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SHOCK WAVE.BOUNDARY LAYER INTERACTIONS
IN LAMINAR TRANSONIC ¥FLOWT

H.M. Brilliant* and T.C. Adamson, Jr. **
The University of Michigan
Ann Arbor, Michigan

Abstract

A solution is presented for a shock interacting
with an unseparated laminar boundary layer in
transonic flow. The method of matched asymptotic
expansions is employed. The flow field is divided
into three regions: the transomnic flow external to
the boundary layer, an outer boundary layer zone,
and a thin viscous sublayer near the wall. The
interaction oceurs over a region with a length of
order Re 3% (M, - 1)"32 and a height of order
Re"?® (M, - 1)*7P where Re isthe Reynolds num-
ber based on the boundary layer length and M, is
the free stream Mach number. For the case of an
incoming oblique shock, the shock is weakened as
it approaches the boundary layer, an expansion fan
is formed at the intersection of the shock and the
boundary layer, and compression waves formed
both upstream and downstream of the interaction
coalesce to form the reflected shock. Numerical
solutions for the wall pregsure and other flow prop-
erties and a flow picture of the interaction region
are presented for such a case, The results apply
when Mg, — 1 is between O(Re -7/5) [1imit when
boundary layer displacement effects dominate shock
effects] and O(Re~1/”) [boundary layer separation
Limit] .

List of Symbols
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T (A) Gamma function
€ deviation of flow velocity
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A shock strength parameter
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P=p/Py non dimensional density
G, v, m, T guage parameters
Superscripts
- - dimensional quantity
* sonic value
A inviscid rotational flow
region
+ viscous sublayer
~ transonic flow region
Subscripts
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Introduction

It is well known that a boundary layer great-
ly modifies the simple shock reflection at a solid
surface and the attendant abrupt increase in surface
pressure predicted by inviscid theory.(l »2) With a
boundary layer included, the structure changes
from a point of intersection of a shock and the sur-
face, to a region of interaction between the shock
and the boundary layer and the pressure varies
continuously,

In this paper, the interaction region between
a shock wave and a boundary layer is studied for
the case where the external flow is transonic and
the boundary layer flow is laminar and unseparated
from a flat wall, The compelling reason for study-
ing such an interaction problem is the application
to transonic airfoil theory. Although the problem
studied here does not meet all the requirements
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for such an application in that 2 turbulent hound-
ary layer with a non uniform outer flow over a
curved body should be considered, the important
mechanisms of the interaction will be illustrated.
Much can be learned by consideration of the simp-
ler problem of laminar flow over a flat plate stud-
ied here and by other authors.

Previous analyses of shock boundary layer
interactions have been concerned primarily with
supersonic external flows. In the earliest theoret-
ical studies,(3“5) and even more recent ones,((’)
the flow was divided into two regions, the boundary
layer and the external flow, with various approxi-
mations being made to simplify the boundary layer
calculations. A significant advance was made by
Lighthill{7) when he divided the boundary layer into
two regions consisting of an cuter inviscid region
in which the flow is only slightly disturbed from
the usual boundary layer profile, and an inner vis-
cous sublayer needed to ingsure the no-slip condi-
tion at the wall, Stewartson and Williams, (8)
Feo,(g) and Messiter, Feo, and Melnik (10} employ-
ed this general model in their siudies of flows
separated by the interaction of an oblique shock
and a laminar boundary layer, using the method of
matched asymptotic expansions, Other approaches
to the problem such as the application of integral
methods(1!:12) have resulted in very useful results
which however are not locally exact and which
therefore are not as useful in gaining an under-
standing of interaction phenomena.

The same general approach used in refer-
ences {8-10) is used here. Thus, the method of
matched asymptotic expansions is employed, and
the interaction region is divided into three regions;
the external inviscid transonic flow region, and the
boundary layer regions consisting of the outer in-
viscid rotational flow region and the viscous sub-
layer. Solutions in each region are presented in
the form of asymptotic expansions valid in the lmit
as Re* +»w and M, - 1=0, where Re™* is the
Reynolds number based on the distance to the point
at which the shock intersects the boundary layer,
and My is the Mach number of the external flow.
These solutions are matched to insure the consist-
ency of the solutions as the various regions are
traversed. The results are applied to flow with an
oblique shock wave such that the flow remains

supersonic everywhere in the transonic flow regime.

