.02 1.2x pd L - 4,783 INCHES
Q3,15 1.5 % 104 N
©2.35 4.4 X 104 v o1.4 0.6
!
0.528
I 0.5
-4.0 30 2.0 -1.0 o

{(x-L./3
1 .
Figure 4. Comparison of Composite Solution for
the Wall Pressure-Ratic with Hama's Data
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The magnitude of the interaction effect upstream
of the corner expansion, as shown by Fig, 3, per-
haps should suggest the importance of the analogous
displacement effect of the sublayer. The sublayer
displacement thickness is positive because fluid in
the sublayer is retarded relative to fluid in the
main part of the boundary layer, but is decreasing
because each fluid element in the sublayer under-
goes a small positive acceleration and consequently
the streamlines are deflected slightly toward the
wall, As explained in Sections 2 and 3, the flow
deflection and the pressure perturbation in the sub-
layer are O(RW“'&). The resulting perturbations in

the main part of the boundary layer are also O(R _2’)

and may be described by inviscid-flow equations

because neglected viscous forces are O(R w‘/z ), the

same order as the perturbations due to ordinary
viscous interaction further upstream. If terms
O(R - ') are included, the pressure at the corner

is Stlll the sonic value, and so the overall presgsure
drop is unchanged. Thus the major effect of the
sublayer is to change slightly the effective shape

of the surface, thereby steepening the pressure
drop close to the corner and shifting the middle
part of the pressure curve in Fig. 4 slightly down-
stream. This predicted shift would lead to better
agreement with experimental results. A second
correction of the same order arises through the
upstream behavior discussed at the end of Section 3.
If for simplicity the Mach number is again held
fixed it appears that a solution is needed for

/1L -1-= O(Rw ~* Y} in order to complete the higher

order upstream matching. Since the pressure per-
turbation in the present solutions has been found to
decay as R "&/L - 1Y7, it is expected that in this

limit (p - p)/p =0O(R ")

drop of thls order would begin ata larger distance
upstream than is shown in Fig, 4, and the upstream
part of the compogite pressure curve would be
shifted slightly downward, One might guess that
this effect is important primarily at large values of
i X0 and that the sublayer effect is_more important
at small and moderate values of [x/ .

That is, a pressure

According to the theory, the pressure drop plotted
in Fig. 4 should begin further upstream at higher
Mach numbers, because the proper nondimensicnal
coordinate is X = Me" X for the initial part of the

expansion. It is evident that the data in Fig. 4 do
not show this behavior. ¥or the given values of
M e and Rw the sublayer effect would cppose the

predicted effect of Mach number. If the sublayer
effect were the major source of error, the pre-
dicted behavior with Mach number might well be
obscured,

Other errors would result from neglecting higher-
order terms in Mach numbex. The first step toward
studying Mach number corrections would be to
consider the special limit for X/ M, ' held fixed, as

11

noted in Section 3, but it seems impossible to guess
the qualitative nature of the correction that would be
found. Another Mach number effect arises because
in the hypersonic approximation T/T =0aty =3,

whereas actually T/T should decrease smoothly
fromO (1) to O(Me ).

mity might be removed by developing a theory
analogous to that of Bush™ for a very thin region
neary = é. ‘

In principle the nongnifor-

The changes in velocity profile for the accelera-
ting boundary layer are shown in Fig. 5 by plots
of u/u vs. ¢ . The two solid curves represent

the initial vélocity profile u/ue =0 «,¥ = 2'(8)
and the profile G/ u, =4(0, y) given by the upstream

solution (33) at ¥ = 0. It is evident that the initial
acceleration of fluid particles along streamlines
is significant only near the wall, but plots of u/u e

vs. ¥ would show that the resulting displacement
of streamlines is significant all across the layer,
For the solution in terms of ¥ and ¥, it is probably
consistent with a one-strip calculation by the method
of integral relations to choose only a linear varia-
tion of W with ¥:

W=u +(-u)y/b, (55)
Egs. (55) and (41) can be combined to give plots of
u/u vs. ¢ for ¥ -~ and X = 0, shown as dotted

curves in Fig. 5. Good agreement is obtained
between the approximate form for U as ¥~ - = and
the solution {33) for 4 at ® = 0. Although the profile
ﬁ/ﬁe at the corner X = 0 may also be fairly aceurate,

the behavior of derivatives with respect to X is not
given correctly as ¥—0 because the singularity at
{he corner is not properly taken into account by the
integral method. Therefore it is not clear how the
present procedure might be used to obtain a profile
for the flow deflection at ¥ = 0,

3 A
— SOLUTION FOR u (x,{)

-------- SOLUTIONS FOR 3 (x.9), ONE
STRIP CALCULATION

(EQS, 41 AND 55)

[BV]

«?

u/T,
Flgure 5, Velocity Profile at Three Stations:
% -, x—O(x-a -o} and X = 0



In an attempt to improve the accuracy of the
numerical method, a two-strip calculation was
investigated in which the intermediate strip bound-
ary was taken to be the streamline at which the
fluid velocity was initially sonic. This formulation
is described in Ref. 18,
in the derivation of upstream asymptotic expansions
for ¥— - = , there was a conceptual difficulty be-
cause it was not evident how the procedure would
be extended for a third strip boundary with initially
subsonic fluid velocity, There appears in one of
the differential equations a denominator which would
vanish at a point where T = a*, the critical sound
speed, exactly as in the application of the method
of integral relations to problems of inviscid flow
past flat-faced bodies.” The solution should pass
smoothly through this point, and so the correspond-
ing numerator is required to vanish simuitaneously.
In the formulation described in Ref. 16 the initial
conditions and expansions for X— - * appeared to
determine the solution completely, and so no down-
stream condition could be imposed., As long as
this situation is not understood, the calculation
for a strip boundary initially sonic would also be
suspect.

