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This paper explores the use of decomposition-based methods for aircraft family design.
The traditional approach in multidisciplinary design optimization is to decompose a prob-
lem along disciplinary lines. For aircraft family design problems, a more natural approach
is decomposition by individual aircraft. This decomposition facilitates the concurrent de-
velopment of several aircraft variants, providing substantial autonomy to individual aircraft
development programs. Two decomposition-based methods are applied to the aircraft fam-
ily problem: collaborative optimization and analytical target cascading. This paper marks
the beginning of a collaborative effort to clarify the distinctions between these two methods,
and to identify how these differences impact the relative performance and applicability of
these methods. Initial product family results illustrate how decomposition-based methods
can be applied to the aircraft family problem.

I. Introduction

A product family is a set of individual products that share common components or subsystems and
address a related set of market applications.1 In an aerospace context, a product family is usually comprised
of a baseline aircraft and its derivatives or variants. Aircraft design often takes place with an eye towards
derivative development. This is evidenced in the selection of power plants with growth capabilities and in
wing design, with respect to the structural implications of tip extensions and winglets. An aerospace product
family is not limited to a baseline aircraft and derivatives. It can involve two or more aircraft with dissimilar
missions that share only a few key parts or systems.

Strong motivation exists for aerospace design based on product families.2,3 As the aerospace industry has
matured, emphasis has shifted from “higher, faster, farther” to “better, faster, cheaper.” One opportunity for
cost savings is through improved efficiency in manufacturing. When multiple aircraft share major structural
components, costs can be saved in tooling and assembly. Product families also enable aircraft manufacturers
to cater to the needs of potential customers by offering a wider selection of aircraft. From an airline’s
perspective, commonality is also an advantage. For example, avionics commonality speeds pilot cross-training
among member aircraft in a product family. Additional advantages of commonality include simplification of
maintenance procedures, flexibility in scheduling, and reduced spare-parts inventory. Thus, product families
add value for the manufacturer and the customer.

Although a product family approach can reduce costs, shared components may lead to a performance
penalty.4–7 Common components may no longer be optimal for any one aircraft in a family, since they
are designed to optimize some collective measure of merit. Multidisciplinary design optimization (MDO)
provides a natural context in which to consider tradeoffs in design of product families. Just as it has been used
for trades between aerodynamics and structures, it can be employed to consider trades between performance
and cost.
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This paper explores the use of decomposition-based methods for aircraft family design. Recent work in
aerospace family design considered two approaches to the problem: sequential and simultaneous design.8

Previous work in decomposition-based methods extended the analytical target cascading (ATC) formulation
to design of product families.9 Here, we illustrate the use of decomposition-based optimization to perform
the simultaneous design of an aircraft family. As illustrated in Willcox & Wakayama,8 decomposition is not
necessary at the conceptual design level. However, during subsequent design steps (preliminary design), a
certain level of autonomy may be desired between aircraft development programs, particularly if only a few
parts are shared. Methods such as collaborative optimization (CO) and ATC enable decision making at the
individual aircraft level consistent with overall product family goals.

The paper is organized as follows. Section II provides a brief overview of the two decomposition methods,
comparing similarities and differences in their formulations. Section III introduces the considered aircraft
family design problem and presents the formulations of the two approaches. Section IV discusses the obtained
results.

II. Optimal Design of Decomposed Systems

Both CO10 and ATC11 are decomposition-based methods for solving complex system optimization prob-
lems. They were developed independently in response to different needs for design and product develop-
ment. Both deal with interactions between elements of a partitioned system optimization problem. Their
basic mathematical formulations exhibit similarities, yet each approach retains important distinctions, such
as solution process. This paper builds on recent work12 to establish CO and ATC as distinctly different
methods with complementary characteristics using an aircraft family design example.

