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SHOCK WAVE-BOUNDARY LAYER INTERACTIONS 
IN LAMINAR TRANSONIC F L o W t  

H.M. Brilliant* and T . C .  Adamson, Jr.** 
The University of Michigan 

Ann Arbor ,  Michigan 

Abstract - - -  _ _  
A solution i s  presented for  a shock interacting X = (X - L ) / L  ; Y = Y/L 

with an  unseparated laminar boundary layer in  
transonic flow. The method of matched asymptotic x ; y 
expansions is employed. The flow field is divided y 
into three regions: the transonic flow external to 
the boundary layer ,  an outer boundary layer zone, 
and a thin viscous sublayer near  the wall. 

z 
y ( A , z ) = S  0 

The 
interaction occurs  over a region with a length of 
order  Re-’/’(M,- l)-’” and a height of o rde r  

r (A) 

IA = i2.2 

E 

A‘ 
Re-’/’ (M, - lr’b where Re is the Reynolds num- 
her  based on the boundary layer length and M, is 
the f ree  s t r eam Mach number. 

i t  approaches the boundary layer ,  an expansion fan = pm 
is formed a t  the intersection of the shock and the 

For the case  of an 
incoming oblique shock, the shock i s  weakened a s  - -* 

6 ,  v ,  n. T 

boundary layer ,  and compression waves formed 
both upstream and downstream of the interaction 
coalesce to form the reflected shock Numerical 
solutions for  the wall p ressure  and other flow prop- 
e r t ies  and a flow picture of the interaction region 
a r e  presented for  such a case.  The resul ts  apply 
when M, - 1 i s  between O ( R ~ - ~ / ~ )  [limit when 
boundary layer  displacement effects dominate shock 
effects] and O(Re”/5) [boundary layer separation 
limit]. 

W 
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a ==E& non dimensional speed of 
sound 
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shock intersection 
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components 

Superscr ipts  
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Subscripts 
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non dimensional 
coordinates 
stretched coordinates 
ratio of specific heats 

incomplete Gamma 
function 
Gamma function 
deviation of flow velocity 
f rom sonic 
shock strength parameter  
non dimensional viscosity 
coefficient 
non dimensional density 
guage parameters  

dimensional quantity 
sonic value 
inviscid rotational flow 
region 
viscous sublayer 
transonic flow region 

incoming flow 

Introduction 

It i s  well known that a boundary layer  great-  
ly  modifies the simple shock reflection a t  a solid 
surface and the attendant abrupt increase in  surface 
p re s su re  predicted by inviscid theory.(lBZ) With a 
boundary layer included, the s t ruc ture  changes 
f rom a point of intersection of a shock and the su r -  
face,  to a region of interaction between the shock 
and the boundary layer and the p re s su re  var ies  
continuously . 

In this paper ,  the interaction region between 
a shock wave and a boundary layer  is studied f o r  
the case  where the external flow is transonic and 
the boundary layer flow is laminar and unseparated 
f rom a flat wall. The compelling reason for  study- 
ing such an interaction problem i s  the application 
to  transonic airfoil theory Although the problem 
studied here  does not meet  a l l  the requirements  
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fo r  such an  application in that a turbulent bound- 
a r y  layer with a non uniform outer flow over a 
curved body should be considered, the important 
mechanisms of the interaction will be illustrated. 
Much can be learned by consideration of the simp- 
l e r  problem of laminar flow over a flat plate stud- 
ied here  and by other authors. 

Previous analyses of shock boundary layer 
interactions have been concerned pr imar i ly  with 
supersonic external flows. In the ear l ies t  theoret- 
i ca l  s t u d i e ~ , ( ~ - ~ )  and even m o r e  recent ones,((') 
the flow was divided into two regions, the boundary 
layer and the external flow, with various approxi- 
mations being made to simplify the boundary layer 
calculations. A significant advance was made by 
Lighthill(7) when he  divided the boundary layer  illto 
two regions consisting of an  outer inviscid region 
in which the flow is only slightly disturbed f rom 
the usual boundary layer profile. and an  inner vis- 
cous sublayer needed to insure  the no-slip condi- 
tion a t  the wall. Stewartson and Williams,(8) 
Feo,(9) and Messiter.  Feo ,  and Melnik(l0) employ- 
e d  this general model in their studies of flows 
separated by the interaction of an oblique shock 
and a laminar boundary layer ,  using the method of 
matched asymptotic expansions. Other approaches 
to the problem such a s  the application of integral  
methods(] 3 12) have resulted in very  useful results 
which however a r e  not locally exact and which 
therefore are not as useful in gaining an under- 
standing of interaction phenomena. 