While the case where the shock is normal far from
the boundary layer can also be handled with this
model, it involves much more complex numerical
computation 3) and will not be discussed in detail
in this paper. Both cases are observed in flow
over airfoils; the obligue shock wave serves as a
good example of the method of solution.

Assumptions and Governing Equations

Consider a shock wave meeting a boundary
layer at a distance L from the leading edge of a
flat plate as shown in figure 1. The flow is assumed
to be two dimensional and to consist of a perfect

gas with constant specific heats, with viscosity co-
efficient proportional to the temperature, and with
the Prandtl number equal to unity. The wall is
taken to be insulated, i.e., the flow is adiabatic.
As indicated in figure 1, the incoming uniform flow
has a velocity of ﬁoo :E’go {1 +€) where € << 1
because the flow is transonic.

As a result of the above assumptions, the
stagnation enthalpy is constant everywhere, and the
boundary layer without an interaction would satisfy
the compressible flow equivalent of the Blagius
solution(14), Within the interaction region, the flow
quantities are perturbed from their values when no
shock is present. For example, the U-velocity
component in the boundary layer is a small pertur-
bation from the compressible flow equivalent of the
Blasius profile.

The governing equations are those of con-
tinuity, motion, energy, and state. They are writ-
ten in non dimensional form as follows, where X is
referred to L and the summation convention is used

8pU,
‘33?1 =0 (1a}
j
- 8y PRCEN | i’[u(w‘ s GU) .
iR, Tax: © - N
§O%; TRy T ReF X, M\eX; T AR
83U
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Suy—— 8 1b
r 3 By 8%, i (1b)
Ty Sa Y1 e}
2 2(y-1) €
p - (3—;-1-) pT (1d)

An equation which may be derived from
eqns. (1}, the so-called gas dynamic equation, is
very useful in transonic flows. It may be written
as,

Uz 2U.
. U.,a_(_x a2 2Y| b e, BT
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The boundary conditions are similar to those
used in familiar boundary layer problems. At the
wall the velocity is zero; upstream of the inter-
action region, the solutions must match with those
of the undisturbed boundary layer. Far from the
wall, at least in the limit as Re*-’*oo , solutions
should match with the inviscid solution for the given
shock, Downstream of the interaction and outside
of the boundary layer, the disturbance dies out with
the variables going to uniform post shock values.
Finally, since the boundary layer equations are
parabolic, the solution in the downstream limit of
the interaction region becomes the initial condition
for the boundary layer flow downstream of the




interaction region.

In order to derive the specific governing
equations valid in each region, it is necessary to
stretch the independent variables such that each is
of order unity in the region under consideration.
The characteristic lengths in the X and Y direc-
tions, L, and__fy respectively, are chosen to do
this. Thus, Ly is considered to be of the order of
the thickness of the region and changes, depending
on the region being considered; however, it can
easily be shown as a result of the matching con-
ditions{13) that L, is the same for all regions.
The stretched variables are defined as follows

X-T _X

x = ¥, ° T = "ﬂx/E {3a)
¥ ¥ S
= = = 5 = L L 3b
TETL W . (3b)

Superscripts are used to denote the region under
consideration, Thus, ¥, £, yt and %, 8, 5% are the
stretched Y coordinate and gauge parameter in the
external, outer boundary layer, and inner boundary
layer (sublayer) regions respectively. Since 7 and
x do not change, no superscripts are necessary,

