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Abstract 

The f i n i t e  element method i s  used t o  study 
t h e  equilibrium and s t a b i l i t y  of an e l a s t i c  cable 
whose upper end i s  towed i n  a horizontal ,  c i rcular  
path at a constant angular velocity.  
i s  assumed t o  be composed of tangent ia l  and normal 
components which a re  proport ional  t o  the  tangent ia l  
and normal ve loci ty  components squared, respective- 
l y .  The problem includes strong geometric non- 
l i n e a r i t i e s  and i s  nonconservative, thereby admit- 
t i n g  both s t a t i c  and dynamic i n s t a b i l i t i e s .  

Fluid drag 

Equilibrium equations f o r  a cable element 
including elastogeometric, cent r ipe ta l ,  and aero- 
dynamic s t i f f n e s s  matrices are  developed i n  terms 
of problem parameters and a shape function. A l l  
geometric nonl inear i t ies  a re  retained,  but small 
elongations a re  assumed. The resul t ing  nonlinear 
algebraic equations a re  solved using a Newton- 
Raphson procedure. The s t a b i l i t y  of an equilibrium 
posi t ion  i s  determined by perturbing the  nonlinear 
equations of motion and calculat ing the  eigenvalues 
of t he  resul t ing  l inear ized  dynamic equations. 

Results indica te  multivalued solutions,  the  
number depending on t h e  ro t a t iona l  frequency and 
tow radius.  Both s t a t i c  “jump“ type and dynamic 
i n s t a b i l i t i e s  a r e  found. 

I. Introduction 

While no p r a c t i c a l  i n t e r e s t  has been shown 
u n t i l  t he  last two decades, the  equilibrium con- 
f igura t ion  of a cable towed i n  a c i rcular  path has 
been o f  t heo re t i ca l  i n t e r e s t  s ince ant iqui ty .  So- 
lu t ions  t o  t h e  “ l inear ized”  eigenvalue problem 
(zero tow radius)  were obtained f i r s t  by D, 
Bernoulli (1700-1782) and L. Euler (1707-1783). 
Work then ceased f r two hundred years u n t i l  
Kolodner’s study(l7 on the  nature of t he  nonlinear 
eigenvalue problem. Asymptotic solutions fo r  high 

frequencies were considered by Wu(2). 
was the  first  t o  analyze t h e  nonlinear 

forced response (nonzero tow radius)  and note t h e  
s imi l a r i t y  of t h e  response t o  t h a t  of a hardening 
spring-mass system. A l l  authors thus far had 
considered the  towing med-ium t o  be a vacuum. 
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Nate Saint ,  a missionary working i n  South 
America, motivated p r a c t i c a l  i n t e re s t  i n  t he  circu- 
l a r l y  towed cable idea a s  a possible a e r i a l  deliver 
system by demonstrating i n  t h e  ear ly  1950’s t h a t  a 
l i g h t ,  fixed-wing a i r c r a f t  could be used t o  deliver 
food and medical supplies t o  remote v i l lages .  He 
accomplished t h i s  by towing a cable with a basket 
at tached t o  the  end from an a i r c r a f t  orb i t ing  over 
the  delivery point .  Surprisingly, the  basket 
hovered almost motionlessly near t he  ground. 

Since then, many researchers have studied the 
problem, introducing new solut’on techniques and 
applications.  
s idered the  equilibrium configuration fo r  t he  case 
of aerodynamic drag, Skop and Choo being the  f i r s t  

mult isolution nature of the  
studied the  e f f ec t s  of crosswind 

Skop and Ch00(~? and Gr i s t ( ? )  con- 

and the  t r ans i en t  problems associated with towing 
o and out of o rb i t  from a r ec t i l i nea r  

borne system but w a s  primarily in teres ted  i n  maxi- 
mizing the  cable v e r t i c a l i t y .  The towi medium 
was changed from a i r  t o  water when ChooT8) con- 
sidered marine applications.  

7) a l so  r e s t r i c t e d  h i s  work t o  the a i r  

The f i n i t e  element method i s  an extremely 
powerful approach f o r  problems of t h i s  type since 
it has the  advantages of s t ruc tu ra l  assembly, equi- 
valent  nodal load creation,  ease of modification, 
and boundary condition application.  The pres n 
paper seeks t o  extend the  work of t he  authorsf9j  
which employed a l i nea r  element t o  study t h e  c i r -  
cular ly  towed cable subject t o  viscous drag t o  one 
subject  t o  aerodynamic drag. 
independently developed a l i n e a r  cable element , 
while Henghold and Russell(=) have developed a 
complete family of higher order cable elements. 

