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Discrete Cohesive Zone Model To Simulate Static Fracture 

In Carbon Fiber Textile Composites 

 

De Xie♣, Amit G. Salvi♠, Anthony M. Waas♦ and Ari Caliskan∗ 

A discrete cohesive zone model (DCZM) is developed to simulate the 
mode I and mixed mode fracture. For the mode I case, experimental results 
generated using a modified single edge notched bend specimen of a 2D 
triaxially braided composite (2DTBC) are used to verify the DCZM.  The 
2DTBC is modeled as an elastic one-parameter (“a66”) plastic continuum.  The 
plastic behavior of the 2DTBC is characterized by measuring a66. Fracture 
toughness (GIC) as a function of crack extension is measured by a compliance 
approach in the SENB tests. A previously developed mixed mode bending 
(MMB) fracture test configuration is a useful method to generate fracture 
envelopes for delamination failure of composites. The DCZM is used to 
simulate mixed mode fracture of a unidirectional laminated composite loaded 
using the MMB. The simulated results are compared with selected 
experimental results and also verified for mesh sensitivity. It is shown that the 
present DCZM is a versatile tool to study failure of a wide class of composite 
materials. 

Introduction 
 

Several industrial sectors are currently exploring ways to utilize a variety of different 
composite architectures for structural applications.  These include continuous fiber pre-preg 
based laminated composites, woven and braided textile composites, sandwich composites, 
chopped fiber composites and low cost pultruded composites. Thus a need arises to develop a 
comprehensive understanding of the mechanical response and subsequent fracture of these 
different composite materials [1-15]. While the former is governed by an accurate knowledge of 
structural stiffness, the latter falls into the category of structural integrity. Classical linear elastic 
fracture mechanics (LEFM) based approaches and their extensions to account for material 
nonlinearity are the most commonly used tools in a structural integrity and damage tolerance 
analysis (SIDT). In SIDT, a structure with a flaw in the form of a crack is studied. The strain 
energy release rate is computed by the virtual crack closure technique (VCCT) and compared to 
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an appropriate critical value measured from tests [16-20]. With a "go no-go" type criterion, crack 
growth is predicted.  This is a computationally efficient approach for linear elastic materials.  
However, for a wide class of fiber composites, significant material nonlinear effects are observed 
at fracture initiation and subsequent growth [21, 22]. These nonlinearities may arise from matrix 
micro-cracking, matrix plasticity, fiber/matrix interface decohesion, and fiber bridging.  An 
expedient way to deal with the effect of these nonlinearities is via a cohesive zone formulation 
[23]. 

 
Cohesive zone modeling has been extensively used in conjunction with continuum 

interface elements in finite element analysis (FEA) [24-43]. A historical account of the 
developments in cohesive zone modeling is presented in [44-45].  The interface cohesive elements, 
which are placed between the two surfaces that need to be decohered, are of zero thickness 
(initial zero separation between the surfaces). Depending on the formulation, the stiffness matrix 
of these interface elements may contain off-diagonal terms. In [46], a comprehensive overview of 
the different interface elements and their finite element formulation is provided. In particular, it 
is noted that smeared continuum cohesive elements (CCZM) lead to a fully populated stiffness 
matrix (equation 19 of [46]) while a discrete cohesive zone model (DCZM) leads to a very sparse 
interface element stiffness matrix (equation 27 of [46]). The main implication of this is the 
attendant computational time and robustness in the resulting computations. For instance, if the 
initial stiffness of the interface elements in the pre-cracking phase is chosen to be very large, then, 
as pointed out in [45], depending on the spatial integration scheme used, the CCZM shows 
spurious oscillations in the tractions. These oscillations are not an issue in DCZM, since the 
DCZM embodies, in spirit, the idea of point-wise separation, as advanced in [23, 47]. A major 
reason for both computational expediency and suppression of spurious oscillations can be 
attributed to the fact that CCZM uses interpolated displacements for embedment in the traction 
separation law, while essentially in the 1D DCZM models, the direct nodal displacement values 
are used in the traction separation laws.  