The dependent variables are expanded in
asymptotic expansions valid in the limit as Re —~+w
and € — 0. Constraints on the relative orders of
Re* and € are shown later in terms of limitations
on the solution. In the boundary layer regions, the
expansions are written as perturbations from
boundary layer solutions which themselves may be
written as Taylor expansions. Thus, in the
outer boundary layer region, the undisturbed bound-
ary layer solutions may be written as a Taylor
expansion about x = 0, i.e., for x << 1, while inthe
inner boundary layer region these solutions are
expansions about x = y = 0, i.e., for x <<1 and
y <<1. Therefore, the general solutions in the
interaction region are written as double expansions,
one for the undisturbed solution and one for the
interaction effects. They are written as follows for
the velocity components and pressure:

U =Eyq uge (x,y) + Eol‘jol b, y) + -

+E u (x,y) + Egu (x,yv) + - - (4a)
Vo= v vyl b vy v GGy) 4 e
+vy vy (e,y) v, valx,y) 4 .- (4b)
1
P:7+...+1r1Pl(x,y)+1Tsz(x_Y)+._, {4¢)

where double subscripts refer to the known bound-
ary layer solution and single subscripts to the un-
known interaction effects. Similar expansions may
be written for the temperature and density. The
expansions for the external transonic flow region
are similar to those shown in eqns.(4) but generally
require only a single expansion involving only inter-
action terms. The gauge parameters E, v, and w
will be found in terms of Re* and ¢; with the excep-
tion of E,, they are small compared to unity. As
with y and 8, superscripts are used to distinguish

the dependent variables and gauge parameters in
each region.

Solutions

Inviscid Rotational Flow Region

The flow in this outer boundary layer region
ig a small perturbation from the boundary layer
flow at the point at which the shock meets the
boundary layer, Expansions {4} simplify to

AA AA
U= uoo(y) + Txum(y) oo

AA A AA A
+ Eyw (x,y) + Eguy (x, v} + -c -

(5a)
An A A AA
V= Gvoo(y) +ohTxv, )+
A A A AA A
ty v lx,y) +v, volx,y) + - (5b)
1 A A A A A A
P=¥+--- +m Py x,y) +m, Pylx, ¥y} + .- (5¢)

with expansions similar to eqn. (5a) for the tem-
perature and density. (13 {That the gauge param-
eters are the same for T and p is obvious upon
consideration of the continuity, state, and energy
equations.) Since this region comprises most of
the boundary layer region

5 = Re* -1/2 (6)

The gauge parameters are related by sub-
stituting eqns. (5) into eqns. (1). First, in the
continuity equation, variations in both the x and y
directions appear to be equally important. Next,
comparing the viscous stress and pressure terms
in the x-momentum equation, we find that the vis-
cous terms can be ignored, i.e,, that to the order
considered, the perturbations are governed by in-
viscid equations where inertia and pressure terms
balance each other, Thus, from the continuity and
x-momentum equations we obtain, respectively,

N A A
B o=v./% (7a)
2 1
A
A = E (7b)
1 1

where the equality is taken for convenience and
i=1,2. Thatis, two terms of the expansion are
required for matching with the other regions. The
y-momentum equation simplifies to

A
oP: A 2
Tilo [E (.é)]
oy i\T
and since, as will be shown later, ’é <<T

nd
A
1 << 1, this equation simply reduces to éi =Pi(x).
In view of these arguments, egqns. {1} become,

a4 8p 9
A i A i, 8 A~ AL
Poo 3x Yoo Bx * 39 {Poo vi) ,: 0 (8a)
8t ad dP
A A 1y . A A o0 i 0 (8b)
Poo Yoo 3x T Poo Vi T A dx
dy
A A A
i +uou; = 0 {8¢)
A fy) A A AA
Pi=\=7 [poo i ¥ Too p1] (8d)



. . A
After some manipulation, the solutions for u; and
v; can be shown to be

da du..  sof1 - M2
A A 00 Yoo = Moo) LA 1
u, = Ayl +li J;\( )dY‘A I
3 i a¥ @ % IOI;O Poo Vo

A
AT A (92)
P Ay A
A dAi A A foo 1 - Moo dA c‘iPi (9b)
i T " e Moo " Yoo M M LA™
oo
AN ¥-1
Here ICIOO :HOO/aOAo Moo wh:re Moo =1+ (—-—2-—) €
so that as y — 0. My, ~ 1. Aj{x)is an arbitrary

function of integration. These solutions are simi-
lar to those found in reference (8).