When a design problem is partitioned into smaller subproblems, additional terminology is necessary. The
terminology presented here is common to many MDO formulations. The design vector x can be partitioned
into local variables x`i that are pertinent only to subproblem i, and shared variables xsi that are inputs to
subproblem i and at least one other subproblem. The vector xi contains local and shared variables required
for subproblem i. In addition, subproblems are connected through interactions, i.e., analysis outputs of one
subproblem may be required as analysis inputs for another. The vector of coupling variables yij is the set of
values computed by subproblem j required as inputs to subproblem i. The collection of all coupling variables
y has no common components with x.

CO coordinates the solution of disciplinary subspaces using a system optimizer. It has been applied
successfully to aerospace problems.13,14 Subspaces can be executed in parallel, and the subspaces are con-
sistent at convergence.15 ATC was originally conceived for product development16 and has been successfully
implemented in automotive,17,18 architectural,19 product design,20 and multiple-regime aircraft design.21

ATC convergence properties have been proven for a specific class of coordination strategies under standard
convexity and smoothness assumptions. ATC was developed as a tool for setting performance targets for a
product at system, subsystem, and component levels such that top-level targets are met and the resulting
system is consistent. Like CO, ATC also provides each specialist or team with substantial design freedom
while accounting for critical interactions between system elements. While early papers16 acknowledged the
similarity between CO and ATC, only recently have formal comparisons been made between the two tech-
niques. These comparisons were based on single product design.12,22 This paper explores CO and ATC in
the context of an aircraft family design problem.

A. Analytical Target Cascading

Analytical target cascading was developed based on needs in the automotive industry to translate top-level
product targets into detailed design specifications. It is applicable to systems that possess hierarchical
relationships. An example of a hierarchical system is shown in Figure 1. Each element in the hierarchy
computes its own local analysis responses, and may require as inputs analysis responses (coupling variables)
from lower level elements, in addition to local and shared variables.

The objective of the ATC process is to determine design specifications for each element in the hierarchy
that account for interaction so that design teams can proceed with detail design independently. An opti-
mization problem is formulated for each element. The formulation allows for a local objective and observes
local design constraints. ATC allows the optimization algorithm to choose coupling variable values, and
uses penalty functions (instead of equality constraints) to ensure system consistency. Recent ATC formula-
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Figure 1. Hierarchical system decomposition

tions12,23 allow multidirectional coupling, and coupling between same-level elements. The ATC formulation
for subproblem Pi is

min
xi,yij ,xsCi

,yCi

f(xi,yij) + π(c)

subject to gi(xi,yij) ≤ 0

hi(xi,yij) = 0

where c = zi − ẑi

The objective is to minimize the local objective (if it exists) and a function π that penalizes nonzero values
in the deviation vector c, subject to local design constraints. The deviation vector quantifies the difference
between shared quantities computed locally, zi, and the corresponding shared quantities computed by other
subproblems, ẑi. Shared quantities for element i consist of shared variables (xsi), input and output coupling
variables (yij and yji), and shared and coupling variables that link elements that are children of element i
(xsCi and yCi). The components of ẑi are fixed parameters during the optimization of subsystem i.

Since each optimization problem is decoupled, we can solve all of the subproblems at a particular level
in parallel. A popular ATC coordination strategy is to solve the top level problem (with initial guesses for
top-level targets), use the results to update the target values for the next level down, solve the problems in
the second level, and so on until the bottom level is reached. This large outer loop is repeated until all of
the deviation vector values stop changing. Efficient penalty function methods can speed convergence, and
have been shown to produce convergence in as few as 3 outer loop iterations.21,23

B. Collaborative Optimization

The CO method is designed to promote disciplinary autonomy while achieving interdisciplinary compatibility
in non-hierarchical problems (Figure 2). Problem decomposition typically is made along analysis-convenient
boundaries. A subspace optimizer is integrated with each analysis-block, and a system optimizer coordinates
subspace solution. This approach decouples the subspace, while guiding the process toward a consistent
solution. Each subspace has control over local design variables, and is charged with satisfying its own
domain-specific constraints. As with ATC, discipline-specific optimization algorithms may be used.

