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Tether electron current collection is one of the key mechanisms allowing for power 
and/or thrust generation applications of space electrodynamic tethers and depends on 
such parameters as tether geometry and the velocity of plasma flow. This paper presents 
the initial validation of a novel computational approach, based on kinetic theory, that 
will allow for the assessment of the efficiency of electron collection to bare tethers of 
arbitrary cross sections from a flowing space plasma. The drift velocity associated with 
the translational speed of the tether is incompatible with 1-D, cylindrically symmetric 
models1i2 and its effects on current collection are not well understood. A kinetic model 
is developed for the two-dimensional plasma surrounding the tether, which consists in 
self-consistently solving the Vlasov and Poisson equations through a semi-analytical, semi- 
numerical process. A drifting Maxwellian velocity distribution is assumed for the plasma 
species (electrons and ions) at the outer boundary of the solution space; no assumption 
is made regarding the velocity distributions in the computational region surrounding 
the tether, allowing for fully poly-energetic species. Simulation results are validated with 
Langmuir cylindrical probe theory for the non-flowing case. For flowing cases, some initial 
results show a qualitative agreement with results from vacuum chamber experiments

g 
but 

further work is needed to improve the consistency of the results. Work is underway to 
allow the use of the model for arbitrary tether geometries. 

Nomenclature 
Au 

E, 
Ell 
f e  Electron velocity distribution 
fi Ion velocity distribution 
c( a) 

Range of velocities accounted for on the 
outer boundary (m/s) 
2 component of the electric field (V/m) 
y component of the electric field (V/m) 

Fixed-point nonlinear operator comprising 
both a Poisson and Vlasov solvers 
(input in C/m2, output in C/m2)  
Fixed-point nonlinear operator based on the 
regularized Newton method 
OML theory-predicted collection current (A)  
Electron current to the probe ( A )  
Jacobian matrix of operator $.). 
Range of kinetic energies accounted for 
on the outer boundary (eV) 

z(-) 
Ioml 
4 
J, 
Kmax 

me Electron mass (kg) 
mi Ion mass (kg) 
n0 Background plasma density (m-3) 
OML Orbital Motion Limit 
qe, e Electron charge = +1.6021 x 10-lgC 
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4i Ion charge (C) 
TO Probe radius (m) 
r 

rbc 
p(z ,  y) 
p S ( q  y) 
p" 

Te Electron temperature (eV) 
r, Ion temperature (eV) 
U X  

Ull 
ud 
VP Probe voltage (V)  
u,~,,,,, Minimum/maximum velocity accounted for 

at any given position (m/s)  
V ( z ,  y) Electric potential distribution (V)  
Vplaama Plasma contribution to the electric potential 

distribution (V)  
V,,, Probe surface charge contribution to the 

electric potential distribution (V) 
v Vector containing samples of the potential 

distribution at the specified nodes (V)  

Radial distance measured from the 
center of the tether conductor (m) 
Radius of outer equipotential shell (m) 
Net plasma charge density distribution (C/m2) 
Surface charge density distribution (C/m) 
Vector containing samples of the charge 
density distribution at mesh nodes (C/m2) 

z component of velocity (m/s) 
y component of velocity (m/s) 
2-directed plasma drift velocity (m/s) 
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Fig. 2 
and Charge Distributions. 

scribe both solvers and present the iterative scheme 
that was used. 

Vlasov solver 
As the following section will show, the Vlasov solver 

described here allows each species to express the full 
poly-energetic nature of its velocity distribution, which 
is what makes the realism and accuracy of the code. 
For a collisionless species in a quiescent, magnet ized  
plasma, Vlasov’s equation in 2-D can be written as: 

Triangulation Schemes for the Potential 

Given a known electric field distribution ,??(z,y) and 
the outer “drifting Maxwellian” boundary condition 
for the velocity distributions, equation (2) can be used 
to solve for the velocity distributions f e , i  (2, y, v,, vy) of 
both the electrons and ions. The species densities are 
then obtained by integrating over all velocity space: 

ne,i = J Sfe,i(s ,y,vx,vy)dvzdvy (3) 

and the total charge density results from p ( z , y )  = 
gin; - en,. 