The same general approach used in r e fe r -  
ences (8-10) is used here.  Thus, the method of 
matched asymptotic expansions is employed, and 
the interaction region is divided into three  regions: 
the external inviscid transonic flow region, and the 
boundary layer regions consisting of the outer in- 
viscid rotational flow region and the viscous sub- 
layer.  
the fo rm of asymptotic expansions valid in the limit 
a s  Re* * m  and M, - 1-0, where Re* i s  the 
Reynolds number based on the distance to the point 
a t  which the shock intersects the boundary layer ,  
and M, i s  the Mach number of the external flow. 
These solutions a r e  matched to insure  the consist- 
ency of the solutions a s  the various regions a r e  
t raversed .  The results a r e  applied to flow with an 
oblique shock wave such that the flow remains 
supersonic everywhere in the transonic flow regime. 
While the case  where the shock is normal f a r  from 
the boundary layer can a l so  be handled with this 
model,  it involves much more  complex numerical  
computation(13) and will not be discussed in detail 
in this paper. 
over airfoils;  the oblique shock wave serves  a s  a 
good example of the method of solution. 

Solutions in each region a r e  presented in 

Both cases  a r e  observed in flow 

Assumptions and Governing Equations 

Consider a shock wave meeting a boundary 
layer a t  a distance L from the leading edge of a 
flat plate a s  shown in figure 1. 
to be two dimensional and to consist of a perfect 

The flow isassumed 

gas with constant specific heats, with viscosity co- 
efficient proportional to the temperature,  and with 
the Prandtl  number equal to unity. 
taken to be insulated, i .  e . ,  the flow is adiabatic. 
As indicated in figure 1, the incoming uniform flow 
has a velocity of Tioo = Zzo (1 t e )  where c << 1 
because the flow is transonic. 

The wall is 

As a resu l t  of the above assumptions. the 
stagnation enthalpy is constant everywhere, and the 
boundary layer without an interaction would satisfy 
the com ressible flow equivalent of the Blasius 
s 0 l u t i o n 7 ~ ~ ) .  Within the interaction region, the flow 
quantities are perturbed f rom their values when no 
shock is present.  
component i n  the boundary layer is  a smal l  per tur -  
bation f rom the compressible flow equivalent of the 
Blasius profile. 

For example, the U-velocity 

.The governing equations a r e  those of con- 
tinuity, motion, energy. and state. They a r e  writ- 
ten in non dimensional form a s  follows, where X is 
re fer red  to z and the summation convention is used 

apu. 
ax. - = 0  ( l a )  

I 
'vi a p  I pu.--+-=,a  lax. axi R e  ax. 

(P' - 7 I") - auk *..I J 3 

axk 11 

= (+) pT 

An equation which may be derived from 
eqns. (1). the so-called gas dynamic equation, i s  
very useful in transonic flows. It may be written 
a s ,  

P Fj e (2) - a'?] = - %& (k %) 
J 

The boundary conditions a r e  s imi la r  tothose 
used in familiar boundary layer problems. At the 
wall the velocity is zero; upstream of the in te r -  
action region, the solutions must  match with those 
of the undisturbed boundary layer .  
wall, a t  l eas t  in the limit a s  Re'+m, solutions 
should match with the inviscid solution fo r  the given 
shock. 
of the boundary layer ,  the disturbance dies out with 
the variables going to uniform post shock values. 
Finally, since the boundary layer equations a r e  

the interaction region becomes the initial condition 
for the boundary lay- flow downstream of the 

F a r  from the 

Downstream of the interactton and outside 

parabolic, the solution in the downstream limit  of v 
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interaction region. 