Webster(10) has since 

The equilibrium equations refer red  t o  the  
ro t a t ing  coordinate system and perturbed equations 
f o r  small motion about t he  equilibrium point  a re  
developed now f o r  a s ingle  element using the  prin-  
c ip l e  of v i r t u a l  work. 
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11. Element E q u i l i b a  

An e l a s t i c  cable of undeformed length & and 
mass per un i t  length m y  with i t s  upper end ro ta ted  
about t he  Z axis a t  a const& angular ve loci ty  
w i s  shown i n  Fig. 1. The X Y Z  system i s  an iner-  
t i a l  reference frame while t he  XYZ system ro ta t e s  
n i th  the  tow point .  
of the  cable i s  &*. 

The f i n a l  deformed length 

Figure 1. The Cable Configuration 

The locat ion  of any material  coordinate i n  
e deformed geometry i s  

Cx*l = Cx*(s)l (1) 
T ere EX*} = {X*Y*Z*} and S i s  t he  undeformed 

arc length. 
can be wr i t ten  i n  matrix form a s  

The veloci ty  {+} and acceration {a*} 

ere ( ' )  indica tes  d i f f e ren t i a t ion  with respect  

f ined 
time and the  following matrices have been 

Applying t h e  pr inc ip le  
e element of undeformed 
ed a r c  length L* yie lds  

o c  

of v i r t u a l  
a r c  length 

1 0 0  

= 0 1 0  I 0 0 0  

(3) 

work t o  a 
L and de- 

6w = J' L* {6x*lTEf*1dS* + {6<lT{r*l - 

0 

J L A U ~  6esds = 0 

0 
(4) 

where the  following terms have been used: 

€ t h e  Lagrangian s t r a i n  i n  the  deformed a x i a l  
S Y  

€ s  = 3 U,,) as* 2 - 11 
d i r ec t  ion 

(5) 

u s y  t h e  Kirchoff s t r e s s  which i s  r e l a t ed  t o  
C s  through the  modulus of e l a s t i c i t y  E f o r  a 
l i nea r ly  e l a s t i c  mater ia l  by 

A ,  t h e  undeformed cable cross- sectional  area 

If*], the  d i s t r ibu ted  load per uni t  deformed 
arc  length,  

{GI t he  nodal coordinates and 

{ r*] the  corresponding nodal load vector. 

The shape function [N] r e l a t ing  the  coordin- 
a t e s  of a generic point  t o  the  nodal coordinates 
i s  then given by 

Ex*] = [N]f.<} ( 7 )  

Using the  shape function de f in i t i on  ( 7 ) ,  as  well  as 
the  def in i t ions  of E S  (5) and Us (6) allows the  
i n t e r n a l  v i r t u a l  work expression 6~ t o  be wr i t ten  
i n  terms of the  shape function and nodal coordin- 
a t e s .  

6U = {6 $1 [* SAE ( { $3 [N ' IT [N ] { $1 - 1) [N IT 
L 

n 

The d i s t r ibu ted  loading {f*} caz be decmposed 
in to  i n e r t i a l  {f"], g rav i t a t iona l  {f ] and aero- 
dynamic b a g  if+$ g 

( 9 )  

where the  i n e r t i a l  and g rav i t a t iona l  loading are  
given by 

T and the  column vector {a,] = {O 0 11 f o r  the  Z 
ax i s  al igned with gravity.  
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The i n e r t i a l  term i s  next written i n  terns  of 
The re- the  nodal coordinates using (2a) and (7). 

sult ing i n e r t i a l  (10) gravitational (11) and in-  
t e rna l  v i r t u a l  work (8) expressions a re  then sub- 
s t i tu ted  into  the  statement of the principle of 
v i r tua l  work (4) t o  give 

or 

as" J 

and 
* * 

Evn3 = [ v  3 - * bt l  

A t  t h i s  time, only the  equilibrium configura- 
t ion  w i l l  be considered. Assuming small elemental 
elongations, S* can be replaced with S and L* with 
L. The equilibrium veloci t ies  can then be written 
i n  terms of the  shape function as  

where the  following matrices have been defined: 