Equation (2) specifies that the distribution function 
fe,i(z, y, w,, vy) is constant along particle orbits in a 
given electric field distribution. Using the specified 
boundary condition for the velocity distribution at the 
outer shell, the value for f,,i(z, y, v,, vu) for any point 
and velocity located on a trajectory originating from 
the outer shell can be inferred. This can be done by 

Fig. 3 
Tracking Process Through the Potential Mesh. 

Example of the Semi-analytical Particle 

tracking the particle’s trajectory back in time until it 
hits the outer boundary. Any trajectory not originat- 
ing from the outer shell is deemed unpopulated.’ Such 
is the case for those trajectories originating from the 
tether itself, which does not emit charged particles, as 
well as trapped trajectories which have no sources of 
particles in the collisionless case. 

Figure 3 illustrates the particle tracking process. 
The trajectories are tracked analytically from one edge 
of the mesh to another, assuming a constant electric 
field within any given triangle of the mesh. Every 
sub-trajectory is thus resolved by computing the inter- 
section of a quadratic parametric curve with a segment 
on the mesh. This technique is much more efficient 
than using a fixed time step particle pusher, since 
the amount of computations necessary for one trajec- 
tory depends on the number of edges being crossed 
rather than the number of time steps necessary to 
reach a boundary. Also, given the assumption of a 
piecewise-bilinear potential distribution, it provides 
exact (nearly exact if we account for roundoff errors) 
conservation of energy along orbits, which contributes 
to the accuracy of the overall approach. 

To obtain a value for the particle density at a 
given point, one needs to integrate the values obtained 
for fe,i(z,y,vz,vy) using the integral shown in equa- 
tion (3). To limit the computational task, the domain 
of integration is restricted to a limited region outside 
of which the velocity distribution function is known to 
be very low. Knowing that the velocity distribution 
function anywhere on the outer boundary is given by 
equation (I), one can invoque conservation of energy 
to restrict the integration domain to a certain range 
of kinetic energies. At the outer boundary, a range of 
integration K,,, = KT,,; (units of eV’s) is specified in 
terms of the species temperature (typically, IC = 10). 
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Introduction 
ARE electrodynamic space tethers are under con- B sideration for applications such as power genera- 

tion and propellantless propulsion for orbiting space- 
craft. In these applications, one of the primary con- 
cerns is the ability of the system to collect electrons 
from the surrounding ionospheric plasma in order to 
maximize the amount of electrical power or thrust pro- 
vided. This value increases with the magnitude of the 
current flowing on the tether, which in turn is, in part, 
limited by the tether's ability to collect electrons from 
the surrounding plasma. 

Analytical models are available'?' for the electron 
current collection problem in the limiting case of the 
Orbital Motion Limit regime and a stationary plasma 
with respect to the probe. A numerical model was also 
developed' for the general case which was based on a 
self-consistent, 1-D solution of Vlasov and Poisson's 
equations for a cylindrically symmetric structure and 
boundary conditions. This model did not restrict its 
application to the OML regime, however it allowed nei- 
ther the inclusion of a plasma drift or arbitrary probe 
geometries. 

This paper presents a novel approach, based on a 
poly-energetic kinetic model, for the accurate analy- 
sis of the electron/ion current collection problem to 
a bare tether in a collisionless, drifting plasma. This 
technique is a 2-D extension of the self-consistent 1-D 
numerical model developed earlier,' and allows inclu- 
sion of a drift velocity to the background plasma as 
well as opening the possibility for accurate modeling 
of tethers of arbitrary cross-sections. 

We will first provide a physical and mathematical 
description of the problem under consideration. The 
proposed iterative resolution scheme will then be in- 
troduced, together with the associated computational 
issues. Finally, we will show the computation results 
that were obtained and show theoretical validation and 
qualitative experimental validation of our results. 

