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This paper demonstrates a novel system interrogation method based on observing the
morphing of bifurcations and the post-bifurcation dynamics through both experimental and
numerical methods. A sensing cantilever beam is built with PZT patches symmetrically
bonded to both sides of its root. A desired bifurcation in the dynamics of the beam
can be induced by applying a nonlinear feedback excitation to the beam. The nonlinear
feedback excitation requires the active measurement of the dynamics and a feedback loop,
and is generated by applying the voltage (resulting from a nonlinear feedback) to the piezo
electrode. Also, a finite element model is used to design the nonlinear feedback excitation
and predict the response of the sensing beam. Numerical simulations and experiments are
performed and compared to demonstrate the effectiveness and high level of sensitivity of
the novel approach to detect very small amounts of mass added at the tip of the beam.

Nomenclature

Damping matrix in a finite element model
Forcing vector
Stiffness matrix in a finite element model
Mass matrix in a finite element model
State space vector in a finite element model
Linear gain
Damping in a one-degree-of-freedom model
Stiffness in a one-degree-of-freedom model
Mass in a one-degree-of-freedom model
Parameters of the nonlinear controller
Velocity at the tip of the sensing beam
Frequency of the harmonic component of the excitation
0 Nonlinear gains
Damping ratio
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I. Introduction

Vibration-based techniques are commonly used for system interrogation in applications such as structural
health monitoring.">? Such methods monitor changes in vibratory characteristics of a structure which reflect
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damage. Several of these techniques use subspace identification and updating,>® wavelet analyses,”® and
Ritz vectors.” 19 Although there have been numerous studies showing that changes in observed linear features
can be used to detect the presence of damage, the low sensitivity of these features (to damage) limits the
applicability of such methods. To increase sensitivity to parameter variations indicative of damage, the
concept of sensitivity enhancing control''*? and designed impedance techniques!4% were proposed through
linear feedback control applied to a structure. Such approaches reduce modal frequencies to enhance their
sensitivity to changes in stiffness. Other studies have exploited nonlinearities to enhance sensitivity. For
example, linear systems subjected to chaotic excitation!” 2! and (nomlinear or) chaotic systems (with or
without excitation)??~2* have been explored to show that the use of nonlinearity holds a great potential for
damage detection. Furthermore, enhancing nonlinearity within linear or weakly nonlinear systems by means
of nonlinear feedback excitation has been demonstrated computationally to provide significant advantages
such as increased sensitivity.2% 26

In the present work, we apply a novel detection method for identifying small parametric changes in
a smart structure. The method is based on observing the morphing of bifurcations and the dynamics in
the post-bifurcation regime. For most structures, dissipative mechanisms balance the external excitation
such that the dynamics evolves onto an invariant manifold of the state space (the attractor). Examples of
attractors of the dynamics of a structure are stable fixed points, stable limit cycles, and strange attractors
(for chaotic systems). A qualitative change in the dynamics (referred to as a bifurcation) may happen
as parameters are varied. For example, fixed points or limit cycles can be destroyed or created, or their
stability can change when bifurcations occur. The key idea of the method herein is to actively change the
original stability of a fixed point (equilibrium state) or the dynamic response of a system (structure) and
create a new stable fixed point, a limit cycle or a more complex dynamic response by applying a nonlinear
feedback excitation to the structure. The controller parameters (gains) of the nonlinear feedback excitation
are manipulated to interrogate the system by identifying and characterizing bifurcation points. The main
concept and key theoretical investigations of this approach have been presented by the authors.?”

In contrast, the goal of this paper is to test and validate the proposed method in an experimental way.
Therefore, a smart structure composed of a cantilever beam in which two PZT (lead zirconate titanate)
patches are symmetrically bonded to both sides of the root of the beam is built as shown inFig. 1. Piezoelec-
tric actuators and sensors are currently used as elements of intelligent structures®® and are widely exploited
for active vibration suppression and structural health monitoring in smart structures.?*-32 In this work, a
complex dynamics of the beam can be induced by applying a designed nonlinear feedback excitation to the
beam. First, the dynamics at the tip of the beam is measured using a laser vibrometer, and the measured
signal is used in a real-time processor where a designed nonlinear control circuit is uploaded from a host
computer. Finally, the output voltage from the real-time processor is applied to the PZT patches to excite
the beam. The actual bifurcation point of the dynamics can be determined by sweeping the values of the
gains in the nonlinear control circuit and recording the values at which bifurcations occur. Also, a finite
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Aluminum beam | PZT patch
Length (mm) 280 60
Width (mm) 15 15
Thickness (mm) 1.27 1
Young’s modulus (GPa) 68.9 62
Density (kg/m?) 2660 7800
Poisson’s ratio 0.33 0.31
Piezoelectric constant (10=%mm/V) - —-300

Table 1. The dimension and properties of the sensing beam.

element model of the sensing beam is used to design the closed loop controller and to predict the bifurcation
point and the post-bifurcation dynamics. Results from numerical simulations and experiments are compared
to demonstrate the novel approach and to evaluate its effectiveness and robustness.

