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THE HYPERSONIC LAMINAR BOUNDARY LAYER 
APPROACHING THE BASE O F  A SLENDER BODY 

L 

G.R. Olsson* and A. F. Mess i te r t  
The University of Michigan, Ann Arbor, Michigan 

An asymptotic description is obtained for  the ac -  
celeration of a laminar hypersonic boundary layer  
approaching a sharp  corner ,  assuming small inter-  
action with the outer inviscid flow. Viscous fo rces  
are neglected except in a thin sublayer.  The initial 
part  of the expansion takes  place over a distance 
O(Me7,), where Me i s  the external Mach number and 
6 is the boundary-layer thickness. Here the t rans-  
verse  pressure  gradient i s  small  and a solution can 
be obtained analytically. Within a distance O(b) 

f rom the corner ,  the effect of streamline curvature 
is essential ,  and a numerical solution is obtained by 
the method of integral relations f o r  a single s t r ip .  
The solution for surface pressure  is compared with 
experimental resul ts  for a particular case,  and an 
approximate velocity profile a t  the corner  is calcu- 
lated. Possibil i t ies f o r  improving the accuracy are 
considered, both by refining the numerical proce- 
dure and by including higher-order effects. 

SYMBOLS 

A Constant defined in Eq. (42) 0 Similarity variable,  related to 
anl(C), b,(t) Coeffiyients in representations of 0 

rrnrla- l7n f5R) Y Ratio of suecific heats 
s t ream function by Eq. (9) 

, - = .  lii, 
co(2 ) ,  c , ( 2 )  Coefficients in representation of T F ,  6 

P n  lAn\ 
6 *  

7 

-3 .  \A", 

do(%), d, (Z)  Coefficients in representation of 
,.uv. Eo. f44) *-- 

BoundaryIlayer thickness, taken 
equal to 6 *  
Displacement thickness 
Trallsforin('d normal coordinate. 

~ -. 
E Function defined in Eq. (10) Eq. (50) 
fk  Weighting fuuctions in method of e (dut/J?) - '  

W 

L 
M 
N 

P 
Rw 

S 

0 
P 
t 

integral relations 
Transformed s t ream function, de- 
fined preceding Eq. (9) 
0, 1 for wedge o r  cone respectively 
Index defining strip boundary for 
method of integral relations calcula- P 

tion 
Length of body 
Mach number 

V Number of s t r ips  in method of inte- 
era1 relations calculation Subscripts 
I C P res su re  
Reynolds number based on free- 
s t r eam velocity, body length, and 
thermodynamic properties at t he  
body surface 
Streamwise coordinate, equal t o 2  ~ 

Temperature  
Nondimensional velocity a t  outer edge 

Velocity components in x, y direc- 

e 

of sublayer 1 

tions respectively Superscripts 
Transformed normal velocity com- - 
ponent defined following Eq. .(52) 
Coordinates measured along and nor-  
mal to body surface respectively 
Constant g"(0) = 0. 4696 

Flow deflection angle 
Viscosity coefficient 
Transformed s t reamwise coordi- 
nate, Eq. (50) 
Density 
Wedge or cone half-angle 
Transformed s t reamwise coordi- 
nate, Eq. (30) 
Stream function 

Denotes value corresponding to  
cri t ical  profile 
Denotes value at outer edge of un- 
disturbed boundary layer  
Denotes value a t  body surface in un 
disturbed boundary layer  
Denotes value at outer edge of ac-  
celerating boundary layer  
Denotes value for 4 0 
Denotes value f o r  undisturbed 
boundary layer  at j I  = L 

Denotes dimensional quantity 
Denotes nondimensional function of 
2 = (X - L)/MeRw.'rL and 
y = F/R;k L, Eq. (4) 
- 
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Denotes nondimensional function 
x = (X: L)/Rw-% L and 
7 = V/Rw-kL, Eq. (15) 

t Denotes nondimensional function of 
2 = (X - L)/R, 2 L and 

flow upstream of the corner  can be studied without 
fur ther  knowledge of the downstream flow. A sketch 
of the flow details  is shown in Fig. 1. 

- 

1. INTRODUCTION 

SU3LAYER SONIC LINE - 1 -B-[&p 
~ "" ~, ~~ -.* 

0 ?.; & I Calculation of the flow in the near  wake of a slender 
body at hypersonic speed requires  detailed knowledge 
of the boundary-layer expansion and separation in the -------\_------ ------ 
neighborhood of the sharp  corner  a t  the base. Mea- 
surements  by Hama' have emphasized the complicated 
nature of the flow immediately downstream of the 
corner .  His data also show the expected result  that 
a significant fraction of the pressure  drop occurs  up- 

concerned with the details  of this part of the flow just 
upstream of the corner ,  f o r  the case of a thin laminar 
boundary layer  along a slender wedge or cone a t  high 
Mach number. F o r  simplicity, zero wall heat t rans-  Figure 1. Acceleration of a Hypersonic 
fer is assumed, and the gas  is considered to he per-  Boundary Layer Approaching a Corner  
fect  and nonreacting, with constant specific heats,  
viscosity proportional to temperature, and Prandtl  
number equal to one. 

.~ 
'L... .. ,,. 

-1,z 
M;m.R - m , MeRw s t r eam of the corner .  The present investigation is w 

-*O 

DlVlOlNC 
STREAMLINE 

The idea of describing abrupt changes in a bound- 

For  ex- 
a ry  layer  by the inviscid-flow equations appears  in 
the l i terature in several  different contexts. 
ample, Morkovin' has observed experimentally the 
effect of an expansion wave impinging upon a boundary 
layer  on the wall of a supersonic wind tunnel, and 
finds that an inviscid-flow calculation successfully 

in a thin sublayer. Lighthill' analyzes the inter-  

p ressure  disturbance by introducing small perturba- 
tions on a parallel shear  flow and neglecting viscous 
forces  except in a sublayer. Zakkay and Tanis  use 
the concept of a sublayer in studing the boundary 
layer  just  downstream of a sharp  corner ,  as at the 
shoulder 04 a cone-cylinder, with the initial profile 
obtained by assuming an  inviscid expansion at the 
corner .  For  the same case, an approximate calcula- 
tion of changes close to  the corner  is given by Hunt 
and Sibulkin,h using a momentum integral and assum- 
ing pressure  constant along radial l ines.  

Since the Mach number is large,  the temperature 
in the boundary layer  is high, the density and mass  
flow a r e  small ,  and the boundary-layer thickness, 6 ,  
is taken equal to the displacement thickness b* (see,  
for  example, Moore'). 
the boundary layer  is of order  lh, where 7 is the 

where L is the body length and Rw is the Reynolds 
number based on the f ree-s t ream velocity, the body 
length, and the density and viscosity evaluated a t  the 
wall. Then the boundary-layer thickness is small  
compared with the distance f rom the body surface to 
the shock wave, provided that the interaction param- 
e t e r  M ~ R < ' %  i s  small. 

