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Abstract

The finite element method is used to study
the equilibrium and stability of an elastic cable
whose upper end is towed in a horizontal, circular
path at a constant angular velocity. Fluid drag
is assumed to be composed of tangential and normal
components which are proportional to the tangential
and normal velocity components squared, respective-
ly. The problem includes strong geometric non-
linearities and iS nonconservative, thereby admit-
ting both static and dynamic instabilities.

Equilibrium equations for a cable element
including elastogeometric, centripetal, and aero-
dynamic stiffness matrices are developed in terms
of problem parameters and a shape function. All
geometric nonlinearities are retained, but small
elongations are assumed. The resulting nonlinear
algebraic equations are solved using a Newton-
Raphson procedure. The stability of an equilibrium
position is determined by perturbing the nonlinear
equations of motion and calculating the eigenvalues
of the resulting linearized dynamic equations.

Results indicate multivalued solutions, the
number depending on the rotational frequency and
tow radius. Both static “jump* type and dynamic
instabilities are found.

1. Introduction

While no practical interest has been shown
until the last two decades, the equilibrium con-
figuration of a cable towed in a circular path has
been of theoretical interest since antiquity. So-
lutions to the “linearized” eigenvalue problem
(zero tow radius) were obtained first by D,
Bernoulli (1700-1782) and L. Euler (1707-1783).
Work then ceased fgr two hundred years until
Kolodner's study(l on the nature of the nonlinear
eigenvalue problem. Asymptotic solutions for high
rotatio?a% frequencies were considered by Wwu(2),
Caughey!(3) wes the first to analyze the nonlinear
forced response (nonzero tow radius) and note the
similarity of the response to that of a hardening
spring-mass system. Al authors thus far had
considered the towing medium to be a vacuum.
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Nate Saint, a missionary working in South
America, motivated practical interest in the circu-
larly towed cable idea as a possible aerial delivery
system by demonstrating in the early 1950's that a
light, fixed-wing aircraft could be used to deliver
food and medical supplies to remote villages. He
accomplished this by towing a cable with a basket
attached to the end from an aircraft orbiting over
the delivery point. Surprisingly, the basket
hovered almost motionlessly near the ground.

Since then, many researchers have studied the
problem, introducing new solytion techniqyes and
applications. Skop and Choo(ugL and Crist 5§ con-
sidered the equilibrium configuration for the case
of aerodynamic drag, Skop and Choo being the first
to demonstrate 422§ multisolution nature of the
problem., Crist studied the effects of crosswind
and the transient problems associated with towing
the cable into_and out of orbit from a rectilinear
path. Huangl7) also restricted his work to the air-
borne system but was primarily interested in maxi-
mizing the cable verticality. The "GOWiIZ% medium
wes changed from air to water when Choo ) con-
sidered marine applications.

The finite element method is an extremely
powerful approach for problems of this type since
it has the advantages of structural assembly, equi
valent nodal load creation, ease of modification,
and boundary condition application. The pres?n'g
paper seeks to extend the work of the authors 9
which employed a linear element to study the cir-
cularly towed cable subject to viscous drag to one
subject to aerodynamic drag. Webster(10) has since
independently developed a linear cable element,
while Henghold and Russell{1l) have developed a
complete family of higher order cable elements.

The equilibrium equations referred to the
rotating coordinate system and perturbed equations
for small motion about the equilibrium point are
developed now for a single element using the prin-
ciple of virtual work.