In o rde r  to derive the specific governing 
equations valid in each region, it is necessary  to 
s t re tch  the independent variables such that each is 
of o rde r  unity i n  the region under consideration. 
The cha rac t e re t i c  lengths in the X and Y direc- 
tions, & and L respectively. a r e  chosen to do 
this. Thus, Ly 1s considered to be of the o rde r  of 
the thickness of the region and changes, depending 
on the region being considered; however, it can 
easily be shown a s  a resu l t  of the matching con- 
d i t i o n ~ ( ' ~ )  that % is the same for a l l  regions. 
The stretched variables a r e  defined a s  follows 

i/ 

- Y  

Superscripts a r e  used to denote the5egion under 
consideration. Thus, ys 0 ,  yt and 6 ,  s, 6+ a r e  the 
stretched Y coordinate and gauge parameter in the 
external,  outer boundary layer ,  and inner boundary 
layer (sublayer) regions respectively. Since T and 
x do not change, no superscripts a r e  necessary .  

The dependent variables are expanded in 
asymptotic expansions valid in the l imit  a s  Re*-m 
and E - 0. Constraints on the relative orders  of 
Re" and E a r e  shown later in t e r m s  of limitations 
on the solution. In the boundary layer regions, the 
expansions a r e  written a s  perturbations f rom 
boundary layer solutions which themselves may be 
written a s  Taylor expansions. (13) Thus, in the 
outer boundary layer region, the undisturbed bound- 
a r y  layer solutions may be written as a Taylor 
expansion about x = 0 ,  i. e. , for x << 1, while intfie 
inner boundary layer region these solutions a r e  
expansions about x = y = 0, i. e .  , for x << 1 and 
y << 1. Therefore, the general solutions in the 
interaction region a r e  written a s  double expansions, 
one for the undisturbed solution and one for the 
interaction effects. They a r e  written a s  follows for 
the velocity components and p res su re  

U ~ E ~ ~ U ~ ~ ~ X , ~ ~ ~ E ~ ~ U ~ ~ ~ ~ ~ ~ ~ ~  . . .  
t E ~ u i ( x , y ) + E , u , ( ~ , ~ ) + "  (4a ) 

v =  Y o o v o o ~ x ' Y ~ t v o l v o l ~ x . Y ~ + . . .  

t V I  VI (x,y) t v 2  v,(x,y) t , . . (4b) 

t a l P , ( x , y ) t r r 2 P , ( x , y ) + ' . .  (4c) 
1 p =  - - +  ... Y 

where double subscripts refer to the known bound- 
a r y  layer solution and single subscripts to the un- 
known interaction effects. 
be written fo r  the temperature and density. The 
expansions for the external transonic flow region 
a r e  similar to those shown in eqns.(4) but generally 
require only a single expansion involving only inter- 
action t e rms .  The gauge parameters  E ,  v ,  and n 
will be found in t e r m s  of Re* and E; with the excep- 
tion of Eo, they a r e  small  compared to unity. As 
wi thy  and 6,  superscripts a r e  used to distinguish 

Similar expansions may 

v 

the dependent variables and gauge parameters  in 
each region. 

Solutions 

Inviscid Rotational Flow Region 

The flow in this outer boundary layer region 
is a smal l  perturbation f rom the boundary layer  
flow at the point at which the shock meets the 
boundary layer.  Expansions (4) simplify to 

1 A h  A A A  A P = -  t .  .. t n , P , ( X , y ) t n ~ P ~ ( x , y ) t ' . . .  (5c) 
Y 

with expansions s imi la r  to eqn. (5a) fo r  the tem-  
perature and density. ( 1 3 )  (That the gauge param-  
e t e r s  a r e  the same for T and p is obvious upon 
consideration of the continuity, s ta te ,  and energy 
equations.) Since this region compr ises  mos t  of 
the boundary layer region 

= Re* -112 (6 ) 

The gauge parameters  a r e  related by sub- 
stituting eqns. (5) into eqns. (1). F i r s t ,  in the 
continuity equation, variations in both the x and y 
directions appear to be equally important. Next, 
comparing the viscous s t r e s s  and p res su re  t e r m s  
in the x-momentum equation, we find that the v i s -  
cous t e r m s  can be ignored, i . e . ,  that to the order  
considered, the perturbations a r e  governed by in- 
viscid equations where inertia and p res su re  t e r m s  
balance each other. Thus, f rom the continuity and 
x-momentum equations we obtain, respectively, 