Consistent Mass 
L 

Em] = f m [NIT[N] dS 
0 

Gyroscopic Damping 
L 

Cc,] = 2 W s  m [NIT[aG][N] dS 
0 

{VI, = w [aG][Nl{%jo (a) 

cvtlo = LJJ [3J'11$]0[5]z [N ' lT[aGl[Nl~$]o  (b) (17) 

vn3 .=LJJ[C,  1 [NI-  [N ' I( 51 o( 5): [N ' IT[aG1 [ N j  [ 51 
( c )  

where the  s t a r  superscript has been dropped t o  
indicate the small elongation assumption and the 
zero subscripts added t o  denote equilibrium values. 
Substituting (17) into  the expression f o r  the  equi- 
valent nodal loads due t o  aerodynamic drag yields 

Elastogeometric Stiffness (13) 
L 

[$14fm( {$jTCN' ITLN' I{$] -1) EN' lT[N ' ]dS 

Centripetal St if fnes s 

0 
( e )  

Gravitational Equivalent Nodal Loads 
L 

(93 = f mg [NIT{aG) dS 

[s*3 =, 1 [N] {fa) as* 

(e )  
0 

Aerodynamic Drag Equivalent Nodal Loads 
L* T * 
0 

( f )  

where the  aerodynamic s t i f fness  matrix [kA] i s  
defined by 

and 

The first  f ive  of these were evaluated for  a 
Linear shape function and are  iven i n  an ea r l i e r  
paper by the  present authors(9 7 . 

* Since the  drag force {fa} i s  position and 
velocity dependent, a l l  work with the cq"} vector 
is  motivated so as t o  obtain it i n  terms of danp- 
ing and s t i f fness  type matrices. 
is  first  decomposed into  normal and tangential  
components 

The drag force 

where 
The values of Cn, c t ,  p and d have been assumed 
constant over the  element length. The absolute 
values of the velocity components are calculated 
from 

The tangential  and normal drag coefficients are 
ct and cn, respectively, the deformed cable dia- 
meter d*, the  density of air p ,  and the  normal and 
tangential  velocity components [vi]  and {vz] are  
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s t i f f n e s s  matrices which a re  i n  general  not 
t r i c  can be evaluated e i the r  using numerical 
r a t ion  o r  in tegra ted  analy t ica l ly  if  approxi- 
expressions f o r  t h e  ve loci ty  magnitudes a re  
yed. 

The equilibrium problem i s  then defined by 

A d i sc re t e  approximation t o  the  continuous 
oblem may now be found by assembling cable ele-  
n t s  i n  the  standard manner. The resul tant  st iff-  
ss  matrix i s  unsymnetric due t o  t h e  nonconserva- 
ve nature of aerodynamic drag. The addit ion of 
ogue devices a t  any node i s  eas i ly  accomplished 
drogue lift and drag coeff ic ients  a r e  known. 

111. S t a b i l i t y  

The s t a b i l i t y  analys is  i s  based on t h e  
esimal motion about a given nonlinear equi- 
posit ion.  The presence of nonsymnetric 

t he  s t i f f n e s s  matrix requires t h a t  a 
s t a b i l i t y  analys is  be conducted. A con- 
way t o  obtain the  l inear ized  dynamic 
s i s  to 'perform a var ia t ion  on the  equa- 
motion f o r  a s ingle  element and then 
the  t o t a l  cable system. From (12),  

ere [ k ~ ]  i s  the  l a rge  d e f l e c t i  n s t i f fnes s  matrix 
und i n  Henghoid and Russe l l ( l l7  and i s  given by 

d the  perturbed motion i s  { tN] = { 6 % ] .  

Evaluating the  perturbation of t he  aerodynamic 
ivalent  nodal loads from (13e), (14), (15) and 
) yie lds  

Subst i tu t ing  t h e  r e s u l t s  o f  (27) and (28) i n t o  
(26) y ie lds  

[6qI = [cA1($ + 'kA + k ]E&] 
TA 

where 

For c l a r i t y ,  t h e  damping matrices and s t i f f n e s s  
matrices a re  l i s t e d  i n  t h e  Appendix. Examination 
of  t he  damping matrices shows t h a t  [c,] i s  symme- 
t r i c  as should be expected. 