II. Element Equilibrium

A elastic cable of undeformed length 4 and
mass per unit length m, with its upper end rotated
agbout the Z axis at a constant angular velocity
wis shown in Fig. 1. The XYZ system is an iner-
tial reference frame while the XYZ system rotates
with the tow point. The final deformed length
of the cable is 4%,

aprsmmm e

Figure 1. The Cable Configuration

The location of any material coordinate in
the deformed geometry is

{xx} = {xx(s)}

where {x*¥} = {x*¥r*z%}T and S is the undeformed
arc length. The velocity {v*} and acceration {a*]
can be written in matrix form as

(1)

) = Ladixd) + w [ J{xd (=)

(2)
{a#) = Lo 1009 +2w [a Jx¥}-wa Mz} (o)

where () indicates differentiation with respect
to time and the following matrices have been
defined

100 010 100
el =fo 1 oflagl=|-1 0 oflagl=]o 1 o
0 0 1 0 0 C 00O

(3)

Applying the principle of virtual work to a
cable element of undeformed arc length L and de-
formed arc length I* yields
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ow = frioxTexlasx + (61 (xo} -

£ Ao beds =0
()

o
where the following terms have been used:

€ _, the Lagrangian strain in the deformed axial
directfon
-1 e -
€, =3 [(gg y2 - 11

(5)

04> the Kirchoff stress which is related to
€4 through the modulus of elasticity E for a
linearly elastic material by

o, =E¢€, (6)

A, the undeformed cable cross-sectional area
{£*}, the distributed load per unit deformed
arc length,

*
{XN}, the nodal coordinates and

{r*}, the corresponding nodal load vector.

The shape function [N] relating the coordin-
ates of a generic point to the nodal coordinates
is then given by

(e} = [wdixy) (7

Using the shape function definition (7), as well as
the definitions of €4 (5) and o4 (6) allows the
internal virtual work expression 6U to be written
in terms of the shape function and nodal coordin-
ates.

L
6U = {a%‘}“’[—;— (0} v 1P 100 - 2w 7
o]
(8)
[N'Jdé]{XE}

The distributed loading {£*} can be decomposed
into inertial {E*}, gravitational {fg} and aero-
dynamic drag {fd}

(£ = (£} + (£} + {£])

(9)

where the inertial and gravitational loading are
given by

¥

le) = - (55 (o) (10)
3S
¥ S
{£5} - mg <§?> {a) (11)

and the column vector {ag} ={o o l}T for the z
axis aligned with gravity.



The inertial term is next written in terms of
the nodal coordinates using (2a) and (7). The re-
sulting inertial (10), gravitational (11) and in-
ternal virtual work (é) expressions are then sub-
stituted into the statement of the principle of
virtual work (4) to give

[mj{iq;}+[cGJ{§}+[£kEJ-[kCJ]{x§}-{q*}={g}+{r*}
(12)
where the following matrices have been defined:

Consistent Mass

L
(n] = [ m [170N] as

o
Gyroscopic Damping

L
eg) =2 @[ m [N]" e, J0N] as

(a)

(b)

Elastogeometric Stiffness (13)

e =3 Ae (D) "Ive 270w (3 -1 370 Jas
(0}
(e)

Centripetal stiffness

2L T
eyl = w ‘(];m[N] La 1n] as (a)

Gravitational Equivalent Nodal Loads

(e} = ne [n)*(ay} as (e)

Aerodynamic Drag Equivalent Nodal Loads
L
* % *
(") = [ InI"(2)} as (£)
o

The first five of these were evaluated for a
Linear shape function and ar? iven in an earlier
paper by the present authors 9% .

*

Since the drag force {£3} is position and
velocity dependent, all work with the {g*} vector
is motivated so as to obtain it in terms of damp-
ing and stiffness type matrices. The drag force
is first decomposed into normal and tangential
components

(£} = {e}) + () (1)
where

(2} = -3 peylv,"liv, ) ®

(5] = -3 pe a v liv (b)

The tangential and normal drag coefficients are
cy and c,, respectively, the deformed cable dia-
meter d*, the density of air p, and the normal and
tangential velocity components {v¥} and {v{} are

) = () K,
v} = (v {as*D{as*} ()

(16)
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or

% W H
(v - [{%}{éx—*}ﬂfv*} )
L 3s 3
and (16)

*
*- *. I
brd = v} - Iv) ()