II. System interrogation methodology

In this work, the proposed method is based on observing the onset of bifurcations and the emerging
dynamics in the post-bifurcation regime. The controller parameters for the nonlinear feedback excitation
are manipulated to interrogate the system by identifying the bifurcation point. Consider, for clarity, the
very simple example of a single degree-of-freedom oscillator forced by a specific feedback excitation. The
governing equation for this simple oscillator can be expressed as

mi + ci + kx = ax — 6z, (1)

where m, ¢, and k are mass, damping, and stiffness parameters, a and § are the linear and nonlinear controller
parameters. All these parameters are assumed positive. A supercritical pitchfork bifurcation occurs when a
equals k, as shown in Fig. 2. Thus, the stiffness k& could be directly interrogated by varying the value of a
and observing the onset of the bifurcation for this special case. Hence, the change in stiffness due to damage
can be detected by distinguishing between the bifurcation points for a healthy and a damaged system. Also,
the type of bifurcation and the dynamics in the post-bifurcation regime depend on the form of the nonlinear
feedback. For example, if a different kind of nonlinear feedback is used (e.g. dz3 — vx® instead of —dz?) in
Eq. (1), then a different type of bifurcation (i.e. subcritical) may occur, as shown in Fig. 2.

Also, in general, the origin of the state space is a stable fixed point (equilibrium state) for most au-
tonomous systems. Hence, in its simplest form, the key idea of the proposed method is to actively change
the stability of the fixed point at the origin (by tuning the values of the controller parameters), and to design
the nonlinear feedback such that a new stable fixed point or a limit cycle emerges close to the origin. These
bifurcations, caused by the designed nonlinear feedback excitation for this simple scenario, are pitchfork or
Hopf bifurcations. Next, changes in bifurcation boundaries (i.e. changes in the loci of bifurcation points) in
the space of the controller parameters can be exploited to identify changes in structural parameters caused
by damage.?” In this paper, in addition to the autonomous feedback, a time-dependent force is added to the
nonlinear feedback excitation. The resulting system is unlike autonomous systems where pitchfork or Hopf
bifurcations occur. Due to the explicit time-dependence of the excitation, the system exhibits more complex
dynamics when the controller parameters are varied. Such qualitative or quantitative changes in dynamics
are sensitive to very small changes in structural parameters. Therefore, observing the changes in bifurcation
diagrams, and in particular the morphing of bifurcation boundaries caused by a nonlinear feedback combined
with a time-dependent force is beneficial for detecting incipient damage. In comparison with pitchfork and
Hopf bifurcation boundaries that can be analytically predicted by exploring the eigenvalues of the Jacobian
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(a) No mass is added | (b) 20 mg mass is added | Relative Difference [%)]
Mode 1 20.5589 20.4877 0.3460
Mode 2 123.2820 122.8804 0.3258
Mode 3 321.9955 321.0694 0.2876
Mode 4 563.9966 562.5962 0.2483

Table 2. First 4 frequencies (Hz) for the sensing beam with no mass, and with 20 mg added at the tip.

matrix at the origin,?” investigating the changes in dynamics of the nonautonomous nonlinear system re-
lies primarily on numerical analysis. Whether numerically simulating or experimentally implementing the
proposed approach, the bifurcation diagrams and the locus of bifurcation points for detecting changes in
structural parameters can be obtained by varying the values of the controller parameters in the numerical
model or in the control circuit in the experimental setup.

III. Experimental setup and procedure

The sensing cantilever beam is composed of an aluminum alloy beam with two PZT patches symmetrically
bonded on its surfaces near the clamp location using an epoxy adhesive, as shown in Fig. 1. The dimension
and properties of the beam and PZT patches are given in Tab. 1. The two PZT patches have the same
orientation of their polarization such that the bimorph configuration can generate larger deflections.