The perturbed equations of motion f o r  an 
element can thus be wr i t ten  i n  t h e  form 
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Defining as  

and assuming exponential motion 

A t  Eq,I = {%le 

leads t o  t h e  general  eigenvalue formulation 

[A]EH& = i[B]C%3 

where 

(33) 

(34) 

(35) 

Note the  s t a t i c  i n s t a b i l i t y  (A = 0) i s  given when 
t h e  determinant of t he  tangent ia l  s t i f f n e s s  matrix 
[%I i s  zero. 

IV .  Solution Procedure 

Since the  nonl inear i ty  i s  primarily of a 
geometrical nature,  a Newton-Raphson procedure i s  
used t o  solve the  equilibrium equation (22). 
guess i s  made t o  i n i t i a l i z e  the  procedure and the  
r e su l t i ng  equilibrium unbalance {q] calculated 
from 

A 

EQI = CKI{%Io - EGI (37) 

where [K] and {GI a re  the  assembled current  stiff- 
ness matrix and g rav i t a t iona l  equivalent nodal 
load matrix, respectively.  
i s  then calculated from 

A correction t o  {%I0 

This procedure i s  repeated u n t i l  t he  maximum 
normalized increment (dXi/Xi) i s  smaller than an 
e r ro r  index e,, taken typically. t o  be .001. Eigen- 
values a re  then calculated from (35) using an e i -  
genvalue subroutine based on the  QZ method t o  
determine the  system s t a b i l i t y .  

After  equilibrium and s t a b i l i t y  calculat ions 
have been completed f o r  a given ro t a t iona l  f r e -  
quency, t he  value of w can be  incremented by dw 
and a new s e t  of l i n e a r  equations solved t o  i n i -  
t i a l i z e  t h e  i t e r a t i o n  procedure a t  the  new f r e-  
quency. 
response curves may be obtained. 

Proceeding i n  t h i s  mamer, frequency 
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- V. Results 

The u t i l i t y  of t he  developed elements will now 
be demonstrated using t h e  l i nea r  element shown i n  
Fig. 2.  To ve r i fy  these elements, t heo re t i ca l  

Figure 2. Linear Element 

r e s u l t s  using approximate expressions f o r  t he  
aerodynamic s t i f fnes s ,  t angen t i a l  s t i f f n e s s  and 
damping matrices a re  compared t o  r e s u l t s  obtained 
experimentally. All r e s u l t s  a re  presented i n  non- 
dimensional form. Spa t i a l  coordinates a re  non- 
dimensionalized with respect  t o  the  unstretched 
cable length such t h a t  t h e  nodal coordinates are  
given by 

{%I = &/.CI (39) 

f = RtoJ& (40) 

and the  tow radius by 

Other nondimensionalized var iables  introduced are :  

Normal Drag Coefficient  

C n = 3pcnd&/m 

Tangential Drag Coefficient 

Pt = 3pctd&/m 

S t i f fnes s  t o  Weight Ratio 

K = AE/mg4 (43) 
Rotational  Frequency 

n = w m  (44) 
The p o s s i b i l i t y  of a spher ica l  drogue a t  the  

cable t i p  has been included. 
characterized by t h e  following two nondimensional 
parameters: 

The drogue i s  

Drogue Drag Coefficient 

CD = 3 P C D A D P  (45) 



where Q i S  t h e  drogue drag coeff ic ient ,  con- 
sidering a drag l a w  i n  which drag i s  proportional 
t o  the  r e l a t ive  veloci ty  squared. The cross- 
sectional  area of the  drogue i s  AD. 

Drogue t o  Cable Mass Ratio 

I.1 = M/mg& 
where M i s  the  drogue mass. 

Explici t  in tegra t ion of the  aerodynamic st iff-  
ness, t angen t i a l  s t i f fness  and damping matrices i s  
made d i f f i c u l t  by the  presence of the  absolute 
velocity terms i n  t h e  integrands. This problem 
can be overcome e i the r  by using numerical integra-  
t i o n  o r  by approximating the  absolute velocity 
terms. The second method i s  used here. The abso- 
lu t e  ve loc i t i e s  were expanded i n  a Taylor ser ies  
i n  terms of AX, AY and AZ, where AX, AY and Az a r e  
jus t  t he  respective differences i n  the  element end 
points i n  each direction.  The maximum s ize  of any 
of these i s  the  element length L. The f i r s t  two 
terms were retained i n  each expansion, these being 
of order L and L2 f o r  the  aerodynamic s t i f fness  
matrices. This expansion i s  va l id  f o r  small 
element elongations and small element s ize .  Lack 
of space prevents t h e i r  reproduction i n  t h i s  re-  
port. A complete l i s t i n g  appears i n  Russel l ( l2) .  