At this time, only the equilibrium configura-
tion will be considered. Assuming small elemental
elongations, s* can be replaced with S and ©* with
L. The equilibrium velocities can then be written
in terms of the shape function as

vl =w [aG][N]{XN}O (a)

{vgd, = 0 Dvdixg (x 37 Iv Pla JINix ) ) (17)
{v,} o=w[[aGJENJ~[N' 10xd fxdo ]T[aG][N]] o
(c)

where the star superscript has been dropped to
indicate the small elongation assumption and the
zero subscripts added to denote equilibrium values.
Substituting (17) into the expression for the equi-
valent nodal loads due to aerodynamic drag yields

lady = O, Mx 3 (18)
where the aerodynamic stiffness matrix [kA] is
defined by

[,] = Ul + 0620 + [kl (2) (19)
and o
[ig] = £pc a [, 10T (g 10N] as
(621 = - ®pc a L\ Tl
WEEE-7I% £vno\[N] (v dix 3}
{x 3700 1 La, JIN] as (v) (20)
L
1
(k] = Loc,a glvtO\[NJT[N'J%}O%}Z

T
(v 1"(a,JIN] as (c)
The values of cp, ct, p and d have been assumed

constant over the element length. The absolute
values of the velocity components are calculated

from

Ivy | =t Yv, ) ?

(21)

<{vno}T{vno}>



These Stiffness matrices which are in general not
symmetric can be evaluated either using numerical
integration or integrated analytically if approxi-
mate expressions for the velocity magnitudes are

emp]_oyed.
The equilibrium problem is then defined by
Lelixgl = {a} + {x} (22)

where the element stiffness matrix [k] is

Ue] = D] - [kg] + [k, (23)

A discrete approximation to the continuous
problem may now be found by assembling cable ele-
ments in the standard manner. The resultant stiff-

ness matrix is unsymmetric due to the nonconserva-
tive nature of aerodynamic drag. The addition of

drogue devices at any node is easily accomplished
if drogue lift and drag coefficients are known.

III. Stability

The stability analysis is based on the
infinitesimal motion about a given nonlinear equi-
librium position. The presence of nonsymnetric
terms in the stiffness matrix requires that a
dynemic stability analysis be conducted. A con-
venient way to obtain the linearized dynamic
equations is to perform a variation on the equa-~
tions of motion for a single element and then
assenble the total cable system. From (12),

th{EchGJ{Z;N}+[tkEJ-tkcJ+tkLJ]{eN}+{oq} -0

(24)

where (k1] is the large déﬂeét‘:ign stiffness matrix
fcund in Henghoid and Russe11(11) and is given by

L
] T t T 1 T
U] = {AE[N Pl lixgd (e b v P iwedas (25)
end the perturbed motion is {£} = {6X}.
Evaluating the perturbation of the aerodynamic

equivalent nodal loads from (13e), (14), (15) and
(16) yields

L
{6q} = 3pcd {[N]T{vn}oﬁ lvnl as + (26)
o T
2 pe d ,“Vn | ] {6vn} as +
o] o]
1 z T
z pe,d £[N] {v,} 0 \vt\ as +
% T
3 peid [lv, (176w} as
[e] o]

The variations in the absolute velocities are
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le_bl = v_o\ (SVJG (a)
° (27)
6 \vw\ = = O. 6v + .__70_6v

Other velocity terms needed to evaluate {Gq} are:

(6v} = [ JIN(E ] + wla,JIN)ED (a)

volov) = w (3TN ey JInEE) + (b)
Sl N1 e, JNDE )

6v, = (X JTINIINI(E) + (e)
| .
w {x ) I 1a, JINIEEY + (28)
w (X1 N Te TP Inr 2 g )
(ovy} = Dol Pone 30} (MY + (@)
w e d0) (% w0 e T g 3 +
w (9 20} U1l Ia JINDEE ) +
v, [N3(E )

Substituting the results of (27) and (28) into
(26) yields

(6} = [e, e} + [x, + by HEF  (29)
where gy
6 . 5
le,d = izl[cn] + 2le, ] (a)
(30)
Ik, 1= 120 [kh] + 2 + 262 + %3 (b)
TA jop B t t t

For clarity, the damping matrices and stiffness
matrices are listed in the Appendix. Examination
of the damping matrices shows that [cA] iS symme-
tric as should be expected.