A laser vibrometer is used to measure the velocity at the tip of the beam. In addition to the laser
vibrometer, there are several apparatus used for experiments including a function generator, an amplifier, a
laptop, and a real-time processor. The real-time processor is used for data acquisition and signal processing,
and can be controlled through a computer interface. Therefore, the controller circuits can be coded offline
or online, and then uploaded from the host laptop to the real-time controller. The output analog signal
is generated through the circuits, as a nonlinear function of the measured signal combined with a time-
dependent function. Meanwhile, the measured signal can be saved in a buffer of the real-time controller, and
then downloaded to the host laptop for post-processing (such as creating bifurcation diagrams and tracking
bifurcation points).

Overall, a nonlinear feedback excitation is formed by a feedback loop consisting of sending the analog
signal measured from the laser vibrometer into the real-time processor, processing this signal via a designed
circuit in the processor, amplifying the analog output signal from the processor, and finally applying the
amplified voltage to the PZT patches to excite the beam. The net effect of the applied voltage is to introduce
a torque at the ends of the piezo patches, causing the sensing beam to bend. The actual bifurcation point of
the dynamics can be determined by varying the values of the parameters used in the controller and recording
the values at which the dynamics changes qualitatively.

To explore the active bifurcation-based method for identifying parameter variations exploiting active
bifurcation morphing, masses (made of wax) of different weights are attached to the sensing beam to create
parameter variations in the system. The reason for using mass variations is that these variations are easily
quantifiable, reproducible, and reversible. Furthermore, many applications use mass detectors, such as a
class of biological and chemical sensors, and also certain corrosion detectors, which identify corrosion by
detecting loss of mass in a structure.

IV. Finite element modeling
The purpose of modeling the sensing beam is to develop a mathematical description for understanding

and controlling the system behavior. The finite element method has been shown to be an effective tool for
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Figure 3. Bifurcation diagrams for the cases in which different amounts of mass (no mass, 10 mg, and 20 mg)
are added at the tip of the beam.

modeling smart structures.3%33 In this study, the governing equation of the sensing beam is obtained using
both regular beam elements and piezo beam elements (a composite beam composed of two piezoelectric layers
perfectly bonded to a regular beam). Therefore, the mass and stiffness matrices of the sensing beam model
include the contribution of the mass and stiffness of the PZT patches. The elemental mass and stiffness
matrices are derived from the kinetic and strain energy equations of an element based on Euler-Bernoulli
beam theory. Then, the global mass and stiffness matrices (M and K) are formed, and a Rayleigh damping
matrix C is used in the modeling as

C =aM + BK, (2)

where a = 28wws /(w1 + wa), B = 2§/(w1 + w2), wy and we are the first and second modal frequencies,
and ¢ is the specified damping ratio. Also, based on the assumption of perfect bonding layer and effectively
transferred shear force,?® the moment exerted at a node of a piezo beam element due to the applied voltage
can be expressed as

_ Ebthptp A d31V
T Eyty +6E,t, | t,

; 3)

where E, and E, are the Young’s modulus of the aluminum beam and the PZT patches, ¢, and ¢, are the
thickness of the aluminum beam and the PZT patches, Ay is the cross section area of the aluminum beam,
ds; is the piezoelectric constant of the PZT patches, and V is the applied voltage to the PZT patches. The
applied voltage can be a combination of a nonlinear function of the measured signal and any time-dependent
functions through a feedback loop. Thus, the nonlinear feedback excitation F can be modeled by assembling
all (elemental) nodal forces, and using the specific form of the nonlinear control circuit (embedded in the
real-time processor) and the gain of the amplifier. Finally, the equation of motion for the discretized sensing
beam model subjected to the nonlinear feedback excitation can be expressed as

0

M + Cx + Kx = F, (4)

where x is the vector of nodal displacements. Eq. (4) can be expressed in state space representation by
introducing a new vector v = x as follows

X = AX + BF, (5)
where
A= 0 ! B O |, X=[x+v]", and F = GX + F(X) + F(¢)
-M'K -M~!C |’ M- |’ ’ ’
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Figure 4. The time response of velocity at the tip of the sensing beam without added mass for different values
of p; (i.e. 704, 708, and 712).

Herein, the nonlinear feedback excitation F is a function of x, X, and ¢, and consists of nonlinear feedback
F(X), a time-dependent function F(¢), and linear feedback GX, where G is a linear gain matrix. The
dynamics of the sensing beam forced by nonlinear feedback excitation can be obtained by solving Eq. (5)
using any time-marching scheme. To generate a bifurcation diagram computationally, the values of the
controller parameters used in the nonlinear feedback excitation are varied, and the dynamics of the sensing
beam is recorded from numerical integrations done for each set of parameters.