The Mach number Me outside predicts the post-interaction velocity profile except 

wedge or cone half-angle. Also, T*/L = O(R$ ), action of a supersonic boundary layer  with a weak -J 

Near the corner  the flow outside the boundary 
layer  may be approximated as a centered Prandtl-  
Meyer expansion. The expansion actually begins 
somewhat ahead of the corner ,  because disturbances 
can propagate upstream through the subsonic par t  of 
the layer .  For a fluid element inside the boundary here  has been obtained by Baum,' using a finite- 
layer,  p ressure  and inertia forces  rapidly grow difference method to  solve the boundary-layer equa- 
l a rge r  as the element approaches the corner ,  while tions, supplemented f o r  the initially supersonic por- 
viscous forces  remain of the same order  as fur ther  tion of the flow by an inviscid t ransverse  momentum 
upstream, except in a thin sublayer. Outside this equation; the normal pressure  gradient is zero f o r  
sublayer,  therefore,  the accelerating boundary-layer the initially subsonic par t ,  Weiss and Nelson' have 
flow may be described approximately by inviscid- obtained an approximate solution by using a s t ream- 
flow equations. Since the base pressure  is known tube calculation (zero normal pressure  gradient) for 
f r o m  experiment' to be sufficiently low, a fluid d e -  the fluid which is initially a t  subsonic speed and a 
ment initially a t  the surface (i. e. , just outside the Prandtl-Meyer expansion for  the initially supersonic 
thin sublayer) will accelerate a t  least  to sonic speed part .  In the present investigation, approximate 
a t  the corner .  equations are derived which a r e  expected to be 
te rsec t  the surface upstream of the corner ,  because correct in an asymptotic sense f o r  the case  of a Suf- 
st reamlines  near the surface would have to  bend ficiently thin hypersonic boundary layer,  a method i s  
away from the wall as the pressure  continues to de- shown for obtaining approximate numerical resul ts ,  
c rease .  In this approximation, therefore,  the sonic and the procedures for  studying the largest  neglected 
line is required to terminate a t  the corner ,  and the  t e r m s  a r e  considered, 

A numerical solution of the problem to  be discussed 

The sonic line is not expected to in- 

J 
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- In the present approach, use of the hypersonic 
approximation leads to two distinct inviscid-flow 
problems. If the relative pressure change is of 
order  one, the flow deflection 8 6  at the outer edge 

deflection 8 is also O(l/M-)inside the layer, the 

6 I (M-* - 1 )  dy = 0 (1) 
0 

where M is the local ~~~h number, u Of the boulldary layer is of order l/Me, If the flow  hi^ integral 
appears in Lighthill's work, and i t s  importance 

5 

streamline curvature is  small  and the normal 
pressure gradient is approximately zero. But if 
0 = O(1) inside the layer,  the  streamline curva- 
ture  and the normal pressure gradient can no longer 
be neglected. Thus two different descriptions, and 
two different se t s  of approximate equations, might 
be anticipated. It would appear that both kinds of 
behavior really do occur. As  the pressure B 
f i r s t  begins to decrease,  changes in streamtube 
area in the subsonic portion of the layer a r e  domi- 
nant. The boundary layer gradually becomes 
thinner, and e = 0(1/M ) throughout the layer. 

Here the boundary layer may be called subcritical 
(see, e. g . ,  the discussion by Lees and Reeves9).  
But as theflow continues to accelerate ,a  cri t ical  
value oc of the pressure is reached. For a fur ther  

pressure decrease,  the spreading of streamlines 
in the supersonic region will dominate. This can 
take place only very close to the corner,  where the 
flow becomes free to turn inward. Since the base 
pressure is known from experiment to be quite low, 
this further pressure drop is required, and it will 
be necessary that 8 =  O(1) in  order  that a sufficient 
pressure decrease may occur. 

e 

The auuroximations outlined in the urecediw 

has also been noted by Lees.'O The approximate 
equations obtained in the second limit are solved 
by the method of integral relations f o r  a single 
s t r ip ,  and the sublayer equations are studied in a 
s imilar  way, In Section 4 the predicted surface 
pressure is compared with experiment '  f o r  a parti-  
cular case, and an approximate velocity profile at 
the corner  is  calculated. Possibilities for  improve- 
ment are considered, both by refining the numeri-  
cal  procedure and by including higher-order effects.  

2 .  ASYMPTOTIC REPRESENTATIONS 

A decrease in pressure  initially causes  the boun- 
dary layer on the wedge or cone to become thinner, 
and it is expected that the corresponding flow de- 
flection is O( I/Me) throughout the layer as well as 
at the outer edge. The thickness x*  continues to 
decrease until a cri t ical  value of the pressure  l7 
is reached such that dB */d@ = 0. 
changes in the initial profile would not be sufficient 
to bring about this condition, along a streamline the 
required relative changes in pressure ,  density, and 
velocity will be of order  one. Since the approximate 
continuity equation must show a balance between 
streamline divergence and change in mass  flux, it 
follows that the initial Dart of the exuansion takes 

Since small  

- p a r a g r a s  are expected to describe the asymptotic 
behavior of the flow in the case of a thin laminar 
boundary layer at  high Mach number. The hyper- 
sonic boundary-layer approximation corresponds 
to the limit Me+-, Rw+Y and M R - W ' O ,  with 

Z/L and V/R - % L  head fixed, where a and 7 a r e  
coordinates measured, respectively, along and 
normal to the body surface,  with the vertex as 
origin. The two types of behavior discussed in the 
preceding paragraph ?re obtained by taking l imits 
with (%/L - 1)/MeRw-A and (x/L - l)/Rw- P2 fixed. 
An important feature of the approximation is that 
the value of M need not be speclfied until the end 

of the calculation, when solutions in the two limits 
are combined for  a particular case.  The motiva- 
tion for the choices of stretched coordinates, and 

place over a distance d E = O(MeR;>?L) upstream 

f r o m  the corner.  The rat io  of this  distance to the 
body length is  of the same order  as the rat io  of the 
boundary-layer thickness to the distance between 

e w  the body surface and the shock wave. The present 
work is concerned only with values of the para-  
meters  such that MeRw- 'his  small. W 

Thus it is appropriate to introduce stretched co- 
ordinates 

Q =  (;-L)IMeRw-'L , ~ = ~ l R w - ' L  (2) 

and to study a limit e 
I 

M e - m , R  w + m ,  MeRW-'+O 
f o r  the choice of a limit process to describe the (3 )  
sublayer, is discussed in Section 2 .  2,  7 fixed 