Description of the 2-D Conducting 
Tether Problem 

Figure 1 presents the basic geometry being consid- 
ered here. The tether is assumed to be a cylinder of 
infinite length, surrounded by a plasma comprised of 
electrons and ions. In the simulation, an outer equipo- 
tential shell is placed at a radius rbc from the center 
of the tether, in order to simulate the background 
plasma potential and limit the computational region. 
A potential Vo with respect to the plasma potential is 
specified at the probe surface. Although no assump 
tions are made concerning the velocity distributions of 
the plasma species within the computational region, it 
is assumed that both the ion and electron populations 
have a drifting Maxwellian velocity distribution at  the 

Electrons & Ions at outer boundary: 
Shifted Maxwellian velocity distribution 

(accounts for tether drift speed) 

Fig. 1 Basic Geometry of the Artificial Tether 
Problem. 

outer shell, that is, in the background plasma: 

(1) 
In order to simplify the initial development of the 

modeling technique, we assume a collisionless, unmag- 
netized quiescent plasma. Additionally, it is assumed 
that the electric field vanishes for r > rbc and that the 
potential distribution is piecewise bilinear. In other 
words, it varies bilinearly within any of the triangles 
of the mesh. 

As the last assumption specifies, the potential and 
charge density distributions are sampled on two sepa- 
rate fixed grids of points, which together form a set of 
adjacent triangles. Figure 2 illustrates the discretiza- 
tion schemes used for both the potential and charge 
density distributions. The meshes are spaced logarith- 
mically along the radial direction, which is justified 
by the expected large variations near the tether as 
opposed to the smoother variations further out. The 
consequence of the bilinearity assumption for the po- 
tential is that both components of the electric field, 
E, and Ev, will be piecewise constant (constant on 
any single triangle). 

Iterative consistent 2-D plasma solver 
In order to obtain a consistent solution for the elec- 

tric fields and the density distributions for both the ion 
and electron species, we need to solve, self-consistently, 
Vlasov's equation for each species and Poisson's equa- 
tion for the electric potential and charges, while sat- 
isfying the above-mentioned boundary conditions. An 
iterative scheme was developed using both a Poisson 
solver and Vlasov solver. In the following we will de- 
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probe that will result in a total potential VO at all 
nodes located on the surface of the probe. The “probe 
surface charge” contribution to the complete plasma 
distribution is then: 

r2 + r i  - 2rOr cos ( e  - e l )  

T& + r i  - 2rOrbc cos e/ 

11 r 2  + (T;c/To)z - 2(T;c/T0)r cos (e - e / )  
T i c  + (T;c / ro)z  - coset 

-1n( 

(11) 

where ps (TO, e )  is obtained using a point-matching 
technique’ that enforces Vpsc(~0, 19) + Vplosrna(~o,  e )  = 
Vo at all nodes on the probe surface. 

The total potential distribution is obtained from the 
sum of equations (10) and (11). Since the integrals 
are performed over piecewise bilinear functions, the 
complete Poisson solver (including the point-matching 
operation) can be written in the form of a linear ma- 
trix operator, which makes it computationally trivial 
compared to the Vlasov solver: 

v = [ p 2 V ] F +  vest ( 1 2 )  
Iterative Resolution Technique 

Using the Poisson and Vlasov solvers, we seek a so- 
lution for the potential and charge distributions that 
simultaneously satisfies the Poisson and Vlasov equa- 
tions. Figure 5 depicts the general fixed-point operator 
comprised of both the Poisson and Vlasov solvers. The 
fixed-point operator takes a charge distribution gin at 
its input and generates a new estimate gout: 

Pout = Z (Fin) (13) 

There are known difficulties arising in solving such 
a problem.’ Simple iteration of the fixed point op- 
erator does not in general yield convergence, since 
it is a non-contractive mapping.6 Instead, we have 
defined a procedure based on Newton’s method for 
nonlinear systems of equations7 which is depicted on 
figure 6. This necessitates the Jacobian matrix of the 
fixed point operator and is equivalent to iterating the 
following fixed point function: 

4 

Pout = h (Fin) = gin + (Jg (Pin) - I>+ (gin - z (g in) )  

(14) 

‘m 
Fig. 5 
the Poisson and Vlasov Solvers. 