For matching purposes, it is necessary to
fim;\ the limits of the above solutions as y == 0 and
as y =~ . [tcan be shown(13) that as Q - O,

a)
cafl - M2 )
00 A (¥+1) 1
f af = = ~ + O(1)
\}\( 10[?)0 ¢ y
o = =24 = =2 (0.33206)
R TR EP O T VI S

A <
Hence, as y =~ 0, the solutions become,

(v-1) a A ]
3(‘("‘1) a) -+ TX _[— 2 ¥ +

A
s B 1A, ) [a) + -1+ [Pyx) - Py-wo)] [0}
A
E

A 3 A
U=3.1.Y+ ! l+"

{10a)

-
T Za) dx dx v
A
(y+1) dpP
- —_—Z ... 1
za! dx ¥ } (1ov)
1 AA AA
P:;i—-" + E, Pl(x)+E;Pg(X)+" (10c)

A
As y — o0, the solutions become

A A A A A
- B [Px)- Pi(-w)] - E, [P, fx)

U=14+e+ -
A
- Pyl-wo)] + oo {lla)
H A
A A
Vabv (w)+ drxv_fo)+ -EEI%—
oo A AT dx
5§ A dA
2 Loz .
R (11b)
1 ANOA AN
p:§+-.. + E Pi(x}+ E;Py(x) + ... {11¢)

A
In eqns. (10) and (11}, the expansions for u o 3Te
the Tayler expansions of the compressible Bound-
ary layer solutions{13,14}, mentioned previously.

Viscous Sublayer Region

The solution in the inviscid rotational flow
does not satisfy the no slip houndary condition, as

LA, 00 [+ 1+ [B60 - Byleo)] [0} - -

shown by eqn., (10a)., Very near the wall, then,
there exists a thinner region (6+ << §) in which vis-
cous stresses are as important as the inertia and
pressure terms. Using expansions for the com-
pressible boundary layer flow solutions, {13,14) gne
can write eqns, (4) in inner variables as follows:

st 5*Y  (y-1) 5t a,
Ueg Ayt (‘{) EesT R A S
P + B ute, vty b - (12a)
A fet '
V=3 (33-) Z v o4 v,y - (12b)
1
P = :{- + o + 1r1+ P1+(x,y+) + - ({(12¢)

where only one interaction term is necessary in
this inner boundary layer region. Since U <<1 and
the stagnation enthalpy is constant, the temperature
and hence the density are constant to first order;
i.e., the flow in the viscous sublayer is incom-
pressible to first order.

Just as in the previous calculations, egns,
{12) are substituted into egns. {1). Again, itis
expected that variations in both x and y* are impor-
tant insofar as the continuity equations is concerned.
In the x-momentam equation, the inertia, viscous,
and pressure terms are of the same order. Hence,
from the continuify equation

+ +
E _ L
T &
while from the x momentum equation

5+
'"'1+ . O El+

3

dr Y
+ .
)

Again, from the y+ momentum equation, since

(13)

(14a)

{14b)

§¥ << §<<1, P} = P (x). Finally, then, the
governing equations are
+ +
—aaﬂk— + ";" (15a)
X b
+ 2,4
2 1 8u1+ + dpP, ¥Y+1Y 9% uy
=t 1
{y+1) a1 [Y Ox AL dx 2 3y+2 {15b)

Thus, eqns, (15) are linearized boundary layer
equations. Differentiating egn. (15b} with respect
to y' and employing eqn. (15a), we obtain

aSu +

v Bfalt
AY axdy T eyt (162)
4a
. Aal
A= = (16b)