In Section 3 it is shown that solutions to the Since A p/@ = 0(1), T/T e = O(M2), e and 8 = 0 ( 1 / M  e ), 

pected to be Of the form 

corresponding approximate equations can actually 
be obtained, and Satisfy all the necessary boundary the asymptotic representations in this limit are ex- 
and matching conditions. The existence of these 
solutions provides a strong fur ther  justlficatlon for 
the approximation procedure used. The approxl- - u l u , - u ( x  - A . jq t . . .  , . D / p w c ; - p ( x , 3  t'.. 
mate equations obtained in the first limit can be 

_ _  A h  

(4) integrated directly, and the solution is found to - - 1 A  A A A  - break down when the pressure reaches a value v/Ti,-Me v ( x , ~  t..., T / F w - p ( x , T )  t " '  

such that 
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where i~, 
y directions, respectively; p, P and T are the 
pressure ,  density, and temperature;  and the sub- 
c r ip t s  w, e denote conditions in the undisturbed 
boundary layer ,  at the wall and at the outer edge, 
respectively. 

are the velocity 5ompone;ts in the 2, - 

The approximate equations to  be satisfied by the 
functions u, v,  p, and P a r e  obtained f r o m  the full 
Navier-Stokes equations by taking the limit (3),  
and a r e  most conveniently*expressed in t e r m s  of 
von Mises coordinates s ,q  defined by 

(5) 
A 

Since the upstream influence of the corner  is 
small ,  the flow is nearly two-dimensional both f o r  
the wedge and f o r  the cone. The approximate con- 
tinuity and normal momentum equations a r e  

* A A  

where u, v, p, andAP^are now to  be regarded as 
functions of s and q . The entropy of a fluid 
eleinent is approximately constant, and, because 
the wall heat t ransfer  is zero  and the  Prandtl 
number equals one, the total enthalpy is uniform: 

P ^ ' E ( j ) $ Y ,  P t [ z Y / ( y - I ) ] " p $  = 1  ( 7 )  

where E ( G )  will be expressed in t e r m s  of the 
initial velocity profile. The approximation Me>> 1 

has  been used to evaluate the total enthalpy. Equa- 
tions (6) and (7) a r e  inviscid-flow equations with 
zero  normal pressure  gradient; essentially the 
same equations were described as "inviscid 
Joundary-layer equations" in a study by Cole and 
Aroesty " of boundary layers  with strong blowing. 
The la rges t  neglected t e r m s  in Eqs. (6) and (7) a r e  
O(MeRw%) and O(Me- ). 

Initially the velocity profile is the boundary- 
layer  profile for  a wedge or cone, evaluated at 
j;. = L: 

G ( - m , $ )  = 6 '  (P )  (8) 

Here p is defined by 

where x = %/L and r = x; j = 0 f o r  a wedge and 
j = 1 for a cone. The function g ( a )  i s  the Blasius 
solution, satisfying 6"' t g g" = 0, g(0) = g'(0) = 0, 
and g' ( m )  = 1. At x = 1, 

L 

<I$ .: [ ~ / ( ~ j t ~ ) ] s  gt(p) d p  ( 9 )  

Thus p = coiistant along $ = constant, and Each 
value of 0 identifies a streamline. 
= 1 and pe/pwUe = ( u  - l ) / Z u ,  E(# ) is given by 

Since P (- - , 0 )  

E($)  = [(Y- l ) / z v l  (1 - 6'z)y (10) L/ 

At the wall the boundary condition to be imposed is 

( 1 1 )  

and the no-slip conditioli must be dropped because 
viscous effects  do not appear in the approximate 
equations. At the outer edge of the boundary layer 
the pressure  and flow deflection a r e  related by the 
hypersonic small-disturbance approximation for a 
simple wave (given; e.  g. , by Liepmann and 
Roshko").  

A " ( s ,  0)  = 0 

Since $ = $ ( s ) ,  

ZYI(Y - 1) (12) 6 ( s ) =  I ( v -  l ) / 2 Y l [  I t + ( v -  1) G ( S , r n ) I  

As  the pressure continues to  decrease,  the 
spreading of streamlines in the supersonic portion 
of the boundary layer  become dominant. Since thc 
base pressure is sufficiently low, the further re- 
lative changes in pressure ,  density, and velocity 
must be of o rde r  one. 
tube a r e a  must also be of order  one. Because the 
outer edge of the layer is effectively constrained, 
the change in streamtube area can only occur if 
e = O(1) for a distance O(R -%L)  upstream from 

the corner.  The Same conclusion would be reached. 
by studying the equations in a more formal way. 
It will be evident f r o m  the solutions that the system 
(6) ,  (71, (E), (ll),  and (12) i s  not capable of des- 
cribing the flow all the way to  the corner.  If new 
approximate equations are really to  describe a 
different type of behavior, it is necessary that the 
effect of streamline curvature be retained. It i s  
assumed that 5, P , and 6 undergo relative changes 
of order  one, and the o rde r  estimates for  e and 
si - L are obtained by requiring the appropriate 
balance of t e r m s  in the ?-momentum equation and 
in the continuity equation. Further justification for 
these ideas i s  provided by the resul t  (in Section 3) 
that solutions can actually be obtained satisfying all 
the prescribed conditions. 

Relative changes in s t ream- 

W 

Thus the cr i t ical  point, where d6*/dp becomes 
zero,  1s located at a distance o(M R %L) f rom the 

corner ,  i. e . ,  at 2 = 0, and the remaining part of the 
upstream expansion should be described in t e r m s  of 
coordinates 

e w  

I 

E=(?- L)/R W -'L , ~ = ~ / R w " L  ( 1 3 )  

The appropriate limit is 
1 

M -* m I Rw - m , MeRw-' - 0 
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The boundary-layer thickness will be expressed by In the limit f o r  2 fixed. V/U is small .  and so the ~ ~~~ " e  ~ ~~ 

6 = ;d /R -&L, and is approximately constant in  

the limit (14) because d b */c& = Os<< 1 fo r  Me>> 1 
W solution obtained for 2 fixed is  already uniformly 

valid to order  one. 
The assumed asymptotic representations are 

- 
U/Ue-Z(? ,  7 )  t ..., p / p  U *  - F ( z ,  7 )  t . . .  
- (1 5 )  
v /Ue - T ( Y ,  7 )  t . . . ,7; I?, -i7( z, 7 )  t . . . 

w e  

The approximate equations to be satisfied by 
these functions a r e  obtained from the full Navier- 
Stokes equations by taking the limit (14). A 
convenient form is 

m3)% t G?)- = 0 , GZ?lr t ( a t  TTz)Y = 0 (16) 

- 2  U cz t [ 2 y / ( y - 1 ) 1 ~ / ~ = 1 ,  F = E p  -' (17 )  

Y 

where E is again given by Eq. (10). At the body 
surface it is required that 

(18 )  
- -  
v ( x .  0 )  = 0 

and the no-slip condition is  again lost. At the 
outer edge 7 = 6 , the flow deflection is small ,  
so that in the f i r s t  approximation it is required 
that 