 
The central idea of the present DCZM is to treat the cohesive zone as a discrete bed of 1D 

spring type elements [47-51]. A nonlinear discrete 1D element is placed between interfacial node 
pairs to model cohesive interactions between surfaces instead of using continuum elements along 
the crack path.  In the present work, the DCZM adopted has three major differences compared to 
that discussed in [47-51]. First, in [47-51], the crack tip strain field (the characteristic r -1/2 
singularity) is incorporated in the construction of the spring models. This adds additional 
computational complication. Second, the DCZM presented here, is scalable according to the node 
spacing (i.e. mesh size) as will be shown subsequently. Indeed, there is precedent to such an idea 
as is presented in [52], in which the softening modulus is made a function of the element size. 
Finally, the present DCZM algorithm is amenable to problems where substantial rotations of the 
crack path can occur. In these instances, both geometric non-linearity and the local orientation of 
the crack path to account for the proper local mode mixity, as has been discussed in [38], need to 
be properly accounted for.  

 
In this paper, the DCZM is used to simulate static mode I fracture of a 2DTBC and the 

mixed-mode fracture of a unidirectional fiber composite.  The 2DTBC is treated as an elastic 
plastic orthotropic homogenized material. The effective mechanical properties (E11, E22, ν12 and 
G12) are measured by using ASTM (American Society for Testing and Materials) specified 
standard material property tests.  The plastic behavior of the material is characterized by carrying 
out static off-axis compression tests, from which the plasticity parameter “a66” is obtained.   
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Mode I fracture tests are carried out to measure the fracture toughness (GIC) as a function 

of crack growth. A compliance approach is used and it is found that the fracture toughness (GIC) 

varies as the crack propagates in the specimen [22].  These variations are incorporated in the 
simulations using the DCZM based interface elements; through a UEL (user element option) 
within the commercial FEA software code ABAQUS.  The simulated results agree very well with 
test data and are not sensitive to the FEA mesh density. This is quite attractive from a 
design/test/validation viewpoint and provides confidence in the use of DCZM for design 
applications.  
 
 

Interface Element based on DCZM 
 
 Figure 1 shows the schemes for DCZM and CCZM.  CCZM uses conventional continuum 
type elements while DCZM uses nonlinear two-noded axial elements. In related early work, these 
elements are referred to as spring elements (see, [23, 48-49]) however, incorporating details of the 
crack tip strain fields. As discussed earlier the present DCZM incorporates the nodal 
displacements across the decohesion surfaces directly into the traction separation law, which in 
turn is scalable with respect to the mesh size. The DCZM can be conveniently adopted into 
commercial software codes, for instance, by directly using the nonlinear spring element option 
provided by the ABAQUS® [51].  However, this must be handled with care particularly for 
problems that have significant nonlinearity (geometric or different loading and unloading paths) 
or for situations that present non-uniform fracture toughness.  If the cohesive law varies along 
the crack path, as in the present study, or a non-uniform mesh is used, the data preparation could 
be cumbersome since the F-δ relation at each node pair should be defined individually. This 
makes automation difficult. If the cohesive law has a complicated form rather than a simple 
triangular shape, the data preparation for the F-δ relation could also be tedious.   
 

In the present study, a discrete, two-noded interface element is introduced via a user 
subroutine UEL in ABAQUS® [53] in order to develop a universal DCZM in a generalized 
manner for simulating fracture. Figure 2 shows the element definition and node numbering 
adopted.  The element is placed in such a way that the nodes 1 and 2 are located at the crack tip.  
Initially, node 1 coincides with node 2 and the gap between the two nodes, exaggerated in Figure 
3, vanishes.   Since the element has four nodes, the default instant displacement array for the 
element is {U1, U2, U3, U4, U5, U6, U7 and U8}, which includes “dummy” nodes. 

 
 In order to apply cohesive law at the crack tip, a DCZM element is placed between nodes 
"1" and "2".  Nodes “3” and “4” are dummy nodes and do not have contributions to the stiffness 
matrix. They are introduced to extract information for finite crack orientation angle (θ) and the 
effective length (∆a).  This is particularly important for problems that have significant geometric 
nonlinearity. Using Figure 2, it follows that, 
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where ( 11, yx ) and ( 44 , yx ) are the coordinates of nodes “1” and “4”, respectively.  If the 
coordinates are updated by the corresponding displacement components, the instantaneous crack 
orientation can be determined.  The effective length (∆a) is 
 

( ) ( )22
4 3 4 3

1
2

a x x y y∆ = − + − ….. (2) 

 
where ( 33 , yx ) are the coordinates of node “3”. 
 