Fixed Point Operator Comprised of Both 

P O U t ( X 7  Y> 
Gout 

\ 

Solver 

Fig. 6 Tikhonov-regularized Newton Iterative 
Poisson/Vlasov Procedure 

where the symbol t represents a regularized inversion 
based on column normalization and Tikhonov regu- 
larization,s both of which are necessary to filter out 
the errors introduced by the Vlasov solver. These er- 
rors origniate from to the finite precision with which 
densities are computed, combined with the fact that 
like numbers are subtracted to obtain the net charge 
density in the pre-sheath where the ion and electron 
densities are very close to each other. J, (&) is the 
Jacobian matrix of operator g‘ (.) evaluated at Fin. If 
there are N unknowns ( N  charge nodes), the Jacobian 
matrix is a N x N matrix and is defined by: 

, i = l ,  ..., N ,  j=1, ..., N .  ( 1 5 )  

Solving equation ( 1 4 )  is equivalent to finding the 
fixed point of the linearized operator g’ near an oper- 
ating point &. Successive linearizations leads to the 
solution of the nonlinear problem. Using finite differ- 
ences to compute an approximation for J, would be 
prohibitively expensive computationally. Instead, di- 
rect computation of J, is performed. This involves 
combining the Jacobians of every sample of the ve- 
locity distribution function that was taken at that 
particular iteration, replicating all the operators that 
were applied to those sample results. To obtain the Ja- 
cobians of velocity distribution samples, the analytical 
Jacobians obtained at  the outer boundary using equa- 
tion ( 1 )  are propagated and transformed along each 
particle trajectory. 

Software Implementation 
The iterative resolution high-level algorithm and 

the Poisson solver, both fairly light computation- 
ally, were implemented in Matlab. The Vlasov 
solver, being much heavier computationally, was im- 
plemented in Fortran 90 using a parallel processing 

agi J, ( i , j )  = - 
a p  j 
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At this location, the integral could be performed ac- 
curately over a disk of radius: 

centered around the center of the Maxwellian distri- 
bution, located at ‘u, = v d , w y  = 0. This disk is 
located between 2 rings of velocity magnitudes lvminl  

and Iuma+l given by: 

which correspond to kinetic energy values (expressed 
in units of ev’s) of ~ , i ,  = and K,,, = 
m , p 2  *. Since energy is conserved along particle 
trajectories, we can infer the following limits of in- 
tegration along the kinetic energy axis at a location 
situated at a potential V (in volts): 

which can be expressed in terms of velocity magni- 
tudes: 

Figure 4 shows the corresponding velocity domains of 
integration. The 2-D integration is performed in cylin- 
drical coordinates, using 2 embedded 7-point adaptive 
Newton-Cotes quadrature rules (the integration rou- 
tine “DQNC79” was used from the SLATEC Com- 
mon Mathematical Library, distributed by Netlib at 
www.netlib.org). The dynamic integration routine is 
performed at all nodes on the charge density mesh. 

The process described above constitutes the L‘Vlasov 
solver” which computes the charge density distribution 
from a known potential distribution. It accounts for 
the largest part of the computational complexity of the 
technique presented here. 

Poisson solver 
The Poisson solver computes a potential distribu- 

tion from a given plasma charge density distribution, 
accounting for the surface charge on the tether sur- 
face as well as the induced surface charge on the outer 
boundary, which is simply modeled as a metallic wall. 