(1 9 )  v ( x ,  6 )  = 0 

It will also be necessary to require that 'ij (g, 6 ) be 
bounded and nonzero. 
upstream it is assumed that f o r  any given flow 
quantity the solution obtained in the limit (3) f o r  
fi fixed can be matched asymptotically_with the 
solution obtained in the limit (14) for x fixed. That 
is, It is assumed that both solutions a r e  valid 
approximations for some c lass  of intermediate 
l imits  such that 

- -  

To obtain initial conditions - 
- x - - m  , T I M , - O  I Z / f ( M  ) fixed (20) 

Since the no-slip condition is violated by solutions 
to the approximate equations given above, a th in  
viscous sublayer must exist in which viscous, 
pressure,  and inertia forces  a r e  a l l  of the same 
order  of magnitude. If the sublayer were studied 
in the hypersonic limit M -t - , it would be ne- 

cessary to consider o2e sublayer solution f o r  .? 
fixed and another for x fixed. 
tion it i s  doubtful that anything is gained by this in- 
creased complication, Therefore the procedure 
chosen is to consider a limit R -- with Me fixed. 

This means that the matching conditions for U and f, 
at the outer edge of the sublayer a r e  expressed in 
t e r m s  of the composite expansions given in Eq. (22), 
and the  X coordinate is stretched by a factor R %L. 

It is now necessary to specify Me, because x^ is to be 
replaced by Me- % , but a value of Rw sti l l  i s  not 

required. A s  in ordinary boundary-layer theory, 
an order  estimate for the sublayer thickness, which 
will be a proper stretching factor  fo r  the 7 coordi- 
nate, is found by requiring a balance between in- 
e r t ia  and viscous forces  in the momentum equation. 
This estimate is O(Rw-%L), and so it is appropriate 
to introduce a stretched 7 coordinate. 

e 

In a f i r s t  approxima- 

W 

W 

yt -ylRW"L (2  3) 

The limit to be considered is therefore 

(24) 
- t  x ,  y . M<, fixed Rw - m i 

The asymptotic representations are 
zliie-U(z)u t (Y,?) t'.. 

where I << f(Me)<< M~ for M,>> 1 (Kaplum" ). - v/iie-Rw-' U ( z ) v t ( % , y t )  t . . .  

- plFwii~ -pt(z) t . . . 

3 ( - m 3 7 ) = C ( 0 , y ) ,  a(-m,y)=p"(o), s ( - ~ , Y ) = o  (7.1) P I P w - P t ( ? , Y  ) + . . .  

In the f i r s t  approximation the matching appears 
straightforward, and the matching conditions to be 

(2  5) 

used are simply. 
t _ _  

where $ an; t a r e  defined by Eq. (4), and the where U (3 is the expression for  ii/iie obtained 

f r o m  the composite solution (22) by setting y = 0, 
and p t  has been written as pi (jo in anticipation 
of the approximate ?-momentum equation P+ : 0. 

result  p = p (x) has been used. 

validit" exists f o r  the solutions obtained in the two 

5 

Since it is assumed that a common region of 

t t  (26) 
quantity the Composite expansion is formed by 
adding the two solutions and subtracting the common 
part: 

( p t U u t ) ? t ( p  U V )  t = o  
Y _ -  A h -  - - -  

u / u e - u ( x , y )  t U ( X , Y )  - G ( 0 , 7 )  t t t  t z t t  

p I P e - f ; ( %  tF(X7)  - B(0) - dp t / d Z t  U(Ptut t )  + 
7/iie-7(%,7) Y Y  

p uu (UU )%t p u v u t =  
(27)  

Y 
' ( 2 2 )  

- 

- 
J 



U"+Z t [ 2 y / ( y -  l ) ]  p + / J  = 1 ( 2 8 )  

will be assumed l inear  in The viscosity pt = C / C  

T/T . The boundary and matching conditions a r e  

u ( Z O )  = v ( % O )  = 0 , u ( Z m )  = 1 ( 2 9 )  

W 

W 

t t t 

t and the pressure  p (3 is found f rom the composite 
expansion (22) for D, evaluated a t  j; = 0. ' A condi- 
tion on the behavior of the sublayer solution for 
x -, - rn will  be given later. 

3 .  SOLUTIONS 

- 
. .  . .  . .  

The solutions to Eqs. (6) and (?), subject to the 
boundary and initial conditions (8) ,  ( l l ) ,  and (12), 
are conveniently expressed in t e r m s  of a t rans-  
formed Z-coordinate defined by 

( 3 0 )  
A + = 1 t + (y - 1) v(s ,m) 

where the function 6 (s, - )  is to  be determined. 
Solutions in t e r m s  of + are found to be 

(31) 

(32) 

A 2 y l ( y -  1) P = [ ( v -  1 ) /2YI  '+ 
* - 1  + Z / ( u -  1) 

$ = ( l - g ' )  

u = [ 1  - + " l - g ' 2 ) ] 2  
1 - 

( 3 3 )  
A 

By the definition (30) of 6 ,$ - -2(1- 6 )/(Y -1) as 
j - 
6 is then obtained by letting V -+ - in Eq. (34): 

The transformation equation relating s and 

For a given&value of 6 ,  the integrand i,s a known 
function of *, and the integration over 9 can be 
car r ied  out numerically. Thus the right-hand side 
may be regarded as known for each value of 4 ,  and 
integration overA+ can also be :arried out. 
ical resu l t s  for p, 6 , Mo, and uo, where the sub- 

Numer- 

sc r ip t  0 denotes values at 7 = 0, are plotted in 
Fig. 2.  

It is 'of interest  to note the asymptotic behavior 
for s+- 
(Rosenhead'* 

[ Z/(ZJ + 1)]20!3 dB as ,9 - 0, and so the largest  
t e r m  fo r  9 + 1 in the integral in Eq. (35) i s  
O /  (1 - 4 ) - ! } ,  prov ided tha t@< l f o r  I s I < -  
(acce1:ra:ing flow). It i s  then found that 4 - 1 - 
(I -1) a ( Z j  + I ) - '  s - 'as  s + -  , 

. Since g' ( p  ) -  a p ' a s  B - 0 
), ?here n =, 0 . 4 6 9 6 ,  it foll2ws that 

6 - (1 - 9 '  + B + ' ) ' h  9s 4 - 0 .  A l s o d + -  

1 .o 

.9 

r 1- -- - - - I 1  

- 3  2 - 1  0 

1; L / M e z ,  

Figure 2 .  Solution for M ~ ,  iidiie, 
and f//B1 

Using Eqs.  (32) and (33), together with the de- 
finition of the local Mach numbgr M, one can re- 
write Eq. (35): 

6 
ds /d+  = +-' (1 - + ) - I  s ' ( 1  - M-') d; 