A A h  
E./T = v . /  6 (7a) 

1 
A h  
n. = Ei 
1 

where the equality is taken for  convenience and 
i = 1,2. 
required for  matching with the other regions. 
y-momentum equation simplifies to 

That is, two t e r m s  of the expansion a r e  
The 

h 
and since. a s  will be shown l a t e r ,  6 << T nd A e, << 1 ,  this equation simply reduces to 6i = Pi(x). 
In view of these arguments,  eqns.  ( I )  become, 

A A h  
T, t urn ui = 0 

3 



A 
After Some manipulation, the solutions for ui and 
v: can be shown to  be 
A 

A 
Here ho0 = ~,,/a,.  Mm where Mm = 1 t 

A A 
so that a s  
function of integration. 
l a r  to those found in reference (8). 

- m , Moo - 1 .  Ai(x) is an arb i t ra ry  
These solutions are s imi -  

For matching purposes,  it is necessary  to  
f ind the limits of the above solutions a s  y .+ 0 and 
as  y - m .  

A 

h It can be that a s  y + 0 ,  

A 
In eqns. ( I O )  and ( I l ) ,  the expansions for u a r e  
the Taylor expansions of the compressible ggund- 
a r y  layer  solutions(l3.14), mentioned previously. 

Viscous Sublayer Region 

The solution in the inviscid rotational flow 
does not satisfy the no slip boundary condition, a s  

shown by eqn. ( loa).  Very near the wall ,  then, 
there exists a thinner region ( S t  << 6 )  m which v i s -  
cous s t r e s ses  a r e  as important a s  the inertia and 
pressure  t e rms .  Using expansions fo r  the com- 
pressible boundary layer flow solutions, ( I 3 .  14) one 
can write eqns.  (4) in inner variables a8 follows: 

A .  

W 

.t . . .  t Et  ult(x,yt) + . . . 

f(12c) t t  t lT,+ P1 (x,y ) t . . .  1 
Y 

p = - t  . . .  
where only one interaction t e rm i s  necessary in 
this inner boundary layer region. Since U << 1 and 
the stagnation enthalpy i s  constant, the temperature 
and hence the density a r e  constant to f i r s t  o rder ;  
i . e . ,  the flow in the viscous sublayer i s  incom- 
pressible to f i r s t  o rder .  

Jus t  as  i n  the previous calculations, eqns. 
(12) a r e  substituted into eqns. (1). Again, it is 
expected that variations in both x and yt a r e  impor- 
tant insofar a s  the continuity equations i s  concerned. 
In the x-momentum equation, the inertia,  viscous, 
and pres su re  t e r m s  are of the same order .  Hence. 
f rom the continuity equation 

E L = $  t 

T 
(13 )  

Again, f rom the yt momentum equation, since 
6t << 6 << T ,  P,+ = P, (XI. 
governing equations are 

+ Finally, then, the 

h t % = o  t t 

ax 

Thus, eqns. (15) are linearized boundary layer 
equations. Differentiating eqn. (15b) with respect 
to yt and employing eqn. (15a1, we obtain 

& 
(Y t 1)L 

A =  

If au,+/ayt is replaced by z, say, eqn. (16a) is a 
specific case  of a general equation integrated by 
Sutton. (15) Using Sutton's resu l t s ,  we can derive 
the following results 



where y(A, z) is the incomplete Gamma function. 
Clearly,  the boundary conditions. u t  = vf = 0 a t  
y+ = 0 a r e  me t  by these solutions. For matching 
purposes,  it is necessary to find their limiting 
forms  a s  y+ - m . When these limiting forms and 
eqns. (13) and (14) a r e  substituted into eqns. (12). 
the results a r e ,  for yt + m ,  

u = ( *+ /a )  a;y+ + (a+ /$ ) )  (v-1) ' 3  +J - 
3 ( y t l )  

- T' (6'16) A a '  x y t  

where d P t l d x  - 0 a s  x - -m , 

Transonic Flow Region 

The flow outside the boundary layer is v 

transonic. 
perturbations f rom their cri t ical ,  undisturbed. 
values. Thus, 

Hence, the flow quantities a r e  smal l  

u = 1 + FIG, (x,?) t ' .  ' (19a) 

v I: (x,j+) t . . , (19b) 