Poisson’s equation and the outer boundary condi- 
tion: 

can be solved for to obtain the first of two contribu- 
tions to the complete potential distribution, generated 

Fig. 4 (a) Domain of Integration of the Velocity 
Distribution Function at the Outer Boundary (V = 
0). The shaded region corresponds to the bulk of 
the drifting Maxwellian population. (b) Domain of 
Integration of the Velocity Distribution Function 
at any Given Point in Space. 

by the plasma charge distribution as well as the in- 
duced surface charges on the outer boundary shell: 

11 
T2 + rf2 - 2r’r cos (e - e’) 

r2c + rt2 - 2rlrbc cos 01 

r2 + (r ic/r ’ )2 - 2(ric/r’)rcos (e - et) 
rzc + (r&/rf)2 - 2(r&/rI) cos Of 

-1n(  

(10) 

where the first term in the bracketed expression r e p  
resents the direct contribution from a 2D element of 
charge. The second term represents the contribution 
from the corresponding induced surface charge on the 
outer shell and was obtained using to the Method of 
Images.4 The location (r = TbC, 8 = 0 )  was used as the 
reference for potential. 

A point-matching technique is then used in order 
to find the required surface charge distribution on the 
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well suited for a log(r)-based sampling scheme. In the 
flowing cases, the sheath structure is no longer circu- 
lar. As the flow energy is increased, it departs from 
a circular symmetry to acquire an elongated shape. 
Therefore, in order to achieve a better consistency in 
our flowing cases, we should implement a sampling 
scheme that seeks to adapt itself to the shape of the 
sheath. 

Present Status and Conclusions 
A novel approach based on kinetic theory was 

presented for the 2-D modeling of the tether prob- 
lem. One of the important difficulties in finding self- 
consistent solutions for such problems is finding an 
appropriate algorithm that will yield convergence in 
order to find the k e d  point of the Vlasov-Poisson 
operator.’ To address this issue, a new numerical 
algorithm for computing the Jacobian matrix of the 
Vlasov-Poisson operator was developed which allowed 
use of the Newton iterative method for non-linear sys- 
tems. 

The proposed algorithm w a  validated with the well- 
documented Langmuir cylindrical probe theory in the 
non-flowing Orbital Motion Limit regime. Flowing 
plasma test cases were also studied, and showed a 
trend for collection current below the OML regime, 
consistent with recent experimental  result^.^ However, 
Poisson/Vlasov consistency showed to be increasingly 
difficult to achieve as the flow energy increased. This 
is likely to be due to the logarithmic radial spacing 
scheme based on circular symmetry for the charge and 
potential samples. Further developments of an adap- 
tive meshing scheme should aleviate these issues. In 
addition, although our basic algorithm allows arbi- 
trary tether cross-section geometries, it was only tested 
so far with circular cross-sections. Future tests will ad- 
dress non-circular cross-sections. 

Acknowledgments 
E.C. acknowledges the scholarship support of the 

Horace H. Rackham School of Graduate Studies at 
the University of Michigan, the Natural Sciences and 
Engineering Research Council of Canada and the Com- 
munications Research Centre(Canada). 

References 
‘Laframboise, J., Theory of Sperical and Cylindrical Lang- 

muir Probes in a Co&zionless, Maxwellian Plasma at Rest, 
Ph.D. thesis, University of Toronto, 1966. 

*Sanmartin, J. and Estes, R., ((The Orbital-Motion-Limited 
Regime of Cylindrical Langmuir Probes,” Physics of Plasmas, 
Vol. 6, NO. 1, 1999, pp. 395-405. 

3Gilchrist, B. E., Bilkn, S. G., ChoiniBre, E., Gallimore, 
A. D., and Smith, T. B., “Analysis of Chamber Simulations of 
Long Collecting Probes in High-speed, Dense Plasmas,” IEEE 
Transactions on Plasma Science, 2002, paper accepted for pub- 
lication in May 2002. 

4Cheng, D. K., Field and wave electromagnetics, Addison- 
Wesley Pub. Co., 1989. 