In addition to complications

In order to significantly improve the accuracy,
it would be necessary to improve the numerical
procedure and to derive some or all of the higher-
order corrections described. It seems especially
desirable to consider higher-order viscous effects
in greater detail, Although insufficient data are
available for a thorough check against experimental
results, the present solutions are expected to be at
least qualitatively correct, and require only a
rather simple numerical procedure. The assump-
tion of a small interaction parameter MR “h

was essential in limiting the viscous effects near
the corner to a thin sublayer, and cannot be re-
laxed in this analysis. Use of the hypersonic
approximation permits the Mach number Me

effectively to be removed from the problem, since
the analytical and numerical parts of the solution
can be obtained without specifying Me’ and shows

rather clearly the significance of the critical point,

REFERENCES

1. Hama, F.R., "Experimental Investigations of
Wedge Base Pressure and Lip Shock, ' Calif.
Inst. of Tech. Jet Propulsion Lab., Tech.
Rep. No. 32-1033 (1966).

2. Moore, F.K., "Hypersonic Boundary Layer
Theory," Theory of Laminar Flows, ed,

F.K. Moore (Princeton Univ. Press, Princeton,

1964), pp. 491-492.

3. Morkovin, M.V., "Effects of High Acceleration
on a Turbulent Supersonic Shear Layer,' Proc.

of 1955 Heat Trans. and Fluid Mech. Inst,
{(Stanford Univ. Press, Stanford, Calif., 1955).

4. Lighthill, M.J., "On Boundary Layers and
Upstream Influence. II. Supersonic Flows
without Separation,” Proc. Roy. Soc. A 217,
478-507 (1953).

5. Zakkay, V. and Tani, T., "Theoretical and
Experimental Investigation of the Laminar

Heat Transfer Downstream of a Sharp Corner,"

Polytechnic Institute of Brooklyn, Dept. of
Aerospace Eng. and Appl. Mech., PIBAL
Rept. No. 708 (1961),

6. Hunt, B.L. and Sibulkin, M., "An Estimate
of Compressible Boundary Layer Development
Around a Convex Corner in Supersonic Flow,"
Brown University, Div. of Engineering, Rept.
No. Nonr (562)35/6 (1964).

7. Baum, E., "An Interaction Model of a Super-
sonic Laminar Boundary Layer Near a Sharp
Backward Facing Step,” TRW Systems,

BSD TR 67-81 {1966).

8. Weiss, R.F. and Nelson, W., "On the
Upstream Influence of the Base Pressure, "
AVCO Everett Research Report 264 (1967).

9. Lees, L. and Reeves, B.L., "Supersonic
Separated and Reattaching Laminar Flows:
I. General Theory and Application to
Adiabatic Shock-Wave/Boundary-Layer
Interactions, "™ AIAA J. 2, 1907-1924 (1964).
10. Lees, L., "Fiuid Mechanics of Wakes, "
presented at AGARD Conference on Fluid
Physics of Hypersonic Wakes, Colorado
State Univ., Fort Collins, Colo,, (1967).

11. Cole, J.D. and Aroesty, J., "The Blowhard
Problem - Inviscid Flows with Surface
Injection, " RAND Corp., Memorandum
RM-5196-ARPA (1967).

12, Liepmann, H. and Roshko, A., Elements of

Gasdynamics (Wiley, New York, 1957),
p. 268

13. Kaplun, 8., Fluid Mechanics and Singular
Perturbations, ed. P.A. Lagerstrom,
L. N. Howard, and C. S. Liu (Academic
Press, New York, 1967),

12



14,

15,

16.

17.

Rosenhead, L. (ed), Laminar Boundary Layers
{Oxford Univ. Press, Oxford, England, 1963)
p. 224,

Belotserkovskii, O, M, and Chushkin, P. 1.,
"The Numerical Solution of Problems in Gas
Dynamics, " Basic Developments in Fluid
Dynamics, ed. M. Holt (Academic Press,
New York, 1965), pp. 1-126,

Olsson, G.R. and Messiter, A, F,, "Accelera-
tion of a Hypersonic Boundary Layer Approach-
ing a Corner," Willow Run Laboratories of

the Institute of Science and Technology, Univ,
of Michigan, Rept. No. 8416-13-7 (1967).

Gold, R. and Holt, M., "Calculation of Super-
sonic Flow Past 2 Flat-Headed Cylinder by
Belotserkovskii's Method,” Brown Univ., Div,
of Appl. Math., AFOSR Tech. Note No. 5%-199
{1959),

13

14,

19,

20.

21.

Fal'kovich, §.V. and Chernov, I.A., "Flow
of a Sonic Gas Stream Past a Body of Revo-
lution,* PMM 28, 280-284 (1964); Transl.:
J. Appl, Math. "and Mech. 28, 32-347 (1964).

Vaglio-Laurin, R., "Transonic Rotational
Flow over a Corner,' J. Fluid Mech. 9,
§1-103 (1960).

Shapire, A.H., The Dynamics and Thermo-
dynamics of Compressible Fluid Flow
{Ronald Press, New York, 1953), Vol. I,
pp. 255-260,

Bush, W.B., "Hypersonic Strong-Interaction
Similarity Solutions for Flow Pagt a Flat
Plate," J. Fluid Mech. 25, 51-84 (1966).