( 1 9 ~ )  
1 
Y 

P = -  +;;,F,(x,F)t ( . .  
with s imi la r  expansions fo r  p and T f rom their 
cri t ical  values of 1 and (y-l).', respectively. 
these expansions and the stretched independent 
(outer) variables a r e  substituted into eqns. (1) and 
(2). the gas dynamic equation, it can be shown(13) 
that the viscous te rms  a r e  negligible to f i r s t  order,  
and that in fact in f i r s t  o rder ,  the familiar equa- 
tions fo r  inviscid irrotational transonic flow a r e  
obtained. The transonic equation, irrotationality 
condition, and pressure  velocity relation a r e ,  

If 

F, = - G, (20c) 

In addition, the relationships between the gauge 
factors a r e  - 

W ", = p (21a) 

(21b) 
- -  
n1 = E, 

T = ??E,'P 
al l  well known results in transonic flow. 

The solution to eqns. (20) depends on the 
problem being studied ( e .  g . ,  oblique or normal 
shock) a s  will be illustrated l a t e r .  

If eqns. (19) a r e  matched with the corres- 
ponding properties of the uniform incoming outer 
flow, i t  is seen that a s  x - - m  

u, ( -m .y )  = P , ( - m  . y )  = 1 (z2a) 

(22b) 

(22c) 

Y Y -  Y 

Y 

El = E 
Y 
Y ,  = ,Jh 

w -  
Then, since UI , P I ,  etc.  remain of order  one i n  
the entire region, the solutions to be used f o r  
matching with the inner region a r e ,  a s  y - 0 ,  

( 2 3 4  

( 2 3 ~  

( 2 3 ~ )  

Y u = 1 + E u, (x.0) t . . . 
v = €31, G; (x,O) t . , . 

1 -  
Y P = - t E P, (x, 0 )  t . . . 

Matching 

In o rde r  to complete the general solution, 
i t  is necessary  to match solutions valid in each of 
the individual regions. Thus, eqns.  ( I O ) ,  valid in 
the l imit  a s  y - 0 must  match t e r m  by t e r m  with 
eqns. ( l a ) ,  valid in the l imit  a s  y+ - m .  Likewise, 
eqns. ( l l ) ,  valid in the limit a s  y + m-, mus t  match 
with eqns. (23). valid i n  the l imit  a s  y - 0. 

A 

A 

Comparing first, eqns.  ( l oa )  and ( l ea ) ,  we 

A see  that 
E,+ = E, (24) 

Then. if the p re s su res ,  eqns. (lOc) and ( l a c )  a r e  
to match, 

(2 5a ) 
A 
P, (x) = 0 

G2 (Y) = P?(x) 

( 2 5 ~  

(2 5c ) 

A 
E, = ( 6 t / k )  E: 

Returning to the velocity components. eqns. (10a.b) 
and (18a,b), we see  that matching is completed if 

a: A, (x) = - C ,  l"(1/3) J .m d 5  (x-C)-lh d5 (26a) 

(26b j 

Next. comparing eqns. ( I l c )  and (23c), we 

A 
obtain 

E, = E 
F , ( x , O ) =  P'k) A 

A 
In view of eqn. ( ~ O C ) ,  and since P, (-m) = -1, i t  is 
seen that the U-velocity components. eqns. ( l l a )  
and (23a) also match. 
eqns. ( l l b )  and (23b), we obtain 

Finally, f rom matching 

( 6 / T )  E1 = E J b  (28a) 

(28b) 
u u 

vl (x .0)  = - d A l / d x  

5 



A 
Thus, i t  i s  Seen that A, (x) is not important in 
determining the f i r s t  o rder  solution in each region. 

It should be noted that eqn. (19b) i s  written 
with the idea that the undisturbed boundary layer 
displacement effects a r e  smal l  compared to in te r -  
action effects and can be neglected. Now, if the 
boundary layer effects a r e  included, the result  i s ,  

A constant i n  this expansion for V presents no 
problems. 
acts like an inclined flat plate. ) Hence, the present 
solution holds a s  long a s  the second boundary layer 
displacement t e rm is smal l  compared to the f i r s t  

A interaction t e r m ,  i . e . ,  a s  long a s  6 7  << 
When these t e r m s  a r e  of the same order .  modifi- 
cations must be made; however. for this case  the 
shock i s  extermely weak, and i t  will not be d is -  
cussed further.  