If 3u1+/3'y+ is replaced by z, say, egn. (16a)is a
specific case of a general equation integrated by
Sutton. (15 Using Sutton's results, we can derive
the following results

x + +3
oo (ARME) s (i _AJ_)dg (17a)
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where y(A, z) is the incomplete Gamma function,
Clearly, the boundary conditions, u1+ =" =0at
yT = 0 are met by these solutions. For matching
purposes, it is necessary to find their limiting
forms as y' — tw. When these limiting forms and
eqns, (13) and (14) are substituted inte egns. (12},
the results are, for y — oo,

3
o = oyt f e-g)/3 v(l Aﬁ——-)a;

9{x-L)
Ay*
9{x-L)

) dt (17h)

= (577 %8) 8yt + (8178 ?‘(i—ﬁ’) at3yts .

-t (6+/3) iz‘— xyt

X + op
+ B [T 0/3) _fmi%g‘—g’ RN SR [N
{18a)

A A '
vV = 5(5”/5)23- 24

+ (5Y/T Byt ey r(lfs)f -ty LB g

aze
1/
() rem o 2B Y ae
P =$ st B E P+ (18¢)

where d P;T/dx -0 as x ~ -0,

Transonic Flow Region

The flow outside the boundary layer is
transonic. Hence, the flow quantities are small
perturbations from their critical, undisturbed,

values. Thus,
U=1+8% 6,74+ (192)
VaRnT &P (19b)
P=%+'ﬁ",ﬁ. =5+ - (19¢)

with similar expansions for p and T from their
critical values of 1 and ('\t—l)‘l , respectively. If
these expansions and the stretched independent
(outer) variables are substituted into eqns. (1) and
(2), the gas dynamic equation, it can be shown(13)
that the viscous terms are negligible to first order,
and that in fact in first order, the familiar egua-
tions for inviscid irrotational transonic flow are
obtained, The transonic equation, irrotationality
condition, and pressure velocity relation are,

yil) #25¢ 8%, _
( ?_) o all 7t - 0 (20a)
B = -9 (20¢)

In addition, the relationships between the gauge
factors are

o= El (21a)
% = E (21b)

T = 'gﬁilﬁ

all well known results in transonic flow,

(21c)

The solution to eqns. (20) depends on the
problem being studied (e.g., obligue or normal
shock) as will be illustrated later.

If eqns. (19) are matched with the corres-
ponding properties of the uniform incoming outer
flow, it is seen that as x > -e0

W (0,5 = Pi(-w,¥) = 1 22a)
Eo=e (22b)
¥, = e (22¢)

Then, since ?1'; , P;, etc. remain of order one in
the entire region, the solutions to be used for
matching with the inner region are, as y -~ 0,

U=1+¢em(x,0}+ ... (23a)
V=t e, 004 .- (23b)
PxsteD (x,004 - (23¢)

Y

Matching

In order to complete the general solution,
it is necessary to match solutions valid in each of
the individual regions. Thus, eqns. (10), valid in
the limit as G -+ 0 must match term by term with
eqns. (18), valid in the limit as y —~ o . Likewise,
eqns. (11), valid in the limit as y -0, must match
with eqns. {23}, valid in the limit as y - 0.
Comparing first, eqns. (10a} and {18a), we
see that
(24)

Then, if the pressures, eqns. {10c) and (18c) are

to match,

B, o) = (25a)
A n A +
E, = (6/3) E; (25b)
B, &x) = Pyt x) (25¢)
Returning to the velocity components, egns, (10a,b)

and (18a,b), we see that matching is completed if
X ot
sl At = - 003 [ SECE A e @26a)
Zeo

A 2a, (26b)

{11c) and (23c¢c), we

/
(3)l P ress) e - 1

Next, comparing egns,

obtain
{27a)

(27b)

A
E, = ¢
A
Py x,0) = P, (x)

A
In view of eqn. (20c), and since P, (-w) = -1, it is
seen that the U-velocity components, eqns. (lla}
and {23a) also match. Finally, from matching

egns. (11b) and (23b), we obtain
(3/1') i'i\h - (28a)
V1 6x,0) = - d A, /dx (28b)



A . .
Thus, it is seen that A, (x} is not important in
determining the first order solution in each region.