Although a direct parallel between the top-level problem in an ATC formulation and the CO system
optimizer may seem to exist, these elements fill different roles. The top ATC subproblem is similar to other
subproblems, except that its targets are fixed. It seeks to bring the design of its subsystem into agreement
with the rest of the system; it does not act to coordinate the solution of the entire system design problem.
A separate coordination algorithm determines when each subproblem should be executed, and guides the
system toward consistency. The CO system optimizer is not associated with an analysis block from the
analysis structure (Figure 2), as is an ATC element and lower-level CO subspaces. Its role is similar to that
of the ATC coordination algorithm; it guides the entire system toward consistency.
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Figure 2. Non-hierarchical system decomposition

The system-level optimizer guides the system toward an optimal and consistent solution by minimiz-
ing a system objective function f , while enforcing system consistency via auxiliary constraints (J∗ =
[J∗1 , J∗2 . . . J∗N ]T = 0). Requiring all subspace objectives to be zero at convergence results in consistency
between all shared and coupling variables. The auxiliary constraints decouple the subspaces, facilitating
parallel execution. System optimization is performed with respect to the system targets ẑ. The system level
sends subspace i the targets ẑi, a subset of the system targets pertinent to subspace i. Subspace i returns
its best response, zi, to meet these system targets. The system level constraints are then defined by the
(square of the) difference between target values, ẑi, and returned values, zi. The CO formulation is

System Level Formulation

min
ẑ

f(ẑ)

subject to J∗(ẑ) = 0

Subspace Formulation

min
xsi,x`i,yij

Ji(xsi,x`i,yij) = ‖zi − ẑi‖2
2

subject to gi(xsi,x`i,yij) ≤ 0

hi(xsi,x`i,yij) = 0
A target in the vector ẑi exists for every shared variable xsi used in subspace i and for every input

yij and output yji coupling variable. Subspaces determine the value for local design variables x`i. The
entire variable set in subproblem i is xi = [zi,x`i] = [xsi,yij ,yji,x`i]. The subspace objective Ji measures
the discrepancy between subproblem targets and the corresponding responses: Ji(xsi,x`i,yij) = ‖zi − ẑi‖2

2.
Local targets ẑi are fixed parameters set by the system optimizer, and the subspace optimizer seeks to
match these targets by varying the local and shared design variables, and the input coupling variables,
subject to local design constraints gi(xi) and hi(xi). The output coupling variables yij are computed based
on these decision variables, and are incorporated into Ji. At every system level iteration, the optimal value
of the subspace objective function J∗i is passed to the system optimizer and used as a system-level auxiliary
constraint. Thus, CO is implemented as a nested optimization process.

C. Discussion of CO and ATC Formulations

An initial comparison of CO and ATC based on a single-product design problem12 cited differences along
four important dimensions: solution process, targets and communication patterns, intended structure of
corresponding design problems, and paradigm. This section provides an updated perspective.

The fundamental difference between CO and ATC exists in the optimization process. CO utilizes nested
optimization, while ATC solves a sequence of optimization subproblems at each level. In CO, the system-
level optimization problem is solved only once, while the subspaces are solved many times (once during every
system-level iteration). In ATC, a coordination strategy initializes the top-level optimization problem (with
initial guesses for top-level targets), uses the resulting solution to update the target values for the next level
down, initializes the problems in the second level, and so on until the bottom level is reached. This process
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is repeated until convergence.
The fundamental process difference between CO and ATC leads to a number of algorithmic distinctions.