(The outer edge of the boundary layer 

F rom eqns. (14b), (24). (25b). (27a), and 
(28a) i t  is seen that, 

= R e * ~ / 4  $514 E-118 (30) 

This i s  a general expression for  the size of the 
interaction region in t e r m s  of the boundary layer 
thickness a t  the point of intersection of the shock. 
Employing eqn. (6), we obtain, 

= ~ ~ * - 3 / 8  E - 3 f a  (31) 

A summary of the remaining gauge param-  
ItAshould be noted 

The solu- 

e t e r s  is presented in Table 1. 
that T is large compared both to 6 and the shock 
thickness which i s  of order Re*-' E - ' .  
tions are valid within certain limits on the param- 
e t e r s .  The lower l imi discussed previously 
occurs when 
The upper limit occurs  when the viscous sublayer 
i s  no longer linear ( 6  12 = o(E,+) from eqn. (12a)). 
This yields t = ORe*-'l5). Since uf is negative. 
this l imit  i s  that for which the shock wave i s  strong 
enough to cause separation. This resu l t  agrees  
with the conclusions of Messiter,  Feo, and 
Melnik. ( lo )  

= O(&), i. e . ,  when 6 =O(R~' -~ ' '~ ) .  

t 

Application to Oblique Shock Problem 

An oblique shock impinging upon the boundary 
layer i s  considered. 
great a pressure  gradient for the boundary layer to  
sustain in the thickness of the shock, the pressure  
change i s  spread out over a distance greater than 
either the shock or  the boundary layer thickness, 
a s  shown above. 
crease ahead of the shock boundary layer inter- 
section point and continues to increase downstream 
of i t .  Compression characterist ics ahead of the 
shock interact with i t :  the shock i s  weakened, but 
st i l l  has a finite strength a t  the impingement point. 
Hence, a t  that point a centered expansion fan i s  
formed,  to insure continuity of p ressure .  

Because the shock has too 

Thus, the p re s su re  begins to in- 

The case considered is that where the flow 
remains supersonic everywhere in the transonic 
flow region: hence the method of characterist ics 
can be applied. 
which are constant on c -  and ct  characterist ics,  
respectively, then the equations for the c- and ct  
charac te r i s t ics ,  a r e ,  respectively, 

If E(x,y) and q(x,y) a r e  coordinates 

u 

The equations which hold along the c t  and c 
characterist ics re spec tively, a r e ,  3, 

fm ;'312. 7, = f, (q) 

2 31 .pi G ; 3 1 2  t 7, = f, (5) 

Now, the c-  characterist ics ahead of the 
shock come_from a region of uniform flow with 
u, = 1 and v, = 0. Therefore, ahead of the shock 
is a region of simple wave flow in the sense used in 
supersonic flow theory. Thus, f rom eqn. (33h) and 
the boundary conditions, we find that 

(33.3) 

(33b) 

u 

f,(<) = $J7i (34) 

[(ytl);;(x.O)1'l~F= x - xo (35) 

ahead of the wave. and hence from eqns. (33) and 
(32h) that ct  characterist ics a r e  straight lines with 
the parametric equation 

U Here ,  x 
tic leaves the boundary layer .  

i s  the value of x a t  which the charac te r i s -  
0 

Applying matching conditions given by eqns. 
(27h), (28b), (26a). and (2Oc) to eqns. (33b) and 
(34), w e  obtain an equation fo r  the p re s su re  along 
the wall, ahead of the impingement point: 

X A 

[- 6, (x)l31, t W J  (x-s)-  'I' dz d5' ("d?, = 1 (x<O) (36a) 
-m 

= 3113 r(113)/z413 a:5I'(yti)l16r(z/3) (36b) 

Eqn. (36a) is solved using a se r i e s  of exponentials, 
(similar t 
Williams (8)). 

a se r i e s  used by Stewartson and 

A - nbx 
P, (x) = - 1  t (37) an e 1 

(38b) 



N 
and where the values for An a r e  given in Table II. 
a, i s  a constant determined in conjugation with the 
downstream flow solution. 
UI v, , etc.  can be calculated. 