J' . o  
where S = b /R  L. AS the boundary layer  ac -  
celerates ,  a value 6 = 6c 

this  integral equals zero,  and the soluti,on cannot 
be car r ied  fur ther .  This  i s  the cri t ical  point, and 
the constant of integration i s  chosen such that s = 0 
there.  The crit ical  value of 6 i s  found to  be = 

0.9805, not much different f r o m  one, but the 
corresponding values of pressure  and, especially, 
Mach number at the wall do show significant change: 

W 
is reached a t  which 

. ,  
- p,/p, = 0.871 M = 0 . 4 4 8  ( 3 6 )  

0. c 

where i c /Pe  is the ratio of the cri t ical  p ressure  

to the pressure  in the undisturbed boundary layer,  
and M 

0 ,  c 
cri t ical  profile. The boundary-layer thickness has 
been reduced by a factor 0.885. 
which the flow quantities change as 6 - %  
seen if the right-hand side of Eq. (35) i s  expanded for 
s m a l l l d - 4 c l .  Onef indsds /d+  =0(6 -"),and 

therefore  s = 0[6 - 6C);]as 6 - m e ,  Then, for  * + rn 

and s + 0, ob - 0  * , c  e 
with $ fixed, Eq. (34) gives 0 = O(Me-' I s  

is the Mach number a t  = 0 for the 

The manner in 
can be 

n 

= O(M - '  I s  1 "z), while for s + 0 

6 



That is ,  the flow deflection inside :he boundary layer 
becomes large compared with M as s 4 0. Also, 

f rom Eq. (31), pc/pe - 1 LO( I s  1 % ) as s + 0. 
e 

v The solution to Eqs. (16) and (l?), subject to the 
boundary and initial conditions ( le) ,  (19), and ( Z l ) ,  
has been carr ied out approximately by the method 
of integral relations (see, f o r  example. 
Belotserkovskii and Chushkin ") for a single s t r ip  
0 5 y - . A formulation for  an arbi t rary 
number of s t r ips  has also been attempted; this is 
discussed briefly in Section 4 and in detail by 
Olssnu aud Messiter.'6 

- <  6c  

For an N-strip calculation the continuity and 
momentum equation are f i r s t  integrated across  
each of the N strips:  

'k s (t=kd?= Pk.l V k - l  - P k V k  (37)  
'k- 1 

yk 
J (?Ti?) x d ? = p  k-l"k-1"k-f- pk- p k v i  (38) 

'k- 1 

where in general 6 = 6 6); yk = k 6 /N, k = 1, 2, 

. . . , N; 

Each of the functions ;;and F c F  is then repre-  
sented through some simple dependence on y, such 
that the integrations over 7 can be carr ied out 
easily, and N + 1 unknown functions of x" are intro- 
duced in each of the representations. 
a suitable representation might be a polynomial of 
degree N with functions of 3 as coefficients. In 
general these representations may be evaluated a t  
each s t r ip  boundary in order  to relate the new 
functions of ? to the values of the flow quantities 
there.  Additional relations are provided by the 
entropy and total enthalpy equations evaluated at 
the-strip bou_ndaries, and by the boundary conditions 
a t  y = 0 and y = 6 .  The resulting system of equa- 
tions can be regarded as a system of f i r s t -order  
ordinary differential equations in  Z fo r  the  flow 
variables at each of the s t r ip  boundaries. 

a suitable representation for 75 because in the 
hypersonic approximation 7- & as F --f 6 .  As 
y - 6, o r  P -+ - , the profile g' ( B  ) has the be; 
h a ~ i o r ' ~  g ' ( 0 ) -  1 - 0 , 3 3 1 ( f - ' + . . . ) e x p ( - % f  ), 
where f = b - 1. :1678. From Eqs. (32) and (33) 
it is seen that I/P = 0(1 - 6) as fi -+ 1. Using the 
known behavi2r of g '(P ), the expressnion (9) re- 
lating p and $ , the definition (5) of + , and the 
solution (33) for  3, one finds 

and po = P(Z, O), pk = :(.", k 6 /N), etc. 

u 
For example, 

A polynomial representation clearly will not be 

- 

* 
h 

1 - 7/6 = 0 { ( l  - u) [-log (1 - $1 ) ( 3 9 )  

as  --t 1 with 2 fixed. Thes$_results suggest the 
correct  initial behavior f o r  P u as li + 1. A s  in 
other applications of the method of integral re la-  

-, 

7 

tions to  boundary-layer problems (see, for 
example, Ref. 15), this behavior is approximated 
by omittiEg the icgarithmic factor  above. Tkere-, 
fore ,  a s y + & , p u i s a s s u m e d t o b e  0 { ( 1 - ~ / 6 ~ ) - }  

initially, and the representation to be chosen has  
this behavior for all x". For a one-strip calcula- 
tion the choice is 

-- 
p u  = (1 - 7/6c)-1 [ c o ( Z )  t c1(:)  7/i;/ac1 (40) 

It is convenient-also to introduce the notation 
A = co G) + c ,  (x). Using the representation (40) 
for  72, one finds that the s t r eam function I is 
expressed by 

I 

- 
Y 

0 
$ = Fii d 3  

= - 6 c  [ A  log (1 -T//bc)t c ~ ( ? )  T//6=] (41) 

The asymptotic behavior of 1 - ?/6c as ?-+ m can 

be found f rom Eq. (41). Substitution in Eq. (40) and 
in F/p = (."/P c)7 then gives 

C - 
PIP, - - ( A / A ~ ) ~  exp [ ( A ~ -  A) ( Y $ / A A ~ ~ ~ )  

- Y ( c i , c / A ,  - c i / A ) I  - where c = c (--), P = 7(--,7), and p C s  p (--,R 
= $(O). d k i P c  i s  to remain bounded and nonzero as  

c -  

5 4-, 
(42) A = c,(?) t c  ,( 2' ) = constant 

(43) 
- I  a = p  e x p [ - y A  (c , ,c  - c, 11 6 c  

* 
where Pa = 

Since l/r= 0(1 - "u), the velocity Zfor 7 -  6c has  

the f o r m  (1 -%)-(function of%) exp ( -? /AaC).  
It a lso follows f rom Eqs. (37), (40), and (42) that 
F ?  and therefore P U  v are bounded and nonzero 
for ii -1. The representation chosen f o r  P u v 1s 

(g, 6 )  and A is  to be determined. 

..,_- 
-* - .  