Firstly, since each element in ATC is solved repeatedly, inexact penalty relaxations may be used instead
of equality constraints to ensure system consistency. Relaxation also helps the ATC process move more
efficiently toward the solution. Secondly, analysis in ATC is conducted at all levels (including the system
level), while analysis in CO is typically confined to the subproblems. This makes ATC well suited to object-
based decomposition, where each element in a hierarchical multilevel system involves analysis. In fact,
hierarchical analysis structures motivate the solution process of ATC. Thirdly, each element in ATC may
pursue a local objective in addition to striving for compatibility. In CO, the subspaces’ sole objective is to
match targets provided by the system level. In addition to their algorithmic distinctions, CO and ATC also
use different techniques to improve efficiency. For example, an augmented Lagrangian ATC formulation was
recently proposed,23 while CO often employs response surface models in the subproblems.13,24

III. Design of an Aircraft Family

The purpose of a product family is to reduce cost by sharing common components or systems to address a
related set of market applications. In specific, the objective function should be able to differentiate between
unique aircraft and product family solutions. Maximum takeoff weight, often used as an estimate for cost,
will not capture the advantages of commonality. Life cycle cost is a rigorous approach, but is more complex
than necessary. The primary goal is not to accurately predict total cost, but rather to quantify the benefits
of a product family and define the preliminary design of its members. The ideal objective should include
cost measures that distinguish between unique aircraft and families of aircraft, namely, a detailed model of
acquisition cost and a reasonable estimate of fuel cost.

The acquisition cost model used in this paper is based on recent work by Markish.25 Acquisition cost is
split into manufacturing and development costs. A manufacturing learning curve is applied such that cost
decreases with the number of units produced. For example, the 100th unit costs less to manufacture than
the 1st unit. Development cost is non-recurring and is averaged over the total number of aircraft produced.
For every part of a new aircraft design that has already been developed for another aircraft (i.e., for another
aircraft in the family), the non-recurring cost is significantly lower. Thus, the effects of commonality are
captured by the acquisition cost model.

Many airline labor costs, such as pension plans, are relatively unaffected by an airline’s choice of aircraft
fleet. Other labor costs, however, such as crew scheduling, training, and maintenance, are significantly
impacted by choice of aircraft fleet.26 These costs are difficult to model and have not been included in the
present cost model. Though not specifically addressed in this paper, product families provide a potentially
significant benefit in this area.

Although fuel cost prediction is a worthy challenge in its own right, this study uses a fixed fuel price per
gallon as a simplification. Fuel cost is then computed based on the Breguet range equation.27 In summary,
the objective function is a carefully constructed cost measure that captures the key differences between
unique aircraft and product family solutions, including acquisition and fuel costs.

Aircraft performance is evaluated using the Program for Aircraft Synthesis Studies (PASS), an aircraft
conceptual design tool based on a collection of McDonnell-Douglas methods, DATCOM correlations, and
new analyses developed specifically for conceptual design and performance. PASS has evolved over more
than 15 years.28 A detailed description of these methods may be found on the website of an aircraft design
course at Stanford University.29

While existing conceptual design tools such as PASS are well-suited for the design of individual aircraft, a
more detailed structural model is required for aircraft family design. For example, wing weight is computed
using the following semi-empirical equation

Wwing = 4.22Swg + 1.642 ∗ 10−6 Nultb
3
√

WTOWZFW (1 + 2λ)
(t/c)avgcos2(Λea)Swg(1 + λ)

. (1)

Note that wing weight is a function of wing geometry (Swg, b, λ, etc.) as well as aircraft weight (WTO).
Thus, sharing a common wing geometry is not sufficient to ensure wing commonality. An additional issue
is the need to compute the weight of individual wing sections such as root and tip extensions. These issues
associated with wing commonality suggest the need for a more detailed wing weight model. While a finite
element model was an option, the goal was a low-fidelity model consistent with existing conceptual design
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tools that captured the desired effects and was computationally efficient. The solution was a simple wing-box
model in which the wing skin carried the bending load. An analysis estimated the load distribution on the
wing and computed the material necessary to resist the resulting bending moment. Since high-lift systems,
control surfaces, and minimum gauge material add to the final wing weight, a new equation was developed
based on ”bending material” and correlated to existing aircraft. This equation is listed below, where Wstr is
the weight of material needed to resist bending, Wmin is the weight of minimum gauge material, and Swing

is the wing area
Wwing = 1.35(Wstr −Wmin) + 4.9Swing. (2)