- 
Once Z, is determined. 

U N  

L, 
The flow ac ross  the shock is governed by the 

transonic oblique shock relations,  

where ?(q) is the stretched shock angle relative to 
the vertical  and subscripts u and d indicate condi- 
tions upstream and downstream of the shock 
respectively. Since eqns. (39) do not define the 
location of the shock, (xs, ys),  we a l so  need the 
equation 

U 

d? 
(40) 

The flow downstream of the shock i s  a simple 
wave. Because of shock losses, in this downs t r em 
region, 

(41) 
2 

f 2 ( Q  = -JvTi 3 d <;JyTi 
where A' i s  the shock strength parameter  and is 
given, insofar a s  the interaction problem is con- 
cerned. Eqns. (33b), (39), and (41) may be com- 
bined to form an  equation for a s  a function of 
( u l U ,  vlU), 1. e . ,  a t  a given ct characterist ic.  
resultant equation, with eqn. (40) i s  used to locate 
the oblique shock. Equation (41) applies, also,  to 
the expansion fan and trailing characterist ics.  

Although the undisturbed boundary layer 

U N .  
The 

.-J' 

grows indefinitely, the perturbations due to the 
interaction must return to zero 
flow leaving the expansion fan has a negative V- 
velocity component; it mus t  be turned to the hori-  
zontal again, i. e .  , s o  that 7, (m , 0 )  = 0 .  

For example, the 

F r o m  eqns (33b), (41), and ( ~ O C ) ,  one can 
obtain an equation fo r  the p re s su re  at the wall 
downstream of the shock. 

(X > 0) (42) 

Care must be taken in evaluating the integral  in 
eqn. (42) since dZbz/dx' i s  discontinuous at x = 0 
a s  shown below. 

Eqn. (42) must be solved numerically, al- 
though expansions for o2 (x) for large and small  x 
can he derived.(13) Thus, 

A 2 w  P, (.) = - d2'3 - ---7 [ 1 - d2/'] , -4h  + . . . 
9A" ' 

(x >> 1) (43a) 

Equation (43b) can be compared with the expansion 
for  smal l  hut negative x 

P,(X) A = Pz(o-) A t P:(o-)x A + 2 1 P, A O I  (O.)X' + O(X3 (44) 

Thus, it i s  seen that the second derivative of the 
p re s su re  is discontinuous a t  x = 0 ,  being bounded 
f o r  x = 0- but infinite for  x = 0'. The V-velocity 
component is a l so  discontinuous a t  x = 0. 
implies the existence of an inner region i n  the 
boundary layer  such that rinner << T .  

the solution to the oblique shock problem can  be 
completed without studying this inner region. 
Finally. it should he  noted (eqn. (43a)) that the 
p re s su re  decays algebraically to i t s  final value; 
this is slow compared to the ups t ream influence 
which obeys an  exponential law a s  x - -m . 

This 

However. 

As part  of the numerical  solution of eqn. (42), 
a, ( i .e . ,  o) must be determined A double i t e r -  
ation scheme, involving both%, atrd $,(x) for x > 0, 
was employed, (I3) with the proper solution- being 
that one which satisfied eqn. (43a). With a, and 
fi (x) known, the remaining properties in the 
transonic flow region may he found directly. 

- 

Calculations were  made for  three different 
shock strengths,  A' = 0,21600, 0.35355, and 
0,50000. 
resulted in no solution; this will be discussed later 
The flow conditions for the incoming shocks 
corresponding to each A' value a r e  shown in Table 
III. 

An attempted calculation for A' = 0. 12500 

In each case ,  y = 1.4. 