The perturbed equations of motion for an
element can thus be written in the form

al{E) + LellE} + Do die,) = 10} (31)
where

[e] = [cG] + [cA] (a)

(32)
[ipd = Degl + [ieg - Digd + D 1 (0)




Defining {n,! as

(&}

{nd =< . (33)
LTS
and assuming exponential motion
(ng = ("t (3)
leads to the general eigenvalue formulation
Lallmd =alBl{mg} (35)
where
(m] [o] fo] [m]
[a] = (B] = (36)
[0] -[k,] [n] [e]

Note the static instability (A = 0) is given when
the determinant of the tangential stiffness matrix

[kT] is zero.

IV. Solution Procedure

Since the nonlinearity is primarily of a
geometrical nature, a Newton-Raphson procedure is
used to solve the equilibrium equation (22). A
guess is made to initialize the procedure and the
resulting equilibrium unbalance {¥} calculated
from

{1y = [K]{XN}O - {a} (37)

where [X] and {g} are the assembled current stiff-
ness matrix and gravitational equivalent nodal
load matrix, respectively. A correction to {X.N}
is then calculated from ©

[k Jax )

This procedure is repeated until the maximum
normalized increment (dX;/X;) is smaller than an
error index eq, taken typically. to be .001, Eigen-
values are then calculated from (35) using an ei-
genvalue subroutine based on the QZ method to
determine the system stability.

- {8. (38)

After equilibrium and stability calculations
have been completed for a given rotational fre-
quency, the value of w can be incremented by dw
and a new set of linear equations solved to ini-
tialize the iteration procedure at the new fre-
quency. Proceeding in this manner, frequency
response curves may be obtained.

V. Resultss

The utility of the developed elements willl noyw
be demonstrated using the linear element shown in
Fig. 2. To verify these elements, theoretical

Figure 2. Linear Element

results using approximate expressions for the
aerodynamic stiffness, tangential stiffness and
damping matrices are compared to results obtained
experimentally. All results are presented in non-
dimensional form. Spatial coordinates are non-
dimensionalized with respect to the unstretched
cable length such that the nodal coordinates are
given by

{eg = by /43 (39)
and the tow radius by
€ =R, /M (ko)

Other nondimensionalized variables introduced are:
Normal Drag Coefficient

gn =% pc at/m (h1)
Tangential Drag Coefficient

Ct = %~pctdﬂ/m (42)
Stiffness to Weight Ratio

K = AE/mgt (43)
Rotational Frequency

Q=w g (L)

The possibility of a spherical drogue at the
cable tip has been included. The drogue is
characterized by the following two nondimensional
parameters:

Drogue Drag Coefficient

= 3pephp/t (45)
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where cp is the drogue drag coefficient, con-
sidering a drag law in which drag is proportional
to the relative velocity squared. The cross-
sectional area of the drogue is Ap.

Drogue to Cable Mass Ratio
B = M/mgl
where M is the drogue mass.