V. Nonlinear feedback excitation design

Two important questions in the experimental setup used herein are what combination of nonlinear func-
tions of the measured signal, and what time-dependent functions should be utilized in the controller such
that the bifurcation morphing due to small change in mass is sensitive. The design of the controller cannot be
as simple as in most investigations using numerical simulation. As discussed in Section IV, the linear model
of the sensing beam is obtained easily by the finite element method. In contrast, creating an appropriate
form of nonlinear feedback excitation F is more challenging, especially experimentally.

The controller designed for the sensing beam draws inspiration from well-known driven dissipative flows.
Specifically, the form of nonlinear feedback excitation can be defined by mimicking a driven van der Pol
oscillator. To that aim, consider first that the cantilever beam may be approximated as a one degree-of-
freedom system (e.g. corresponding to the first Galerkin mode). The governing equation of a one degree-of-
freedom van der Pol oscillator can be expressed as

# 4z =b(1—2%)i + PsinQt, (6)

where b, P, and () are related to the controller parameters. This oscillator can exhibit diverse dynamics when
different parameters are chosen. The main causes for the rich dynamics are nonlinearity and the harmonic
force. However, the nonlinear form in Eq. (6) can not be directly used in nonlinear feedback excitation
since the measured signal in our experiment is only the velocity of one point on the beam rather than both
displacement and velocity. Therefore, Eq. (6) requires modifications. First, Eq. (6) can be integrated with
respect to time to obtain

P
;t+/xdt:bx—gx3—ﬁcosﬂt+cl, (7)

where ¢; is a constant of integration. Then, by introducing y = [ zdt — ¢1, Eq. (7) can be written as

b P
y+6y+y:(b+6)y—§y3—ﬁcosﬂt, (8)
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Figure 5. Bifurcation diagrams for the cases in which different amounts of mass (no mass, 20 mg, and 40 mg)
are added at the tip of the beam, and the frequency of a harmonic function in the controller circuit is 18.8 Hz.

where ¢ characterizes the structural damping in the sensing beam. The dynamics of the new state y is
qualitatively similar to the one of the state z in Eq. (6) if  is smooth. Thus, y can also exhibit various
dynamics when different parameters are selected. In Eq. (8), the left hand side represents one mass-spring
system, and the right hand side can be regarded as the nonlinear feedback excitation applied to the mass.
One of the most important aspects of this design is that the nonlinear feedback excitation depends only on
the velocity g, and yet causes diverse dynamics. Based on this exploration, we specify the applied voltage
V in Eq. (3) as

V = p1v + pav® + pssin Qt, (9)

where v is the velocity measured using the laser vibrometer at the tip of the beam, and p;, p2, p3, and
are the parameters of the nonlinear feedback excitation.

VI. Results

Consider computational results first. Different parameter variations can be applied computationally, and
in particular consider adding no mass, 10 mg, and 20 mg at the tip of the sensing beam. Tab. 2 shows the
first (lowest) four frequencies for the sensing beam with no mass and with 20 mg mass added at the tip. The
changes in these four frequencies due to a small amount of added mass is very small. Hence, most usual linear
vibratory characteristics are not sensitive enough to this small change in mass. In contrast, the proposed
approach takes advantage of nonlinearity resulting from the designed nonlinear feedback excitation. Herein,
the values of the parameters ps, p3, and (2 are fixed and specified as 4000, 1, and 128.81. The value of the
parameter p; is varied from 670 to 750 with an increment of unity. The reason for choosing the parameter
p1 as the bifurcation parameter is to destabilize the original linear damping in the structure and create
negative linear damping. In addition, the nonlinear damping (designed in the feedback excitation) allows
the response of the structure to remain bounded, which is the same situation as for the driven van der Pol
oscillator modeled in Eq. (8) (where b < 0). Fig. 3 shows the bifurcation diagrams for the cases in which
different amounts of mass (no mass, 10 mg, and 20 mg) are added at the tip of the beam. Compared to the
low sensitivity of linear frequencies, the differences between the bifurcation diagrams are so significant that
a very small amount of mass (such as 10 mg) can be easily detected. This enhanced sensitivity is the key
feature for the proposed approach. Fig. 4 shows the time response of velocity at the tip of the beam without
added mass for different values of p; (i.e. 704, 708, and 712). The three subplots in Fig. 4 represent three
representative dynamics. The dynamics in the central subplot with the minimum local amplitude (similar to
the beating phenomenon) can be considered as the transition from simple to complex limit cycles. Therefore,
the corresponding value of the parameter may be regarded as a quantitative indicator for detecting changes
in parameters. For example, in Fig. 3, the value of this particular point varies from 708 to 720 due to
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Figure 6. Bifurcation diagrams for the cases in which different amounts of mass (no mass, 20 mg, and 40 mg)
are added at the tip of the beam, and the frequency of a harmonic function in the controller circuit is 18.9 Hz.

different amounts of added mass.