The p res su re  perturbations a r e  shown i n  
figure 2. 
of the change occurring upstream of the shocks. 
The V-velocity components a t  the wall can be found 
using eqn. (33h). The results a r e  shown i n  figure3. 
If the V-velocity component i s  integrated f rom 
-m to x ,  the position of the streamline a t  7 = 0 
( i . e . ,  the wall streamline) is obtained a s  shown in 
figure 4. 
stretched by a factor of E," i n  o rder  to i l lustrate 
the variations which are actually very  smal l .  
Finally, the numerical  solutions may be used to 
construct the transonic flow field a s  shown in 
figure 5 for  A' = 0,216. 
the compression waves and shock ahead of the inter- 
section point causes the shock to curve and become 
weaker a s  the wall is approached. 
noted that the compression characterist ics even- 
tually coalesce to form the reflected shock. 

They are monotonic with most  (70.75%) 

In this figure the vertical  scale i s  

The interaction between 

It should be 

The l imit  on A' occurs when the f low a t  some 
point becomes subsonic, since then characterist ic 
theory cannot be applied. The lowest velocity in  
the flow field occurs along the leading charac te r i s -  
tic of the ex ansion fan not far downstream. It can 
he s h ~ w n ( l ~ ~ t h a t  this velocity becomes sonic when 
A'= 0 . 2 0 ,  explaining the aforementioned lack of 
success in finding a solution for A' = 0 .  125 
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Discussion 

The overal l  picture of the interaction be- 
tween a weak shock wave and an unseparated b d -  
a r y  layer is s imilar  in some respects  to that found 
in the separated c a s e  for either transonic or super- 
sonic flow. That is ,  even though the shock is very 
weak, the shock thickness is st i l l  smal l  compared 
to the boundary layer  thickness which is in turn 
smal l  compared to the extent of the interaction 
region. In addition. the shock impinges on the 
boundary layer and this is  followed immediately by 
an expansion fan just  a s  in the other cases .  Finally, 
the pressure  distribution upstream of the shock a r e  
s imi la r .  Only the magnitude of the various regions 
and the pressure  distributions downstream of the 
shock show basic differences.  

Although no direct  comparison with experi-  
ment  is  possible, comparison of the flow picture in 
references (1)  and (21, fo r  example, with figure 5 
indicate that the general  s t ructure  is reproduced 
here .  Thus,  in the event that repeated shocks 
occur in the supersonic region over an airfoil ,  all 
the shocks appear to be oblique shocks followed by 
expansion fans ,  with the exception of the las t  shock 
which is normal 

The interaction between a normal  shock and 
an unseparated boundary layer can be studied using 
the model presented here .  The only changes occur 
in the transonic region where the flow behind the 
shock is  subsonic. However, the elliptic equations 
in this subsonic region are very  difficult to solve. 

In flow over curved surfaces.  the effects of 
wall curvature and non uniform incoming flow could 
require  changes to the model presented here .  How- 
ever,  i t  can be shown(13) that a s  long as the wall 
curvature is a t  mos t  of order  E = ' I 2 ,  no correction 
due to wall curvature need be made. 
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Table I .  Summary of Gauge Parameters  

Regioi 

aramete I:/ E, 

Inviscid 
Rotational Transonic 

Flow Region Flow Region 

R ~ * -  3 / B E  -718 ~ ~ h - 1  h 



u 
Table 11. Coefficients, An 

0.50000 
0.35355 
0.21600 
0.12500 

1 . 2 7 9 8 ~  10.' 

-1.4817 x IO-' 

1.4801 0.82552 -6.25835 
1.4578 0.77092 -0,33394 
1.4358 0,71786 -0,40508 
1.4206 0.68169 -0.45219 

-6.7813 x lo-'  

-2.8170 x 

-1.3747 1 0 . ~  

-7.0577 x 

-3.8033 x 

Table III. Conditions Downstream of Incoming 
Shock Wave f o r  Various Shock Strengths 

N N I For these calculations, u, _ _  = 1 VI = 0 I 

Figure 1. Sketch showing flat plate, boundary 
layer ,  shock wave, interaction region, 
and notation used. 

. , I  .,o I O  ,I IO > I  

Figure 2. Perturbation p res su re  distribution a t  
the wall f o r  various shock strengths.  

,- 

Figure 3.  V-velocity component a t  the wall, in 
transonic flow region, fo r  various 
shock strengths.  

Figure 4. Shape of wall streamline in transonic 
flow region for various shock strengths. 

Figure 5. Transonic flow region for A ' =  0,21600. 
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