It should be noted that eqn. {19b} is written
with the idea that the undisturbed boundary layer
displacement effects are small compared to inter-
action effects and can be neglected, Now, if the
boundary layer effects are included, the resultis,

1€ 0k, 004
{29)

= GV (oo)+ 6Txv (oo) +.

A constant in this expansion for V presents no
problems, (The outer edge of the boundary layer
acts like an inclined flat plate.) Hence, the present
solution holds as long as the second boundary layer
displacement term is small compared to the first
interaction term, i.e., as long as 87 << &

When these terms are of the same order, modifi-
cations must be made; however, for this case the
shock is extermely weak, and it will not be dis-
cussed further.

From eqns. (14b), (24), {25b), (27a), and
(28a) it is seen that,

e met1h fsh esh

(30)
This is a general expression for the size of the
interaction region in terms of the boundary layer
thickness at the point of intersection of the shock.
Employing eqn. (6}, we obtain,

*-3/8 G-s/s

T = Re {(31)

A summary of the remaining gauge param-
eters is presented in Table 1, It should be noted
that T is large compared both to 6 and the shock
thickness which is of order Re™ ! €}, The solu-
tions are valid within certain limits on the param-
eters, The lower hm} d1scussed pre'nously,
occurs when T = O(e¥?Y), , when € = O(Re*
The upper lirnit occurs when the viscous sublayer
is no longer linear (8 /@ = O(E; 1) from eqn. (12a)).
This yields € = O(Re*"lls). Since w,* is negative,
this limit is that for which the shock wave is strong
enough to cause separation. This result agrees
with the conclusions of Messiter, Feo, and
Melnik, (10

Application to Oblique Shock Problem

An oblique shock impinging upon the boundary
layer is considered. Because the shock has too
great a pressure gradient for the boundary layer to
sustain in the thickness of the shock, the pressure
change is spread out over a distance greater than
either the shock or the boundary layer thickness,
as shown above. Thus, the pressure begins to in-
crease ahead of the shock boundary layer inter-
section point and continues to increase downstream
of it. Compression characteristics ahead of the
shock interact with it; the shock is weakened, but
still has a finite strength at the impingement point.
Hence, at that point a centered expansion fan is
formed, to insure continuity of pressure.

-7h 5)-

The case considered is that where the flow
remainsg supersonic everywhere in the transonic
flow region; hence the method of characteristics
can be applied. If i_’,(x,:;) and n(x,'\;) are coordinates

which are constant on ¢~ and ¢¥ characteristics,
respectively, then the equations for the ¢~ and ct
characteristics, are, respectively,
(ELV-) =l &1 )
dx
£=const.
ay ~
(ny") = [y+D& 12 (32b)
n=const.
The equations which hold along the ¢t and -
characteristics respectively, are, (13}
YFI 532 % = f () (33a)
2 i~ o~
5T BT = g0 (33b)

Now, the ¢~ characteristics ahead of the
shock come from a region of uniform flow with
'1'1“1 =1 and ';;1 = 0. Therefore, ahead of the shock
is a region of simple wave flow in the sense used in

supersonic flow theory. Thus, from egn. (33b) and
the boundary conditions, we find that
2
£, (6) = SJNFT (34)
ahead of the wave, and hence from egns. (33) and

(32b) that ¢t characteristics are straight lines with
the parametric equation

[ty+1) & 6, 0)]2§

is the value of x at which the characteris-
tic leaves the boundary layer.