(L6)

Explicit integration of the aerodynamic stiff-
ness, tangential stiffness and damping matrices is
made difficult by the presence of the absolute
velocity terms in the integrands. This problem
can be overcome either by using numerical integra-
tion or by approximating the absolute velocity
terms. The second method is used here. The abso-
lute velocities were expanded in a Taylor series
in texms of AX, AY and AZ, where AX, AY and AZ are
just the respective differences in the element end
points in each direction. The maximum size of any
of these is the element length L. The first two
terms were retained in each expansion, these being
of order L and L€ for the aerodynamic stiffness
matrices. This expansion is valid for small
element elongations and small element size. Lack
of space prevents their reproduction in this re-
port. A complete listing appears in Russell(12),

Equilibrium shapes and their stability are
found rather easily and with relatively small com-
puter costs. Overall cable behavior is best des-
cribed using plots of the three tip parameters -
(Dyradius ry, (2) phase angle @¢, and (3) verti-
cality zy, versus rotational frequency 62 The tip
radius is measured in a horizontal plane fromthe
axis of rotation to the cable tip.

r, = [=(1)? + (v(1)°] (47)

The phase angle is used to measure the lag of the
tip from the tow point and is given by

g, = arctan (¥(1)/x(1)) (48)
while the verticality is simply the tip value of z
7, = z(1) (49)

where all quantities have been defined in non-
dimensional form.

i
2

Typical results for three values of drag are
sketched in Fig. 3. A hardening spring character
is observed with the tow radius € playing the role
of the magnitude of the excitation.

For low drag (M), the system behavior is
similar to that of the system without drag. For
moderate values of drag (ME), jump phenomena are
possible, near the system's first resonant fre-
quency. Also for moderate (ME) and high (HI)
values of drag, a detached branch of the equili-
brium curve appears in the upper right of the
figure. A dynamic stability analysis shows that
the dashed portions of the curve are statically
unsteble, while the dotted portions of the curves
are dynamically unstable. The qualitative beha-
vior of these solutions and their stability has
been confirmed in a related experiment, Russe11(12),
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Figure 3. Sketch of Typical Equilibrium Solutions

A typical set of experimental results for a
tow radius of 9 inches and cable length of 5./
inches is used to confirm the theory. The experi-
mental cable model was .0185 inch diameter silk
thread weighing 4,519 x 105 1b/ft. A spherical
drogue with_mean diameter of .148 inch weighing
9.921 x 1077 1b wes attached to the cable tip.
Normal and tangential drag coefficients for a
smooth cylinder were used; ¢, = 1.2, and ¢ = 0.01.
The drag coefficient for the drogue wes taken as
that of a sphere, ¢ = 0.47. Experimental results
for tip radius and verticality are shown in Figs.
and 5. No experimental phase angle data wes ob-
tained.

Theoretical results were obtained using a
nine-element cable discretization with the experi-
mental cable parameters. These results are shown
in Figs. 4,5 and 6. Since no experimental value
of X was measured, a value of 1000 wes used in the
theoretical calculations. Results indicate rela-
tive insensitivity to this parameter except for
large tip radii and high rotational frequencies.

Theoretical equilibrium results are, in
general, in very good agreement with those ob-
tained experimentally. The only. region where the
results disagree is near the jump from large tip
radius to small, the theoretical jump occurring
sooner than the actual. Since drag is most im-
portant in this region, any differences in theore
tical and actual drag coefficients would produce
the greatest differences in theoretical and ex-
perimental results here. Thus, the discrepancy is
explained on the basis of an underestimation of the
actual drag caused by not taking the rough surface
of the thread into account.

The stability analysis confirms the zero
eigenvalues at the large-to-small and small-to-
large radius ‘jiJmps. The dynamic instability was
predicted at § = 3.08B, while it actually occurred



at §2 = 3.70. The discrepancy once more is ex-
plained on underestimation of the drag. Since only
the first two eigenvalues were of interest, the
nine nodes of the static analysis were condensed
to three for the dynamic analysis. No attempt was
made to obtain equilibrium solutions in the sta-
tically unstable region. Although no upper bound
of the unstable region was found for 2« 7.0 in
this case, the bounded behavior has been esta-
blished for other cases, both experimentally and
theoretically.