5Stutzman, W. L. and Thiele, G. A., Antennna Theory and 
Design, John Wiley & Sons, 1981. 

‘Sikorski, K. A., Optimal Solution of Nonlinear Equations, 
Oxford University Press, 2001. 

7Burden, R. L., Numerical Analysis, PWS-KENT Publishing 
Company, 4th ed., 1989. 

*Hansen, C., Regularization Tools - A Matlab Package for 
Analysis and Solution of Discrete Ill-Posed Problems, Univer- 
sity of Denmark, 2001. 

’Brace, L. H., “Langmuir Probe Measurements in the Iono- 
sphere,” Measurement Techniques in Space Plasmas: Particles, 
1998, pp. 23-34, Geophysical Monograph. 

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2002-4051 



scheme based on the Parallel Virtual Machine library 
(www.epm.ornl.gov/pvm/pvmhome.html). A pool of 
about 100 Sun Sparc Ultra-5 and Ultra-10 worksta- 
tion nodes are used concurrently to form the Vlasov 
solver. This allows iteration times anywhere from 25 
seconds to 5 minutes (per iteration), with most prob- 
lems requiring from 30 to 100 iterations for adequate 
convergence. 
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Simulation Results & Validation 
Non-flowing plasma - Langmuir Probe sweep 

In order to gain confidence in this modeling tool, 
some validation runs were performed with simple cases 
that can be checked against known theories. Figure 7 
presents the results obtained for the I-V curve of a 
Langmuir cylindrical probe of radius ro = 0.14 mm 
in a Xenon plasma (mi = 2.18 x kg) with a 
density no = 1.42 x 1OI6  m-’ and a temperature of 
Te = Ti = 1.07 eV. The I-V curve has been split in 
two separate parts to emphasize the small variation in 
the ion saturation region. 

In both the ion and electron saturation regions, our 
results are in good agreement with the Orbit Motion 
Limit theory, which is valid in the present case for suf- 
ficiently large voltages due to the fact that the probe 
radius is fairly small in terms of the Debye length 
(A, = 0.062 mm). The OML expression used for com- 
parison is:2 

where me and mi were used, respectively, in the elec- 
tron and ion saturation regions. 

The behavior of the response in the electron retar- 
dation region (near V = 0 Volts) is also in excellent 
agreement with Langmuir cylindrical probe theory, as 
can be seen on figure 7. The expression used for com- 
parison here is:’ 

This initial validation of the proposed algorithm con- 
firms that the important physical mechanisms involved 
are being accurately represented in the model. 

Flowing plasma results 
Here we consider results for a simulated probe of 

radius TO = 0.14 mm biased at 20 volts in a flowing 
Xenon plasma with a background number density of 
no = 3.56 x lo1‘ mW3. Figures 8 through 11 present, 
in graphical form, the results that were obtained for 
ion flow energies of 0 eV (non-flowing case), 1 eV, 2 eV 
and 4 eV. On these figures, the action of the Poisson 
solver is shown by the “Net charge pin’’ to “Potential” 
transformation. The “Potential” to “Ion density” and 

-30 -20 -10 0 10 2c v -v (VOl ts) probe plasma 

Fig. 7 I-V Characteristic Curve of a Langmuir 
Probe. Note that the ion and electron saturation 
regions are displayed on two separate linear scales, 
since the variations in the ion saturation regions 
are very small. 

“Electron density” transformation constitutes the ap- 
plication of the Vlasov solver. The “Net charge pout” 
graph is simply obtained by combining the ion and 
electron density distributions. The consistency of the 
results is assessed by comparing the input and out- 
put charge density distributions (pin and pout) that 
were, respectively, fed in and produced by the Poisson- 
Vlasov fixed point operator discussed earlier. Values 
for the relative error between the input and output 
charge density distributions (IIpout - p ~ n ~ ~ / ~ ~ p ~ n ~ ~ )  are 
also shown on the figures. 