Given a wing weight equation appropriate for modeling commonality between family members, the next
step was to identify an appropriate means of parameterizing the wing for use in a decomposed optimization
problem. The goal was to minimize the dimensionality while ensuring commonality. It was noted that an
approximately quadratic relationship exists between skin thickness and spanwise location in the simple wing
model. This enabled a three-term parameterization, where the skin thickness was defined at the following
spanwise locations: wing root (T1), 33% span (T2), and 67% span (T3) (of the main wing section). The wing
tip was intentionally avoided in this parameterization since it is often sized by minimum gauge requirements
rather than stress constraints. This yielded the following set of eight variables that uniquely define the
main wing section: Swing, ARwing, λ, Λ, (t/c), T1, T2, and T3. (Note that the current investigation focuses
on commonality of the main wing section, with each aircraft allowed to have a unique wing tip extension.
Future work will include the capability for wing root and wing tip extensions.)

A. Problem Statement

The considered product family includes two aircraft types, A and B, designed to fulfill missions 1 and
2, respectively. Mission 1 requires a range of 3400 nautical miles (nmi) and an aircraft capacity of 296
passengers. Mission 2 requires a range of 8200 nmi and an aircraft capacity of 259 passengers. Forecasts
suggest a market need for 800 type A aircraft, and a need for 400 type B aircraft. In addition to mission
requirements, constraints such as balanced field length and second segment climb are included.

To facilitate comparison between the CO and ATC formulations, the same bi-level decomposition is used
for both. The system (product family) level seeks to minimize a cost measure, subject to compatibility
of common parts. The subproblem (individual aircraft) level seeks to satisfy compatibility while meeting
individual aircraft performance requirements. Local design variables specify all portions of the aircraft not
shared in common with other aircraft in the family. Component commonality in the present study is limited
to the main wing. Each family member has the freedom to specify its own wing tip extension area.

The aircraft family design problem requires the specification of 16 design variables for each of the two
aircraft types. The design variables for each aircraft (x1i . . . x16i, i ∈ {A,B}) are described in Table 1.
The product family design problem imposes the constraint that the variables x10i . . . x16i are equal for each
aircraft, since these pertain to the common component—the main wing. The vector of shared variables is

xs = [x10A . . . x16A]T = [x10B . . . x16B ]T.

The local variables for aircraft A and B are

x`A = [x1A . . . x9A]T and x`B = [x1B . . . x9B ]T.

The complete set of design variables for the product family design problem is

x = [xT
`A xT

`B xT
s ]T.

Each aircraft must comply with a set of five performance constraints, whose numeric values are specific
to the mission each aircraft is designed to fly (see Table 2).

The objective of the aircraft family design problem is to minimize a composite cost metric for the family,
where the cost metric for each mission is normalized by the number of aircraft that fly each mission. The
cost metric model is based on an estimate of direct and indirect operating costs29 with specific attention
given to acquisition cost.25 The system objective function is given in Equation (3), where nA and nB are the
number of aircraft A and B in the family, respectively, and pA and pB are the cost metrics for each aircraft

f(x) =
nA

nA + nB
pA(x`A,xs) +

nB

nA + nB
pB(x`B ,xs). (3)
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Table 1. Design variables for the aircraft family design problem