When the DCZM element is placed at the crack tip between nodes “1” and “2”, the strain 
energy stored is 
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where, XK and YK are values of the stiffness in the local coordinate system ( YX , ), see Figure 2.  
They act to sense crack sliding and crack opening, respectively. The variation of the strain energy 
is, therefore,  
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“K” is the stiffness matrix for the element in the global coordinate system, and is required for the 
user defined element subroutine in ABAQUS®. “U” is the displacement vector related to nodes 
“1” and “2”.  The nodal opening at the crack tip is: 
 

1 3 2 4( ) sin ( ) cosU U U Uδ θ θ= − − + −     (6) 
 

In the present study, a triangular cohesive law ([23], [47-49]) is used as shown in Figure 3.  
Based on the energy required to create a new crack surface, we have, 
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where GIC is the fracture toughness of the material that can be measured through tests. δm, and σc 
are the maximum nodal opening and the critical cohesive stress, respectively. Once one of them is 
chosen, the other is determined by equation (7) and thus the cohesive law is completely fixed.  In 
this paper, we choose δm as the cohesive parameter.  The numerical value of δm is determined via 
trials until the variation of δm does not affect the fracture load significantly. Once δm is chosen, the 
critical value for the cohesive force in the DCZM element is calculated as 
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where, B is the out-of-plane thickness of the specimen.  Since the spacing of the DCZM element 
depends on the coordinates of the nodes, Fc depends on the mesh size (note σc is independent of 
element spacing). The critical opening (δc) is calculated by 
 

c
c

y

F

K
δ =      (9) 

 
where YK is the initial stiffness of the DCZM element which is selected to be a very high value 
relative to the stiffness of the bridged material. 
 

To apply the triangular cohesive law, when cδδ ≤ , YK  is set to be a very large number 
to ensure that the crack is initially closed.  In numerical implementation, this value usually is 
chosen to be three orders of magnitude larger than the major Young’s modulus of the specimen.  
When mc δδδ << , the softening part of the cohesive zone, YK  is determined as 

 

δ δ
= −
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Y
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Finally, when mδδ ≥ , the DCZM element fails completely, and 0=YK . 
 

For mixed mode failure, the DCZM implementation is as illustrated in Figure 4.  Two 
one-dimensional cohesive elements are placed along the intended crack path. Both elements are 
attached to the same two nodes on the crack flanges.  Once the following criterion is satisfied, 

 

1I II

IC IIC

G G

G G
+ ≥      (11) 

 
both 1D elements are completely removed, and the crack is assumed to have advanced to that 
location. Note that the DCZM implementation is not tied to the form of the “failure criterion”. 
Equation (11) is chosen in the present study based on past experience and success in using this 
for failure prediction [54].  
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Application of DCZM to predict mode I fracture of 2DTBC 
 

Figure 5 shows a schematic of the SENB test set-up. The front surface of the specimen is 
lightly coated with a diffusely reflective white surface to improve image quality. This surface is 
illuminated with a He-Ne laser. During crack growth, extensive fiber bridging is clearly observed, 
see inset of Figure 5. Further details of the experiments and the experimental data are given 
elsewhere [22, 55]. Figure 6 presents the test results for mode I fracture toughness (GIC) measured 
using the compliance method. It is seen that the fracture toughness varies with respect to the 
crack extension during the initial stages of crack growth and then attains an approximately 
constant plateau value. It is noted that, the GIC value that is measured in the experiments is a 
through the thickness averaged fracture energy. The position of the crack path (with respect to 
the braid microstructure and with respect to the details of the stacking) varies from specimen to 
specimen. It is not unusual to find variation in the GIC values (for the through the thickness 
averaged) in this class of composites. On the other hand for a single layer of the textile composite 
and for a crack path position that is consistent with respect to the textile architecture, the GIC 
value can be obtained more consistently and with less scatter. 

 
Due to symmetry, only one half of the fracture specimen is modeled with FEA, as shown 

in Figure 7. Three different meshes corresponding to different numbers of elements (1610, 6570 
and 26280 elements, respectively), are used to study the mesh sensitivity of the DCZM [55]. The 
specimen is modeled with CPS4 elements in ABAQUS with mechanical properties listed in Table 
1. The load application roller and the support rollers are modeled by CPS3 elements with 
mechanical properties of steel. Contact surfaces are applied between the rollers and the specimen.   

 
 The load is applied in the form of displacement control (∆) at the center of the loading 
roller.  The force (P) is taken as the contact force between loading roller and the upper surface of 
the specimen and, therefore, it is comparable to the force measured from the load cell in 
experiments.   
 