(44) 

The dependent variables for the one-stri_p c.1Cu- 
lation now include the four flow quantities u, v, 5, 
and 7 evaluated a t  7 = 0 and the four coefficients 

c , ,  do, and d ,  . It is convenient to eliminate 
a l l  the flow variables at  7 = 6c  except for  p. Thus 
there are nine dependent variables.  The available 
equations include the entropy and total enthal_y 
equations at y = 0; the boundary condJsLn at y = 0; 
and the representations for ?'fl and p u v evaluated 
at 7 = 0: 

--- 
C 

puv  = d ( ? )  + dl(2 ' )  7 / 6  
0 

0' 

Y Po = [(Y - l ) / Z Y l  Po 

uz t [2Y/(Y- l ) l P o / P o  = 1 
(45) 



Thus the only consistent representation f o r  z, Of 

, d z 0  the form assumed, has  Y = 0 , c o =  p,u, 
0 

- 2  where  u 0 = S(F, 0), etc. At 7 = 6 the condition A P",C uo,c (M",,. - (49) 
? = 0 has been used to show that 6 = 6 = constant, 

and the entropy and total enthalpy equations, 
- -J 

where u = u(- -,O), etc. The numerical value 

is A = 3.708. Since p and are known functions 

of M , the exriansions for A M  can be carr ied out 

0, C 
combined with the representation of 7 3  for y- aC,  
have been used to obtain the relations (42) and (43). 

0 

0' 0 The remaining two of the necessazy nine equations 
are the integrated continulty and y-momeotum 
equations (37) and (38), specializ:d_to the case 
N = 1. 
to reolace the rizht-hand side of the intewated 

to higher order to show that - p = 

0 { (Mo - M 
0 

f \  ,Since d ,  and V/ii  are of the same 
The representation f o r  P u v may be used 0, c 

order ,  it follows from Eq. (41) that ?'/ne = - 
continuity equation, and further siniplifiiatioli 0 { (Mo - Mo,c)'2\ as Mo - M .This  result  

is consistent with transonic small-disturbance 
theory; the flow deflection is  of the same order  as 

'C  (l'6 (46' the perturbation in Mach number, or in pressure,  
raised to the three-halves power. Then Eas.  (44). 

follows since v = d = 0: 0 ,  c 
0 0  

- 1  
d ;  = - - 1  

c,' = 6 =  d ,  

- .  
(47), and (48) give Mo - Mo, - v =o(x"-')as%-- m . 

= o(r-2) and By combining these equations and replacing % by 
the wall niach number Mo as the independent Vari- 
able, one finds the pais of differedtial equatiolls The numerical integration of Eqs. (47) and (48) 

0 0 0  6 0 which are based on the assumption that the zero- 
makes use of initial conditions given in Eq. (21), d ( d t ) / d M  = 4 p  u (p - p ) 

order  solutions in ternis  of 

situation would be quite diffFrz',e"t. A s  :heady noted, 
Eq. (34) gives i;/U = O(M; x 2 ) as x + 0, .but 

it h a s  just been shown that ?/fie = O(x" -' ) as 2 + - . 
x \ d ,  I Mo [ l + $ ( V - l ) M o l  ' -' (48) Thus these two representations of V/Ge do not have 

the same functional fo rm and the higher-order 

sions for F/ii are of the same order  when 

and x" can be so -1 2 - 1  

d%//dM 0 = b c p , U o ( l - M ~ )  e 

x(1  - M:iM,, [ 1 ti' (V - 1) Mo 1 (47) matched. For higher-order approximations the 

-1 -1 

.d 
The origin of coordinates IS located by the condition 
Mo(0) = 1, Once a value of A has been chosen, the matching cannot be carr ied out. Since the expres- 

right-hand side of Eq. (47) depends only On Mo. 
The integration is s tar ted at the c n t i c a l  Value 
Mo = M = 0.448, given in Eq. (36), and is 

continued until Mo = 1. Numerical resul ts  are 
discussed in Section 4. 

e 
= O(M v5 ) it is expected that approximate equa- e 

;ons,must also be derived for the limit in which 
x/Me15 and 7 are held fixed. In this limit the 
largest  perturbations in  the flow variables can be 
shown to be Aii//iie = O(Mi'4, A ii/Fw 6; = O(M -9, e 
A F//P;V=O(Me-''9), andV/ii e =O(M e - % ) .  I n a  
f i r s t  approximation the governing equations in  this 
limit include both the approximate momentum equa- 
tion 0 0 and the approximate boundary condition 
V n O a t S . =  % *, 

Since the coefficient d,approaches a nonzero 
constant as % -, 0, it follows from Eq. (48) that 
1 - Mo = O(/ %(A ) as x"- 0. This behavior is 

tion by the method of integral relations f o r  inviscid 

the similarity solution for irrotational transonic 
flow near a corner (for example, Fal'kovich and 
Chernov" ), extended by Vaglio-Laurin" for  
rotational flow, would seem to suggest th? the 
correct behavior is 1 - Mo = O( /?I%) as x -+ 0. 
Apparently, integration across  the layer re la tes  
the present problem to a one-dimensional flow 

0 ,  c 

The initial profile assumed f o r  ii can be shown 
to be consistent with the integral condition (1) for 
a critical point only for a single value of A. 
Expansions for   AM^ F Mo - M 

F6 -P,-YP,Mo,c [ l + $ [ y - l ) M : ] - '  

-, 0 give 
0 ,  c Y 

- 1  - 2  
[ 1 - A 

AS = A I (I/:;) d$ 

p o , c ~ o , c  (Mo,= - 1)1 AMo 
0 also found by Gold and Holpin a one-strip calcula- m 

0 supersonic flow past a flat-faced cylinder. However, 
6 ,  

- ( A ~ ~ / v p ~ )  J (AF/AF*) (M:' - 1)  G 

It is required that A 6 = o( d S s  ). Since Mc = Mc (3 
sat isf ies  the integral condition (l), and since A P  is 
expected to increa.se monotonically with y,  it is 
necessary that A p - A F ~  = o( bM0 as AM, - 0. 

0 

4 
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problem, because Eq. (48) has the same form were no pressure  gradient, it would follow f rom 
(see Shapiro") dM2/dx  = G(x)/(l - M ' )  as would 
be obtained for a one-dimensional flow. In general, 
C(x) is required to be zero at M = 1, but if C(x) 
were to remain positive as M -1 the behavior would 
be the same as predicted above. It follows that the 
present theory cannot correctly predict details, 
such as the shape o t t p e  son;c line and the limiting 
characterist ic,  for x + 7 + 0. 

the Blasius solution g'(8 ) that u,' = O( (1 - u t )  x 

[-log (1 - ut )]%I as ut  + 1. The sanie behavior 
is  assumed for a boundary layer with pressure 
gradient, and the behavior is again approximated 
by omitting the logarithmic factor, Thus is 
represented by 

v 

t m  N- 1 

m=O 

t - 1  0 = ( 1  - u  ) a,(t) u Integration of the sublayer equations (26) through 
(28), subject to the boundary and matching condi- 

variables are introduced through the transformation" 

= s ' (pt /Pe)  d' ' I Z u S  '+ dyt  

(53) 
+ t m  

tions (29), has been carr ied out using a one-strip 
method of integral relations. F i r s t  new independent (1 - u ) bm(%) 