(35)

=X - X
(8]

Here, x

Applying matching conditions given by eqns.
(27b), {28b), {26a), and (20c) to egns, (33b) and
(34), we obfain an equation for the pressure along
the wall, ahead of the impingement point:

* A
[ B, )13 460 [ gty s %ﬁd;:1 (x<0) (36)
-o0

Cw= 38 r(1/3)/2“/’ a.'S/’ (y+1)'/"r(2/3) {36b)

Eqn. {36a)is solved using a series of exponentials,
(simnilar tg a series used by Stewartson and
Wllhams

[+a]
Pz(x)z -1+ 3 ane (37)
1
where
b= {wD(5/3)}7 3 (38a)
~a
~ 2 ~ o
d; = - Wﬁ'_—l) = Aa, (38b)
3y
~ |3 n-1) -1 s
2 " 1 B3, 1
3, . ~ %R
nsl ZJ&/: (n-J)‘IB-l 2 %k
trd s, saEm T
j:zz, n-j o -1 j n*" - 1)
= A 3m n = 3) (38c)



E'nd where the values for Kn are given in Table II.

ay is a constant determined in conjugation with the
downstream flow salution. Once %] is determined,
~ A

uy v;, etc, can be calculated.

The flow across the shock is governed by the
transonic oblique shock relations,

uld - ('Y+1) B = ulu (393-)
v'd"vlu"(yﬂ)p —Zu,up (39b)

where F' (n) is the stretched shock angle relative to
the vertical and subscripts u and d indicate condi-
tions upstream and downstream of the shock
respectively. Since eqns. (39) do not define the
location of the shock, @x_, ';‘s), we also need the
equation as
- S
dxs ﬂ' (n)

(40)

The flow downstream of the shock is a simple
Because of shock losses, in this downstream

2
f,{&) = E.\/y+l A <%‘/Y+l

where A’ is the shock strength parameter and is
given, insofar as the interaction problem is con-
cerned. Eqns. (33b), (39), and (41} may be com-
bined to form an equation for 3‘ as a function of _
(E'lu s '\7‘1u), i.e., at a given ¢t characteristic. The
resultant equation, with eqn. (40} is used to locate
the obligue shock. Equation (41) applies, also, to
the expansion fan and trailing characteristics,

wave.
region,
(41)

Although the undisturbed boundary layer
grows indefinitely, the perturbations due to the
interaction must return to zero. For example, the
flow leaving the expansion fan has a negative V-
velocity component; it must be turned to the hori-
zontal again, i.e., so that Tl ,0) =0,

From egns. (33b), {41), and {20c), one can
obtain an equation for the pressure at the wall

downstream of the shock:

2 h

X
- B el o [ gy dd_gpf"‘ a =A <1
o0

x >0)

Care must be taken in evaluating the integral in
egn, (42) since d*P,/dx® is discontinuous atx = 0
as shown below.

(42)

Eqn. (42) must be solved numerically, al-
though expansions for P, (x) for large and small x
can be derived. Thus,

Iga(x N -'é'%:uT/:'. [1-1&'2/3]x“/3,+

(x >>1) {43a)

By - By00m) + Bromyx - 2B 1wyt

8w
1

+ 3 B, 0 )52+ 0((1-4"%"%) (0<x << 1) (43b)

Equation (43b) can be compared with the expansion
for small but negative x

1

> B, 07 )x2 + O(®)  (44)

A A Ay,

Poix) = P{(07) + P, (07 )x +
Thus, itis seen that the second derivative of the
pressure is discontinuous at x = 0, being bounded
for x = 0~ but infinite for x = 0%, The V-velocity
component is also discontinuous at x = 0, This
implies the existence of an inner region in the
boundary layer such that vinper << 7. However,
the solution to the oblique shock problem can be
completed without studying this inner region,
Finally, it should be noted (eqn. {43a)) that the
pressure decays algebraically to its final value;
this is slow compared to the upstream influence
which obeys an exponential law ag x ~+ -o0.

Ag part of the numerical solution of eqn. {42),
3’, li.e., w) must be determined A double iter-
ation scheme, invelving both %, and ﬁz(x) for x>0,
was employed, (13} with the proper sclution being
that one which satisfied eqn. (43a). With 3."1 and
,» (x) known, the remaining properties in the
transonic flow region may be found directly.