As in the previous section, it can be seen on figure 8 
that the amount of current collected in the non-flowing 
case (0.431 A)  agrees very well with the OML predic- 
tion (0.433 A), as expected. The currents obtained 
for more energetic ion flows are lower than the OML 
prediction however. This is consistent with recent ex- 
perimental measurements performed on probes in a 
flowing plasma.’ Finally, for the flowing cases, the ion 
and electron number density distributions clearly show 
a depression in the wake region, as is expected, while 
maintaining quasi-neutrality in the presheath region, 
part of which was included in the computational do- 
main. This provides further qualitative confirmation 
of the validity of our results. 

As the flow energy is increased, the rise in the rel- 
ative error llpozlt - pin((/(lpinl( shows that it is more 
and more difficult to obtain a consistent solution to the 
Poisson/Vlasov equations. The current status of our 
research indicate that this is probably a consequence of 
forcing the charge and potential samples to be spaced 
in a logarithmic fashion along r .  The non-flowing case 
accomodates itself easily of this constraint, because the 
sheath structure is circular in this case and is therefore 
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Net charge pin Potential 
. .  . .  .: .’. 

. , , . . .. . 
. .  , . 

. _ .  . .  . _ .  

t Ion densi t/ Electron density 

iteration #55/55 

u=log , o( r/ro)x/r 

v=log, o(r/ro)y/r 

X-Y AXES LOG SCALE: 

IlPout-Pinll~llPinll=~~’ 5 

Collected Current: kO.349 A 
OML Prediction: lOm,=0.433 A 

Net charge pout 

. .  . . .  . _ .  . .  . .  

2 

Fig. 10 Results for a probe of radius TO = 0.14 mm biased at 20 volts in a Xenon plasma with a background 
number density no = 3.56 x 1015 m-’ and an ion flow energy of 2 eV. 

Net charge pin Potential 
. .  . .  . .  . .  . .  . .  . .  . .  

: . . .  . 

2 

iteration #a5185 

u=log, o(r/ro)x/r 

v=log, o(r/ro)y/r 

X-Y AXES LOG SCALE: 

I IPout-Pinl 141Pinl 1=0.20 

Collected Current: k0.316 A 
OML Prediction: lOm,=0.433 A 

Net charge pout 

Fig. 11 Results for a probe of radius TO = 0.14 mm biased at 20 volts in a Xenon plasma with a background 
number density no = 3.56 x 1015 7n-3 and an ion flow energy of 4 eV. 

~ 
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Net charge pin Potential 
. .  ... . .  . .  . .  . .  , . .  

. ,  . . . .  . . .  . . .  

t/ Electron t density 
Ion densi 

iteration #176/176 

u=log, o(r/ro)x/r 
v=log,o(r/ro)y/r 

X-Y AXES LOG SCALE: 

I lPout-Pinl 14 IPinl I=O.Ol 

Collected Current: 1=0.431 A 
OML Prediction: lOm,=0.433 A 

Net charge pout 

. .  . . .  . .  . .  . . .  

2 

Fig. 8 
a background number density no = 3.56 x 1015 m-' 

Results for a probe of radius TO = 0.14 mm biased at 20 volts in a non-flowing Xenon plasma with 

Net charge pin Potential 
. .  . .  . .. . 

. '. .' , . ,  . . . _ .  . .  

t/ Electron + density 
Ion densi 

iteration #175/175 

X-Y AXES LOG SCALE: 
u=log, o(r/ro)x/r 

v=logl o(r/ro)y/r 

I IPout-Pi,l IIIIP,I 1=0.03 

Collected Current: k0.345 A 
OML Prediction: lOm,=0.433 A 

Net charge pout 
:... . . .  . . .  ... ... . .  . .  . - .  

2 

Fig. 9 Results for a probe of radius ro = 0.14 mm biased at 20 volts in a Xenon plasma with a background 
number density no = 3.56 x 1015 m-' and an ion flow energy of 1 eV. 
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