Equilibrium shapes and t h e i r  s t a b i l i t y  a re  
found ra ther  eas i ly  and with r e l a t ive ly  small com- 
puter costs. Overall cable behavior i s  bes t  des- 
cribed using p l o t s  of t h e  three  t i p  parameters - 
(1) radius rt, (2) phase angle &., and (3) ver t i -  
ca l i ty  zt, versus ro ta t iona l  frequency 62. 
radius i s  measured i n  a horizontal  plane from t he  
axis of ro t a t ion  t o  the  cable t i p .  

The t i p  

(47) 
The phase angle i s  used t o  measure the  lag of t h e  
t i p  from the  tow point and i s  given by 

Idt = arctan ( y ( l ) / x ( l ) )  (48) 

Zt = z(1) (49) 
while the  v e r t i c a l i t y  i s  simply the  t i p  value of z 

where a l l  quant i t ies  have been defined i n  non- 
dimensional form. 

Typical r e s u l t s  f o r  three  values of drag a re  
sketched i n  Fig. 3. A hardening spring character 
i s  observed with the  tow radius € playing the  ro le  
of the  magnitude of t h e  excitat ion.  

For low drag (M)  , t h e  system behavior i s  
similar t o  t h a t  of t h e  system without drag. For 
moderate values of drag (ME) ,  jump phenomena a r e  
possible, near t h e  system's f i r s t  resonant f r e-  
quency. Also f o r  moderate (ME) and high ( H I )  
values of drag, a detached branch of t h e  equi l i-  
brium curve appears i n  t h e  upper r ight  of the  
figure. A dynamic s t a b i l i t y  analysis shows t h a t  
the  dashed portions of the  curve a re  s t a t i c a l l y  
unstable, while the  dotted portions of t h e  curves 
We dynamically unstable. 
*or of these solutions and t h e i r  s t a b i l i t y  has 
been confirmed i n  a re la ted  experiment, Russell(12). 

The qual i ta t ive  beha- 
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Rotational Frequency a 
Figure 3. Sketch of Typical Equilibrium Solutions 

A t yp ica l  s e t  of experimental r e s u l t s  f o r  a 
tow radius of 9 inches and cable length of 25.75 
inches i s  used t o  confirm the  theory. The experi- 
mental cable model w a s  .0185 inch diameter s i l k  
thread weighing 4.519 x 10-5 l b  f t .  

9.921 x 10-5 lb was attached t o  t h e  cable t i p .  
Normal and tangent ia l  drag coeff ic ients  f o r  a 
smooth cylinder were used; 
The drag coefficient  f o r  t h e  drogue was taken as 
t h a t  of a sphere, cD = 0.47. 
f o r  t i p  radius and v e r t i c a l i t y  are  shown i n  Figs. 4 
and 5. 
tained.  

A spherical  
drogue with mean diameter of .1 I 8 inch weighing 

cn = 1.2, and c t  = 0.01. 

Experimental r e su l t s  

No experimental phase angle data was ob- 

Theoretical  r e su l t s  were obtained using a 
nine-element cable d iscre t iza t ion with the  experi- 
mental cable parameters. These r e s u l t s  a re  shown 
i n  Figs. 4, 5 and 6. Since no experimental value 
of K was measured, a value of 1000 was used i n  t h e  
theore t i ca l  calculations.  Results indicate re la-  
t i v e  insens i t iv i ty  t o  t h i s  parameter except f o r  
l a rge  t i p  r a d i i  and high ro ta t iona l  frequencies. 

Theoretical  equilibrium r e s u l t s  are ,  i n  
general, i n  very good agreement with those ob- 
tained experimentally. 
r e su l t s  disagree i s  near the  jump from large  t i p  
radius t o  small, t he  theore t i ca l  jump occurring 
sooner than t h e  actual .  Since drag i s  most im-  
portant  i n  t h i s  region, any differences i n  theore 
t i c a l  and ac tua l  drag coeff ic ients  would produce 
t h e  greates t  differences i n  theore t i ca l  and ex- 
perimental r e s u l t s  here. Thus, t h e  discrepancy i s  
explained on t h e  bas i s  of an underestimation of t h e  
ac tua l  drag caused by not taking the  rough surface 
of t h e  thread i n t o  account. 