Aircraft A Aircraft B
Variable Name Description Variable Bounds Variable Bounds

x1i WTO takeoff weight 300,000 - 450,000 lbs 450,000 - 600,000 lbs
x2i thrust sea level static thrust 50,000 - 70,000 lbs 75,000 - 105,000 lbs
x3i Xwing location of wing root leading edge 0.20 - 0.40 0.20 - 0.40
x4i Sh/Sref nondimensional horizontal tail area 0.20 - 0.35 0.20 - 0.35
x5i AltI initial cruise altitude 32,000 - 45,000 ft 32,000 - 45,000 ft
x6i AltF final cruise altitude 32,000 - 45,000 ft 32,000 - 45,000 ft
x7i Mach Mach number at start of cruise 0.75 - 0.92 0.75 - 0.92
x8i flapTO takeoff flap deflection 0.0 - 15.0 0.0 - 15.0
x9i Swt wing tip extension area 0 - 125 ft2 0 - 125 ft2

x10i Swm main wing area 2000 - 4000 ft2 2000 - 4000 ft2

x11i ARwm main wing aspect ratio 7.0 - 12.0 7.0 - 12.0
x12i (t/c) thickness to chord ratio 0.80 - 0.14 0.80 - 0.14
x13i Λ wing sweep 20.0 - 35.0 20.0 - 35.0
x14i T1 skin thickness at root of main wing 0.06 - 2.5 0.06 - 2.5
x15i T2 skin thickness at 33% span of main wing 0.06 - 2.0 0.06 - 2.0
x16i T3 skin thickness at 67% span of main wing 0.06 - 1.5 0.06 - 1.5

Table 2. Design constraints for the aircraft family design problem

Constraint Name Description Aircraft A Aircraft B

g1 Range min range 3,400 nmi 8,200 nmi
g2 TOFL max takeoff field length 7,000 ft 10,000 ft
g3 LFL max landing field length 5,200 ft 6,000 ft
g4 γ2 min 2nd seg. climb grad 0.024 0.024
g5 stab stability requirement ≥ 0 ≥ 0
g6 σ̂1 normalized stress at wing root ≤ 0 ≤ 0
g7 σ̂2 normalized stress at 33% span ≤ 0 ≤ 0
g8 σ̂3 normalized stress at 67% span ≤ 0 ≤ 0

B. ATC Formulation

The aircraft family design problem is decomposed into a bi-level ATC formulation with three elements. The
top level problem P1 seeks to attain agreement between the lower-level subproblems with respect to shared
variables, while minimizing the problem objective f . The two lower-level problems, P2 and P3, seek to
match targets set by P1, while meeting local design performance constraints. P2 corresponds to the design
of aircraft A, and P3 corresponds to the design of aircraft B. Alternative ATC decompositions exist, but a
comparison of these is left for future work. For clarity in the ATC formulations, a superscript in parentheses
indicates the subproblem in which a value is computed. Problem P1 is formulated as

min
x̄1=

[
x

(1)T
s p

(1)
A

p
(1)
B

]T
f

(
p
(1)
A , p

(1)
B

)
+ π(c1)

where: π(c1) = vT
1 c1 + ‖w1 ◦ c1‖2

2

c1 =
[
x(1)T

s x(1)T
s p

(1)
A p

(1)
B

]T

−
[
x(2)T

s x(3)T
s p

(2)
A p

(3)
B

]T
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The deviation vector c1 quantifies the difference between the targets set by P1 and the achievable responses
of P2 and P3. The responses are fixed parameters with respect to P1. Note that f is a function only of
target cost metrics, since these are independent decision variables in P1. The penalty function π(c1) guides
the ATC process toward consistency. The linear and quadratic penalty weights, v1 and w1, are updated
with every execution of P1 using the formulas:23

wk+1
1 = βwk

1

vk+1
1 = vk

1 + 2wk
1 ◦wk

1 ◦ ck
1

Typically 1 < β < 3 and v0
1 = 0. In this case P1 has no associated analysis, and the objective is a quadratic

function, enabling direct solution without the use of an optimization algorithm. P1 can be solved by finding
x̄1 such that ∇x̄1f1 = 0, where f1 = f + π. Problem P2 is formulated as

min
x̄2=

[
x

(2)T
s x

(2)T
`A

]T
π(c2)

subject to gA(x̄2) ≤ 0

where: π(c2) = vT
2 c2 + ‖w2 ◦ c2‖2

2

c2 =
[
x(2)T

s p
(2)
A

]T

−
[
x(1)T

s p
(1)
A

]T

The penalty weight vectors are updated using the same algorithm described above. The formulation of
Problem P3 is similar (one has simply to replace subscript or superscript 2 with 3 and subscript A with B).