10 @ Experimental € =.,35
Theoretical gn = 3.37
°, gt = ,08
QD = '05
B =1
L]
H K = 1000
3
g
&
A
£+
2
0} N R "
1.0 2.0 3.0
Rotational Frequency §
Figure 4. Frequency Response
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Figure 6. Phase Angle
V1. Conclusions

A finite element representation of aerodynamic
drag acting on a whirling cable has been accom-
plished. This representation places the position
dependent drag forces in terms of stiffness matrices
referred to a rotating reference frame, thus allow-
ing equilibrium solutions to be obtained in the ro-
tating frame. Position dependent tangential stiff-
ness and damping matrices are used in the perturbed
equations of motion. Gravitational, centripetal
acceleration, coriolis and elastic effects are also
included in the element. Large cable rotations and
position dependent forces created by the velocity
squared drag laws cause the problem to be highly
nonlinear.

A computer program has been written for the
single whirling cable with a spherical drogue
attached to the cable tip. This program has proven
to be efficient and capable of coping with multi-
valued solutions. The Newton-Raphson method is used
to find equilibrium positions and a dynamic pertur-
bation is used to determine the stability of each
solution. Modification of the program to solve re-
lated problems such as the whirling cable attached
at both ends and lasso problem is easily accom-
plished.

Physical phenomena encountered for the
whirling cable include static and dynamic insta-
bilities, jumps from one equilibrium configuration
to another, and detached solution branches. The
static instabilities and jumps are typical of those
observed in damped, hardening, nonlinear, spring-
mass systems. The dynamic instability is peculiar
to nonconservative systems, while the detached
branches are rarely seen in the frequency response
of mechanical systems. Space has not allowed a
study of the effects of the various problem para-
meters on these phenomenato be included, but a
later paper will concentrate on this area.

This paper concentrates on the mathematical
development of the aerodynamic portion of a whirl-
ing cable element and the solution of a seemingly
simply assembly, a single whirling cable. Theore-
tical results obtained agree with those obtained
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experimentally. The richness of solutions and
associated stability phenomena makes it a fascin-
ating study and impossible to document completely
here.

Appendix

The perturbed element aerodynamic damping and

stiffness matrices defined in (30) are given below:

Aerodynamic Damping Matrices

[l il 20000
'£W N e, J0n] XN}O
o]

{XN}T[N]T[a ]T[N]ds]

2
14 _ w pepd
[cn] =

(a)
le 2] = TWPend [f e e SHIE N
2 O\V \
{x )i 1 [des] (b)
d o
(2] =‘°Pgn [f‘v \tm v 10}
g3 Il e, ] [N]dS] (c)
ha _peyd N GLTIN L
o] = 2% [f \Vn_ol [T o 0 3
[o]
{XN}“;ENvJT[Nst] (a) (A1
[ci] _ Py nol[N]T[N]dS (e)
pepd 1L
() - 2o [{lvnol[N]T[N']{)gv}o
(g} ol ¥ Indas (£)
] i
[e,] = -'%1[{ \vto\[NJT[N'HXN}O
{x vt 1 Iwlas (e)
Aerodynemic Tangential Stiffness Matrices
3 L
L] - 200 [j' ﬁl—l[N]T[aCJ[NJ%}O
ol n
[e]
{xN}f,[NJT[aCJ[Nst] (=)
L) - ZPend [f % [N e, IND(x, ) (a2
2 Ol'V'n \
%}itmTEaGm'Jas] (0)
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(9] - 2ot [f "o (e e
o]l |

e Jinlas (e)
[y = 2200 [j v, O

T s .][N]dSJ (a)
] - 20 [j( PREUHEDE)

(x ) )" ][N']ds;] (e)
nd) -2 [j (v, )P0 TN 3z,

{XN} v ]la ][N:lds] (£) (A2
[y - 228 [J v, 1010 3,

(x 71 e ) [N'st} (&)
[klO]_ pcn j‘v \v l[N] (w*lds (n)
m) - 288 [j by 10T T 203,

{XN}T[NJT[a JEN']ds] (1)

(&1 = j (v, 2[N]T[N']dS (3)
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