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Abstract due to air drag after thrusl. cutoff can he

assumed nearly constant On the other hand, a

A new generalized guidance law for collision target may have <constant axial acceleration or
courses is presented. When the missile and slowdown These kinds of axial acceleration or

target axial accelerations or decelerations are

constant, there exists a rectilinear collision

course The guidance law presented, which is

called the true guidance law,
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the true guidance law shows the definition

of an effective navigation is the same

expression as that in +the case of conventional

proportional navigation. The performance of the

two guidance is compared with that
of

studies of a simple

laws presented

proportional navigation using simulation

model of a short range air-

lo-air missile. The simulation results show that

the guidance lawg presented can intercept the
targel, using far smaller lateral acceleration
commands than prepared for proportional
navigation The inner launch envelope shows that
the guidance laws presented provide an overall

performance improvement over proportional
navigntion
Inlroduction

It is well known that a conventional proportion-
al navigation (PN) is an adequate missile guid-
ance law when the missile and target velocities
remain conslant.”® In practice., however, the
missile and target velocities may change sig-
nificantly. For instance, a short range air-to-
air missile (AAM) has nearly constanl axial
acceleration during the boost phase. Also. the

axial deceleration of a surface-to-air missile
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deceleration may seriously influence the perform-
the by PN
developed the approximate analytical

ance of missile Chadwick

guided
solution for

the miss distance of a proportional navigation

missile with axial slowdown after sustainer motor

cutoff, but he mentioned nothing about a guidance
law *

When the missile and target =accelerations or
decelerations are constant, there exists the
rectilinear collision course Then. if we know
the meagnitudes ol' these accelerations or de
celerations and the initial time-to-go, the
missile can be guided to a collision course A
missile flying on this «collision course does not
require further acceleration commands to hit the
target. IFor example, Pig.1 compares the re-
ctilinear <collision course with the trajectory
achived with PN. Since PN does not take into
account changes in velocity. the trajectory with

PN
the missile guided by PN

is curved as shown in Pig. L. In other words,

requires more accelera-

tion commands as it gets close to the target.

COURSE WITH PN

VfMISSILE P

Fig. 1 The rectilinear collision course
and the course achieved with PN

First. this paper presents the generalized
guidance law lor a missile with constant axial
acceleralion against a target with constant
acceleration. Next. the small perturbation
equation of the guidance taw is derived. This
shows that lhe definition of an effective naviga-
tion constant reduces to the same expression as

thal in the case of PN. An appropriate effectlive
navigation constant <can then be determined by
integrating the small perturbation equalion.
Though the generalizd guidance Jlaw gives the




theoretical acceleration Lo guide a missile on a Derivation of A Generalized Guidance Law