C. CO Formulation

The CO formulation uses the same problem partition as ATC. Each subspace is tasked with designing one
member of the family. The subspaces seek to match targets set by the system level, while satisfying local
design performance constraints. The system level seeks to minimize a family cost measure, while satisfying
compatibility of the subspaces. Since a non-gradient-based optimizer was used at the system level (as detailed
in the next section), this allowed an L1-norm constraint formulation, as shown below. The system problem
formulation is

min
ẑ=[xT

s pA pB ]T
f (pA, pB)

subject to J∗(ẑ) = 0

The shared variables and cost metrics at each system-level iteration are passed to the appropriate subspace
as fixed targets. The formulation for each subspace i is

min
xs,x`i

Ji(xs,x`i) = ‖zi − ẑi‖1

subject to gi(xs,x`i) ≤ 0

where: i ∈ {A,B}
zi = [xs pi(xs,x`i)]

T

ẑi = [xs pi]
T (values set by system optimizer)

IV. Implementation and Results

This section describes how the ATC and CO formulations were implemented to obtain solutions to the
aircraft family design problem; and it presents the corresponding results. A challenge common to both
implementations was the presence of gradient discontinuities in the responses of the PASS analysis software.
For example, one source of gradient discontinuities in PASS is the calculation of worst-case aerodynamic
loads on the wing, which are a function of load factor. Load factor is based on the larger of two quantities:
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gust load and maneuver load. A change in critical load criteria can trigger a significant gradient discontinuity.
This (and other) discontinuities caused slow convergence of gradient-based algorithms to suboptimal points,
motivating the use of gradient-free algorithms for each implementation.

A. ATC Implementation

The ATC subproblems P2 and P3 were solved using NOMADm,30 an implementation of mesh adaptive direct
search.31,32 This algorithm effectively handled the non-smooth responses of the PASS analysis software. The
mesh tolerance used in determining convergence was 0.001, and subproblem optimizations typically required
between 400 and 600 function evaluations. ATC required between 8 and 18 NOMADm optimizations to
obtain a solution, depending on the value chosen for β in the penalty updates.

The P1 subproblem objective function is quadratic, and required very little computational effort to solve.
Two approaches were used to solve P1: solving for ∇x̄1f1 = 0 (where f1 = f + π(c)), and using a gradient-
based algorithm to minimize f1. The former was extremely efficient, but the latter proved more robust.

System consistency was quantified using the root mean square of the combined deviation vector

RMS(c) =

√
1
|c|

cTc ,

where
c =

[
cT
1 cT

2 cT
3

]T
, |c| = cardinality of c.

The convergence of ATC is strongly influenced by the choice of β when the penalty update algorithm
described in the previous section is used. A larger β value can help force the system into tighter consistency,
but can result in a stiff system that requires more iterations to converge. The problem was solved using
a range of different β values to illustrate this influence. Figure 3 illustrates how larger values of β require
more iterations of the ATC process. It was also observed that larger β values led to slightly larger objective
function values, even when system consistency was approximately equal. This indicates that a stiff solution
process can impede the identification of better designs.
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Figure 3. Influence of β on RMS(c) (system consistency)

B. CO Implementation

The original goal was to use SNOPT33 as the subproblem- and system-level optimizer in CO. However,
SNOPT yielded subspace solutions that were only loosely converged. Gradient accuracy was not sufficient to
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enable the use of SNOPT for system-level optimization, but did permit the use of a gradient-free system-level
optimizer. A robust (but computationally expensive) option was a genetic algorithm. While not ideal, this
approach was robust to “noise” from the subspace level and yielded results that effectively illustrate the
use of decomposition-based methods for aircraft family design. Future work will focus on implementing a
more efficient alternative for handling non-smooth functions, such as response surface models of subspace
responses. Response surfaces have been successfully employed with CO to resolve several common issues
with non-smooth responses and slow system-level convergence.13

C. Results

Both CO and ATC provide reasonable designs, as detailed in Table 3.