Calculations were made for three different
shock strengths, Al = 0.21600, 0.35355, and
0.50000. An attempted calculation for A' = 0, 12500
resulted in no solution; this will be discussed later
The flow conditions for the incoming shocks
corresponding to each A' value are shown in Table
III. In each case, ¥y =1.4.

The pressure perturbations are shown in
figure 2. They are monotonic with most {70-75%)
of the change occurring upstream of the shocks.
The V-velocity comnponents at the wall can be found
using eqn. (33b). The results are shown in figure3,
If the V-velocity component is integrated from
- to %, the position of the streamline at ¥ = 0
(i.e., the wall streamline) is obtained as shown in
figure 4. In this figure the vertical scale is
stretched by a factor of E in order to illustrate
the variations which are actually very small.
Finally, the numerical solutions may be used to
construct the transonic flow field as shown in
figure 5 for A' = 0,216, The interaction between
the compression waves and shock ahead of the inter-
section point causes the shock to curve and become
weaker as the wall is approached. It should be
noted that the compression characteristics even-
tually coalesce to form the reflected shock.

The limit on A' occurs when the flow at some
point becomes subsenic, since then characteristic
theory cannot be applied. The lowest velocity in
the flow field occurs along the leading characteris-
tic of the expansion fan not far downstream. It can
be shown{!3? that this velocity becomes sonic when
A'® 0,20, explaining the aforementioned lack of
success in finding 2 solution for A" = 0, 125,



Discussion

The overall picture of the interaction be-
tween a weak shock wave and an unseparated bound-
ary layer is similar in some respects to that found
in the separated case for either transonic or super-
sonic flow, That is, even though the shock is very
weak, the shock thickness is still small compared
to the boundary layer thickness which is in turn
small compared to the extent of the interaction
region, In addition, the shock impinges on the
boundary layer and this is followed immediately by
an expansion fan just as in the other cases. Finally,
the pressure distribution upstream of the shock are
similar. Only the magnitude of the various regions
and the pressure distributions downstream of the
shock show basic differences.

Although no direct comparison with experi-
ment is possible, comparison of the flow picture in
references (1) and (2), for example, with figure 5
indicate that the general structure is reproduced
here. Thus, in the event that repeated shocks
occur in the supersonic region over an airfoil, all
the shocks appear to be oblique shocks followed by
expansion fans, with the exception of the last shock
which {s normal.

The interaction between a normal shock and
an unseparated boundary layer can be studied using
the model presented here, The only changes occur
in the transonic region where the flow behind the
shock is subsonic. However, the elliptic equations
in this subsonic region are very difficult to solve.

In flow over curved surfaces, the effects of
wall curvature and non uniform incoming flow could
require changes to the model presented here. How-
ever, it can be shown 13) that as long as the wall
curvature is at most of order ¢ = 32 , no correction
due to wall curvature need be made.
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Table I. Summary of Gauge Parameters
¥
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Table II. Coefficients, Ap

~F P

n A n A

n n
1 1.0 6 ~-6.7813 x 10-%
2 -1,6449 % 10! 7 -2.8170 x 10-5
3 1.2798 x 1072 8 -1.3747 x 1073
4 -1.4817 % 107 9 -7.0577 x 1078
5 -9.1987 x 1075 10 -3.8033 x 10~

Tahble III. Conditions Downstream of Incoming
Shock Wave for Various Shock Strengths

Land

-1 Alm 21800
.35355
50000

Figure 3. V-velocity component at the wall, in
transonic flow region, for various

shock strengths.

5.5 j;

N p! ";’ld Vig
0. 50000 1.4801 0.82552 _b.25835
0.35355 1.4578 | 0.77092 -0.33394
0.21600 1.4358 | 0.71786 -0.40508
0.12500 1.4206 | 0.68169 -0.45219

For these calculations, :;1 a =1 :;1 i =0
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Sketch showing flat plate, boundary
layer, shock wave, interaction region,
and notation used.
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Figure 2. Perturbation pressure distribution at

the wall for various shock strengths.
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