The mechanical characterization of the 2DTBC is reported in [55]. It is found that the 
2DTBC can be modeled as a orthotropic elastic plastic solid with a one parameter plastic potential 
[55], with the “a66” parameter = 1.2. A user defined material subroutine UMAT is used to 
accommodate the orthotropic plastic model. This is done in conjunction with the user element 
subroutine for the DCZM.  The P vs. ∆ curves for this case is shown in Figure 8.  Mesh (b) and 
mesh (c) prediction are very close to each other, and the difference between the two can be 
neglected. It is clear that the DCZM results have converged with respect to mesh size. In general, 
the simulated results by DCZM agree very well with the test data. In using the present DCZM, no 
numerical convergence problems are encountered. The method did not show any significant 
mesh sensitivity. Table 2 summarizes the CPU times used for the simulations. Each analysis job is 
run on a SunBlade 100 machine with one processor (UNIX environment). For the mesh with the 
least number of elements without plasticity, the CPU consumed for a complete analysis is 
approximately ten minutes. This is a great reduction in time compared to similar runs with 
CCZM which can take CPU times on the order of hours. 

 
 

Application of DCZM to predict mixed mode fracture of MMB 
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The MMB set-up was introduced by Reeder and Crews [57] to obtain mixed-mode fracture data 
using a relatively simple test machine and test fixture. The configuration used in the MMB is 
shown in Figure 9. An edge cracked unidirectional composite beam is subjected to load as shown. 
The edge crack ‘splits” the beam of thickness 2h into two beams of thickness h. By changing the 
load application point, a variety of mixed-mode conditions can be implemented. An analytical 
solution for the P vs. ∆ relation corresponding to Figure 9 is formulated in [25]. In order to 
compare the DCZM solution with the analytical solution in [25], the following geometrical 
dimensions and material properties are used in the analysis; 
 

L=50mm;   e=50mm;   a0=30mm;   h=1.5mm;  
B=10.0mm,   E=135×103MPa;   v=0.24;   GIC=GIIC=4.0N/mm 

 
Figure 10 shows a comparison of results between the analytical solution and the FEA 

results using the DCZM for different pairs of cohesive strength (σ1c, σ2c). As the mode I and mode 
II cohesive strengths increase, the present DCZM results approach the analytical results. The 
analytical results are based only on LEFM and has no “strength” information in assessing failure. 
On the other hand, the DCZM incorporates both, a critical strength and a critical energy release 
rate, in assessing failure. No convergence problems are encountered in the implementation. This 
indicates that the implementation of the mixed-mode DCZM, as proposed herein, is indeed 
satisfactory for this class of problems. 

 
Conclusions 

 
 In this paper, results from a novel discrete cohesive zone model (DCZM) to simulate 
mode I and mixed mode fracture have been presented.  For the mode I case, experimental results 
generated using a modified single edge notched bend specimen of a 2D triaxially braided 
composite (2DTBC) are used to verify the DCZM.  The mixed mode bending (MMB) fracture test 
configuration developed by Reeder and Crews [57] is used as the configuration to study mixed 
mode fracture. In both cases, it is seen that the DCZM is able to capture the essential features of 
the fracture problems. The DCZM, as presented here, is easy to implement and is 
computationally efficient when compared to other cohesive zone modeling approaches. Because 
the DCZM uses a “point-wise” discrete approach to simulate fracture and because the FEA is 
essentially a discrete solver, the two approaches are compatible and this is reflected in the 
computational expediency in the numerical implementation of the DCZM. 
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Table 1. Effective Mechanical Properties 
E11(GPa) E22(GPa) ν12 G12(GPa) 

68.53 10.78 0.36 4.52 
 
 

Table 2. CPU consumed by DCZM (unit: second)* 
Conditions Mesh (a) 

1610 elements 
Mesh(b) 

6570 elements 
Mesh (c) 

26280 elements 
GIC=57N/mm, No a66 506 2236 10277 

GIC=f(∆a), No a66 499 2243 10103 
GIC=f(∆a) and a66 1227 6446 31927 

*SunBlade 100 machine, UNIX 
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Figure 1: Scheme of DCZM and CCZM 
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Figure 2: DCZM interface elements for slant crack lying in (X, Y) plane 
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Figure 3: Triangle type cohesive law used in the present study 
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Figure 4: Fracture criterions for mixed mode fracture in DCZM 
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Figure 5:  Experimental setup for fracture toughness tests. 
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Figure 6: Fracture toughness varied with crack extension averaged from test data 
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Figure 7: Single edge notch bend specimen to measure fracture toughness1610 elements 
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Figure 8: Comparison between test data and simulated results by DCZM (GIC=f(∆a) and a66) 
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Figure 9: Mixed-Mode Bending (MMB) Test Apparatus 
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Figure 10: Comparison of analytical solution and DCZM for MMB 
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