Table 3. Aircraft family design results

Aircraft A Aircraft B
Name Shared CO Results ATC Results CO Results ATC Results

p Cost $377 $390 $1016 $1072
g1 Range (nmi) 3400 3405 8200 8157
g2 TOFL (ft) 6394 6802 10000 10058
g3 LFL (ft) 3197 3893 3576 4399
g4 γ2 0.027 0.039 0.033 0.031
g5 stab 0.000 0.029 0.000 0.102
g6 σ̂1 -0.560 -0.510 -0.121 -0.006
g7 σ̂2 -0.718 -0.500 -0.251 -0.008
g8 σ̂3 -0.302 -1.08 0.000 -0.296
x1 WTO (lbs) 3.82 · 105 3.88 · 105 5.63 · 105 6.02 · 105

x2 thrust (lbs) 5.50 · 104 6.61 · 104 0.88 · 105 1.03 · 105

x3 Xwing 0.23 0.25 0.25 0.28
x4 Sh/Sref 0.20 0.24 0.20 0.26
x5 AltI (ft) 3.32 · 104 3.80 · 104 3.20 · 104 3.27 · 104

x6 AltF (ft) 4.20 · 104 3.32 · 104 3.90 · 104 3.64 · 104

x7 Mach 0.838 0.789 0.824 0.791
x8 flapTO (deg) 7.1 9.2 1.5 14.9
x9 Swt(ft2) 124.9 12.1 104.8 20.7
x10 Swm(ft2) 3 4.00 · 103 3.20 · 103 4.00 · 103 3.30 · 103

x11 ARwm 3 7.6 9.4 7.6 9.3
x12 (t/c) 3 0.123 0.114 0.123 0.110
x13 Λ (deg) 3 33.0 28.5 33.0 28.7
x14 T1 (in) 3 1.10 1.50 1.10 1.50
x15 T2 (in) 3 1.00 1.10 1.00 1.13
x16 T3 (in) 3 0.50 0.73 0.50 0.72

The two approaches yield similar, but not identical, results. The differences can be attributed to the
different optimization algorithms used for each method, and do not necessarily reflect the capabilities of the
CO and ATC methods. We emphasize that the results are reported to demonstrate the applicability of the
two approaches for solving the family design problem. They are not presented as the suggested designs.
Additional work is required both in modeling the problem (e.g., accounting for additional part commonality)
and in fine-tuning implementations and optimization algorithms.
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V. Closing Remarks

The fundamental difference between collaborative optimization (CO) and analytical target cascading
(ATC) is related to the optimization process. CO uses nested optimization, where each iteration of the
system-level problem requires complete subspace optimizations. ATC solves a sequence of optimization
problems, each of which is associated with an element of a multilevel hierarchy. This difference leads to
several algorithmic distinctions and has an impact on the types of problems for which each strategy is best
suited.

Aircraft family design using decomposition methods offers the same benefits afforded by disciplinary
decomposition. While decomposition is only moderately beneficial for the simple aircraft family problem
investigated in this paper, it would be advantageous (if not essential) for higher fidelity analysis where
subproblem-specific optimization techniques can be exploited, where it is impossible to integrate existing
codes, or where organizational structure may require decomposition.

This paper highlights needs and opportunities for future research work. While comparative work has
sought to identify the key differences between CO and ATC, additional study is needed to explore the
implications of these differences. Design space discontinuities present a challenge for MDO techniques,
emphasizing the need for better approaches to subspace optimization. The example problem detailed here is
just a first step towards aircraft family design. Higher levels of commonality should be considered to enable
comparison of product family design solutions to individual aircraft design solutions.
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