Next, experimental results are discussed. Different amounts of mass (i.e. 10 mg, 20 mg, and 40 mg)
are added at the tip of the sensing beam to create variations in mass of the beam. Herein, the use of mass
is due to the ease of removing it from and attaching it to the beam without changing the condition of the
baseline case (i.e. no added mass). Then, the controller circuits embedded in the real-time processor can be
programmed such that the output analog signal (voltage) has exactly the same form as Eq. (9).

Similar to numerical simulations, the parameter p; is varied, and the other parameters are fixed. Fig. 5
shows bifurcation diagrams resulting from experiments for the cases in which different amounts of mass (no
mass, 20 mg, and 40 mg) are added at the tip of the beam, and the parameters ps, ps, and 2 are specified
as 4000, 1, and 118.12 (18.8 Hz).

One may note that the morphing of the bifurcation diagram in Fig. 5 due to added mass is qualitatively
similar to numerical results. For example, the value of the parameter p; corresponding to the dynamics
with the minimum local amplitude shifts from left (p; = 1.5) to right (p; = 2.2). Also, for larger p; than
each of these particular values, the width of the distribution of local amplitude maximum increases when
the amount of mass increases.

Furthermore, we applied changes to the value of the frequency ) of the harmonic function in the controller
to explore its influences on the bifurcation morphing. Fig. 6 shows bifurcation diagrams obtained while the
parameter € is specified as 118.75 (18.9 Hz). One may note that the bifurcation diagrams in Fig. 6 are more
sensitive to variations in mass than the ones in Fig. 5. This is because the frequency used (of 18.9 Hz) is
closer to the fundamental frequency of the sensing beam. Note however, that the fundamental frequency
cannot be approached too closely to gain higher sensitivity because the output signal surpasses the maximum
output voltage limit of the hardware. Finally, the values of the parameters leading to the dynamics with the
minimum local amplitude attract our attention since they can be considered as the transition points from
simple to complex limit cycles. Therefore, we investigated the movement of these transition points (caused
by added mass at the tip) in the parameter space spanned by 2 and p;.

Figs. 7 and 8 show key results regarding the transition points in the parameter space for the cases where
different amounts of mass (i.e. no mass, 10 mg, 20 mg, and 40 mg) are added at the tip of the beam. The
case where no mass is added is considered as baseline. The variations in the parameter p; with respect to
the baseline due to different amounts of added mass for each specified frequency are shown in Fig. 8.

From Fig. 8, one can notice that the variations in the parameter p; for the frequencies specified as
18.8 Hz and 18.9 Hz are nearly proportional to the small amount of added mass (e.g. 10 mg and 20 mg).
This proportionality provides an important basis for quantitatively predicting not only the presence of added
mass, but also the amount of mass at the tip of the beam. Moreover, if the sensitivity for sensing the existence
of added mass is more valued than the accuracy of predicting the amount of added mass, one may use a
higher frequency (of 19 Hz) to enhance sensitivity, as shown in Fig. 8.
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of the beam.

VII. Conclusions

A novel method for identifying parameter variations based on active bifurcation morphing has been
demonstrated. To test this method experimentally, a smart cantilever sensing beam was built and excited
by a nonlinear feedback excitation through two PZT patches bonded to the beam. The nonlinear feedback
excitation was formed by a feedback loop which consists of sending the analog signal of velocity measured
from a laser vibrometer into a real-time processor, using this signal in a designed circuit in the processor,
amplifying the output signal from the processor, and finally applying the amplified voltage to the PZT
patches. One of the key challenges in this study is how to design the nonlinear controller (i.e. the nonlinear
feedback excitation) such that bifurcation morphing is very sensitive to small parametric variations. This
problem was solved by employing a modified (driven) van der Pol oscillator, and testing the form of the
nonlinear feedback excitation by numerical simulations based on a finite element model of the sensing beam.
Both computational and experimental results showed that the sensitivity to small parametric variations
(such as small changes in mass) can be significantly enhanced by the designed nonlinear feedback excitation.
Also, the computational and experimental results show that the bifurcation morphing modes can be used as
features for damage detection and sensing.
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