The only. region where t h e  

The s t a b i l i t y  analysis confirms the  zero 
eigenvalues a t  t h e  large-to-small  and small-to- 
la rge  radius jumps. 
preaicted a t  62 = 3.08, while it actual ly  occurred 

The dynamic i n s t a b i l i t y  was 



a t  6 k =  3.70. 
plained on underestimation of the  drag. Since only 
the  f i r s t  two eigenvalues were of i n t e re s t ,  t he  
nine nodes of t he  s t a t i c  analysis  were condensed 
t o  three  f o r  t he  dynamic analysis .  
made t o  obtain equilibrium solutions i n  the  s t a-  
t i c a l l y  unstable region. 
of t h e  unstable region w a s  found f o r  61< 7.0 i n  
t h i s  case, t he  bounded behavior has been es ta-  
blished fo r  other cases,  both experimentally and 
theore t ica l ly .  

The discrepancy once more i s  ex- 

N o  attempt was 

Although no upper bound 
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Figure 4. Frequency Response 
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Figure 5. Ver t ica l i ty  
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Figure 6. Phase Angle 

V I .  Conclusions 

A f i n i t e  element representat ion of aerodynamic 
drag acting on a whirling cable has been accom- 
plished. 
dependent drag forces i n  terms of s t i f f n e s s  matrices 
refer red  t o  a ro t a t ing  reference frame, thus allow- 
ing equilibrium solutions t o  be obtained i n  the  ro-  
t a t i n g  frame. Posit ion dependent t angen t i a l  s t i f f -  
ness and damping matrices a re  used i n  the  perturbed 
equations of motion. Gravitat ional ,  cen t r ipe t a l  
accelerat ion,  Coriolis  and e l a s t i c  e f f ec t s  a r e  a l so  
included i n  the  element. Large cable ro ta t ions  and 
pos i t ion  dependent forces created by t h e  ve loci ty  
squared drag laws cause the  problem t o  be highly 
nonlinear. 

This representat ion places t h e  pos i t ion  

A computer program has been wri t ten  f o r  the  
s ingle  whirling cable with a spherical  drogue 
at tached t o  the  cable t i p .  
t o  be e f f i c i e n t  and capable of coping with multi- 
valued solutions.  
t o  f ind  equilibrium posi t ions  and a dynamic pertur-  
bation i s  used t o  determine the  s t a b i l i t y  of each 
solution. Modification of t he  program t o  solve re-  
l a t ed  problems such as  the  whirling cable attached 
a t  both ends and lasso  problem i s  eas i ly  accom- 
plished.  

This program has proven 

The Newton-Raphson method i s  used 

Physical phenomena encountered f o r  t he  
whirling cable include s t a t i c  and dynamic ins ta-  
b i l i t i e s ,  jumps from one equilibrium cmfigura t ion  
t o  another, and detached solution branches. The 
s t a t i c  i n s t a b i l i t i e s  and jumps a re  typ ica l  of those 
observed i n  damped, hardening, nonlinear, spring- 
mass systems. The dynamic i n s t a b i l i t y  i s  peculiar  
t o  nonconservative systems, while the  detached 
branches a re  r a re ly  seen i n  the  frequency response 
of mechanical systems. Space has not allowed a 
study of t he  e f f ec t s  of t he  various problem para- 
meters on these  phenomena t o  be included, but  a 
l a t e r  paper w i l l  concentrate on t h i s  area.  

This paper concentrates on the  mathematical 
development of t he  aerodynamic port ion of a whirl- 
ing cable element and the  solution of a seemingly 
simply assembly, a s ingle  whirling cable. Theore- 
t i c a l  r e s u l t s  obtained agree with those obtained 
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experimentally. 
associated s t a b i l i t y  phenomena makes it a fascin- 
a t ing  study and impossible t o  document complete& 
here. 

The richness of solutions and 

( c )  
Appendix 

The perturbed element aerodynamic damping and 
s t i f fnes s  matrices defined i n  (30) are  given below: 

(d)  
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