N - 1  

m=O 

1 - 
@ -  

Yt where the coefficients am and bnl a r e  related by 

the requirement that the representations for 0 

u = k/N, where k = 0, 1,.  . . , N - 1 .  For N = 1 
the differential equation and solutions a r e  found 

- 
x 

(50)  

-cD 0 and l/w be mutually consistent at  s t r i p  boundaries 

where p = (Y -1)/2Yand U is  the composite solution 

(22) for U/t i  e evaluated at  = 0. Using to be 
e 

< I @ ' /  d t  -6 6 M,' (dMo/d%) 0," = 4 
I 

- I/@, 
(54) 

one finds t h e  transformed equations 5 6  ' t  0 - 2 M - 3 [ S M o  d E ] ' , u  = I - e  
-m 

(51) 

where M is  the composite solution f o r  the Mach 

number obtained in the manner of Eq. (22) and 
evaluated at = 0, and 

0 

t k .  A set of weighting functions f ( u t )  = (1 - u ) 

then introducted," where k = 1, 2,. . . , N, and N 
will again be interpreted as the number of s t r ips .  
Equations (51) and (52) are multiplied by fk and fl; 
respectively, and then added and integrated over v 
from 0 to m , Setting 0 = a l  /J u t ,  changing the 
variable of integration f rom n to ut  , and integrat- 
ing by par ts ,  one f inds  

1s k 

-' 
where no is the value of o at ut = 0. If there 

It follows f r o m  the definition of U and po rn  the so- 
lutions already obtained that U = O(Z - ), and 
therefore M = O ( Y ' ) ,  as 2 + - m , Since the 

mass  flow between the wall and any other s t r eam-  
line is constant, the value of y t  on any streamline 
must be O(%) as%+- , Integration fro? t = - a 
in the result  fo r  0 gives 0 = 0(1) as x+  - m , 
and the solution f o r  yt therefore has the required 
behavior. 

0 

0 

For %- m one would expect that the velocity 
ij/iie .-- Uu' should match a t  the outer edge of the 
sublayer with the l inear t e rm Viie = O m  of the 
Blasius profile and not with a velocity W(Q. 
Z+ - m  along a streamline,  y" = R 
and U = O(Z - '  ) a r e  of the same order  when 
x" = O(Rw ' I 8 ) ,  i. e . ,  when jt/L - 1 = O(R;%). This 

order  estimate agrees  with the estimate given by 
Lighthill 

For 
yy = O(R j;) W W 

fo r  the upstream influence of a weak 
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wressure disturbance in a supersonic boundary Of P./P.. The discrewancy between the calculated . .  - u  - e  iayer.  
j z / ~  - 1 = O(R; '18 ) can be obtained by systemati-  
cally studying the full  equations, and it appears that 

with a solution to the problem studied by Lighthill. 

The orders  of all flow quantities f o r  composite soluticn and the experimental data is 
seen to be I A$P 1% 0.06 or less. This mlght he 
regarded as a rather  good result ,  as compared 

calculation by the method of integral relations. 
the present resul ts  have the possibility Of matching with the accuracy usually obtained in a one-strip '0 

While in the present wbrk the perturbations in  the 
flow quantities decay algebraically upstream as 
x+ ., - m 2 Lighthill predicts exponential decay as 
R... 'ax+- m . 

However, the apparent accuracyprobably occurs 
partly because the result  found by the method of 
integral relations comprises only part  of the solu- 
tion, the f i r s t  part of the pressure drop having been 

- 
obtained analytically. w 

4 .  DISCUSSION 

Measurements of pressure near the base of a 
wedge have been obtained by Hama. The largest  
f r ee - s t r eam Mach number considered corresponds 
to values M = 4. 02, Rw = 1.2 x 10 , and a, = 

0.10 in . ,  where a,  is the boundary-layer thickness 
just before the beginning of the expansion, found 
using the definition 6 following Eq. (8) and the total 
enthalpy equation: 

e 

1 0 0  

0 
= 2' J (1 - 9 " )  dp = 1 .6864  x 2' 

Although even this value of Me might be rather low 

for use of a hypersonic theory, the other sources  of 

A 4.02 1 . 2  X 104 

0 2.35 4.4 X I O 4  
o 3 . ~ 5  I S X  104 

5 -1.0 --.5 
(I L.lNCHES 

Figure 3. Hama's Wall Pressure Data 
for Laminar Flow .I e r r o r  to be considered seem t o  be at  least  as im- 

plotted against j i  f o r  three different Mach numbers, 

- 
portant. In Fig. 4 of Ref. 7 the ratio Po/ 5 . is SOLUTION FOR $(?) - 

WITH Me = 4.02 

where 5 is the measured surface pressure f rom 0 0 A &.-.-.-. 
e ,  1 

A - - -  ..-.- -c._ 
0 

Ref,  1 and ee, is the surface pressure predicted 
by inviscid-flow theory. In the experiments the  
static pressure orifice furthest upstream f rom the 
corner  was located at  a distance R - L = -1. 5 in . ,  
where L = 4 .783  in. ,  and it i s  pointed out in  Ref.  7 
that Po at this location is larger  than Pe, because 

of vlscous interaction. The data shown in Ref.  7 SOLUTION FOR F(Y,o), . 
are replotted here as Fig. 3, using values taken ONE STRIP CALCULATION 
partly f rom data supplied by Hama and partly f rom 

1.2 x 104 

1.5 x 104 7 G* 

the figure of Ref. 7 .  The same_data are plotted 
in Fig. 4 in  the f o r m  Oo/pe v s  x/6, z (X - L)/% , 
where 6, z R ''I x, /L and 6 is the measured pres-  
s u r e  at the orifice furthest upstream. It can be 
seen f r o m  Fig. 4 that the wall pressure ratio 
measurements plotted in th i s  way are nearly in- 
dependent of the Reynolds number Rw, as would be 0 2.35 4.4 x 104 I 1.4 

predicted by the theory. 

L ~ 4.783 INCHES 
W e 

0 3.15 

Also skown in Fig. 4 a r e  the p r e s s y e  ratio 0.528 

0.5 solution p @ plotted against % = Me x for Me - 
-4.0 -3.0 -2 .0 -1.0 0 

= 4.02, the solution (2, 0), and the corresponding 

by Fw G i f i e  , so that the values plotted a r e  Values 4 composite solution (22). Each has been multiplied (? - L. ITl 
~i~~~ 4.  Comparison of Composite Solution fo r  

the Wall Pressure-Ratio with Hama's Data 
10 



The magnitude of the interaction effect upstream 
of the corner  expansion, as shown by Fig. 3, per- 
haps should suggest the importance of the analogous 
displacement effect of the sublayer. The sublayer 
displacement thickness is positive because fluid in 
the sublayer is retarded relative to fluid in the 
main part  of the boundary layer ,  but is  decreasing 
because each fluid element in the sublayer under- 
goes a small positive acceleration and consequently 
the streamlines are deflected slightly toward the 
wall. A s  explained in Sections 2 and 3, the flow 
deflection and the pressure perturbation in the sub- 

the main part of the boundary layer a r e  also 0(Rw-'<) of ii/ii vs. 
and may be described by inviscid-flow equations 

same order  as the perturbations due to ordinary 
viscous interaction further upstream. If t e r m s  

is sti l l  the sonic value, and so  the overall pressure 

noted in Section 3, but it s eems  impossible to guess 
the qualitative nature of the correction that would he 
found. Another Mach number effsct arises be_cause 
in the hypersonic approximation T/T = 0 at y = 6 ,  

whereas actually F/Tw should decrease smoothly 
f r o m 0  (1) to O(M -' ). In'principle the nonunifor- 

niity might be removed by developing a theory 
analogous to that of Bush" for  a very thin region 
near y = 6 .  

ting boundary layer are shown in F,g, 

W 

v 

e 

The changes in velocity profile the accelera- layer are O(Rw-%).  The resulting perturbations in by plots 
, The two solid curves represent 

4 
e 

and the profile 
solution (33) at  $ = 0. It is evident that the initial 
acceleration,of fluid particles along s t reamlines  

vs, 7 would show that the resulting displacement 

the initial v6locity profile G/ii = u(- -,g = g ' ( B )  e because neglected viscous forces  are O(Rw-% ), the 

O(R; 'a ) a r e  included, the pressure at  the corner 

drop is  unchanged. Thus the major effect of the 
sublayer i s  to change slightly the effective shape 

= Q ( ~ ,  y) given by the upstream 

is 

of streamlines is significant all 
For the solution in terms of and 7,  it is probably 

only near the wall, but plots of 

the layer, 

consistent with a one-strip calculation by the method 
of integral relations to choose only a l inear varia- 
tion of a with 7: 

of the surface,  thereby steepening the pressure 
drop close to the corner and shifting the middle 
part of the pressure curve in Fig. 4 slightly down- 
s t ream. This predicted shift would lead to better 
agreement with experimental results.  A second 
correction of the same order  arises through the 
upstream behavior discussed at the end of Section 3. 
If fo r  simplicity the Mach number is again held 
fixed it appears that a solution is needed f o r  
%/L - 1 = O(Rw - ' / a )  in order to complete the higher .,, order  upstream matching. Since the pressure per- 
turbation in tjle presentzsolutions has been found to 
decay as Rw- (%/L - 1)- , it is expected that in this 

limit (B - ce)/e = O(R - > a  ). That is, a pressure 

drop of this order  would begin a t  a la rger  distance 
upstream than is shown in Fig. 4, and the upstream 
part  of the composite pressure curve would be 
shifted slightly downward. One might guess that 
this effect is important primarily at large values of 

I ? /  and that the sublayer effect is-more important 
a t  small and moderate values of 1x1 . 

e W . 

According to the theory, the pressure drop plotted 
in Fig. 4 should begin fur ther  upstream at higher 
Mach numbers, becayse the proper nondimensional 
coordinate is 2 = M - 2 for the initial part  of the 

expansion. It is evident that the data in Fig. 4 do 
not show this  behavior. For the given values of 
Me and Rw the sublayer effect would oppose the 
predicted effect of Mach number. If the sublayer 
effect were the major source of e r r o r ,  the pre- 
dicted behavior with Mach number might well be 
obscured. 

e 

Other e r r o r s  would result  f r o m  neglecting higher- 

- 
u = u t ( 1  - uo) j7166c (55) 

Eqs. (55),and (41) can be combined to give plots of 
ii/iie vs. !b for ?- - - and 

curves in Fig. 5. Good agreement is obtained 
between the approximate form f o r  5 as ?+ ~ m and 
the solution (33) fort at 2 = 0. Although the profile 
ii/n at the corner  = 0 may also be fairly accurate, 

the behavior of derivatives with respect to % is not 
given correctly as ?-0 because the singularity at  
the corner is not properly taken into account by the 
integral method. Therefore it is not clear how the 
present procedure might be used to obtain a profile 
fo r  the flow deflection a t  ? = 0. 

= 0, shown as dotted 

e 

SOLUTION FOR u ( x , + )  

""'"'SOLUTIONS FOR u (x ,+) ,  ONE 
STRIP CALCULATION , 

N -- 
.. .. 

I 

0 .? . 4  .6 I .o - .  - order  t e r m s  in Mach number. 
studying Mach number corrections would be to 

The first s tep toward " 1 4  

Figure 5. Velocity Profile a t  Three Stations: consider the special limit for %/Me !'s held fixed, as A h 

u' x - r  - - ,  x = O ( Z +  --), and x" = 0 
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In an attempt to  improve the accuracy of the 
numerical method, a two-strip calculation was 
investigated in which the intermediate s t r ip  bound- 
a r y  was taken to be the streamline at which the 
fluid velocity was initially sonic, This  formulation 
is described in Ref. 16. In addition to  complications 
in the derivation of upstream asymptotic expansions 
f o r  Z-, - o , there was a conceptual difficulty be- 
cause it was not evident how the procedure would 
be extended for a third s t r i p  boundary with initially 
subsorlic fluid velocity. There appears  in one of 
the differential equations a denominator which would 
vanish at a point where 0 = a*, the cr i t ical  sound 
speed, exactly as in the application of the method 
of integral relations to problems of inviscid flow 
past flat-faced bodies." 
smoothly through this  point, and so  the correspond- 
ing numerator is required to vanish simultaneously. 
In the forniulation described in Ref. 16 the initial 
conditions and expansions for 2- - = appeared to  
determine the solution completely, and so no down- 
s t r eam condition could be imposed. As long as 
this  situation is not understood, the calculation 
for a s t r i p  boundary initially sonic would also be 
suspect. 

The solution should pass 

In o rde r  to significantly improve the accuracy, 
it would be necessary to improve the numerical 
procedure and to derive some or all of the higher- 
order  corrections described. It s e e m s  especially 
desirable to consider higher-order viscous effects  

available for  a thorough check against experimental 
resul ts ,  the present solutions are expected to  be at 
least  qualitatively correct,  and require only a 
ra ther  simple numerical procedure. The assump- 
tion of a smal l  interaction parameter  MeRw -2  

was essential in limiting the viscous effects  near 
the corner to a thin sublayer, and cannot be re- 
laxed in this  analysis. Use of the hypersonic 
approximation permits  the Mach number Me 
effectively to be removed f r o m  the problem, since 
the analytical and numerical par t s  of the solution 
can be obtained without specifying Me, and shows 

rather clearly the significance of the cr i t ical  point. 

in g rea te r  detail. Although insufficient data are v 

1. 

2. 

3.  

4. 

5. 
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