collision course. it is very difficult to implem-
ent this guidance law on the most existing tacic- Fig. 2 shows the intercept geometry of a missile
al missiles. Therfore. this paper shows a sim- intercepting a target M nnd T represent the
plif ied method for implementing the guidance law. actual positions of a missile and a target.
Finally, the performance of the guidance laws respectively. at Lime t From Pig. 2, the line-
presented is compared with thal of PN using of-sight (LOS) rate is given by the following
simulation studies of the simple AAM models. vector equation:
iy féx(l—),fi_)m)
Nomenclature U:T ¥
Assuming that the missile 1is flying at constanb
?m : missile position vector acceleration a, and the target is flying at
"me - CoOrrect missile position vector coristanl. acceleration a,. let the triengle ITM be
AT, 1 PP a collision triangle. That is. I indicates the
z.y : elements of a7, point of impact. V. s the correct missile
El.E; unit vectors velocity vector to obtain a collision at | and
7, . targel position vector AVm is the deviation of missile velocity vector
i : relative distance vector (=7,-7,). R=IRI from ¥,,. Then we have
V. : missile velocity vector, V,=iV,] P, =V, ral, (2)
VM ¢ correct missile velocity vector. Vm=[Vm[
&, VP Substituting Eq. (2) into Eq. (1), we obtain
P, . target velocity vector. V,=iV,] 0 Bx (P, -V, Bx (-2
F . desired acceleration command vectcr 7= RrE ! Rr? K&
a, : missile axial acceleration vector, The first term of the right side of Ea (3) re-
am=\am| presents the correcl. LOS rate when the missile
&, : target axial acceleration vector, a,:la,l flies along the <collision course The second
o : LOS angle term is the deviation of the LOS rate from the
correct one 1€ a missile is guided with a
g LOS rate vector fJight-path rate in proportion to the deviation
0 missile flight path angle of the LOS rate, assuming no missile dynamic
lags, the missile flight-path rate becomes
5 missile flight path rate vector =0 a x (A,Avm)
P missile flight path angle to LOS 6::N44447§r447 4
@, target flight path angle to LOS where N is the navigebion constant. Then. the
7 P =Py required lateral acceleration command €or a
N navigation constant missile to [ly along the correct collision course
N, effective navigation constant is given by
ty total flight time Pebx?,
t o time-lo-go - - y =
s differential operator = _N((VMH7V“LXIE XVM (5)
i miss ile t ine constant E
Piaz maximum lateral load factor From Fig. 2, V,, can be written as
MD miss distance b (?”wmvt1_§EMLEJ &
mo mising, V, " sinp,
. Substituting Eq. (8) into Eg. (b), we obtain
_
%f if‘:gg( W, - 1‘%";:%%17,) xB) x 7, N

If we let t,, be the time-to-go, from Pig. 2. we

o

have
- g a
V.ol '|-92—:Et:n=[é+Vl + T'tz (8)

mo " go i%go go

From ["ig. 2. the component of [g. (8) perpendicular

to R is given by

M REFERENCE LINE

a, a
Vol oot Agmtiﬂ) sing, = (V,t,, +Azit§u) sing, (9

m®go

Fig. 2 Intercept geometry
Dividing Eq. (8) by {,sing, . we oblain

At 5o | SN,
Vall + —TZVmﬁ)sintp,

i
=V, (14 a—z‘v?’—) (10)
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Eq. (10) can be rewritten as

Vasing, lte,

V., sinp, - TTE Gl
where
¢
on = B (52
13
&= gy (13)
Substituting Ea. (11) into Ea. (7)., we obtain
ﬁ=£’7( (V- WP x By x P, (14a)
where
lte,
k= e (14b)

This is the generalized guidance law for a mis-
sile with constant axial acceleration to inter-
cept a target with <constant axial acceleration.
If both a missile and a target have no ac-
celeraton, that is, constant velocity, e and e,
are zero and Eq. (14a) reduces to a conventional
proportional navigation guidance law. Since the
value of ¢ is required in order to compute e,

go

and £, . we derive the equation for ¢,. From

Pig 2. we have

a,t a
(Vn -0»Lzﬂ)tgocosu=Rcosqz,+V,tgo+7‘t:o (16)
. a‘mtga R - .
Vot —5") L sine = Rsing, (18)

Squaring both sides of Eags. (156) and (16) and

adding them, we obtain
D2 (2 2 Ay.2 (2
V.t +‘2—t”) =R"+ (V,tgo’r*zft )

m’go go

+2R(V,Lgu+(—12—'t§ﬂ)cos<p, 17

Rearranging Ea. (17), we have
2 2
a; - a
(g tgo + (Viay = Vaan) th, + (V] - Vid L],

a
+ 2RVt + 7’t3,,)cos<p, +RP=0 (18)

Assuming that V. V. a, a,, R and ¢, are known. ¢,
$ can be computed from Eq. (18), e. and g, can be
obtained from Egs. (12) and (13) and the required
guidance acceleration commands are then computed
from Eqg. (14). We call this guidance law the true

guidance law.

CORRECT
COLLISION COURSE

CORRECT LOS

Pig. 3 Engagement model for linearization

Small Perturbation Equation

Eq. (14) gives the generalized guidance law for
collision courses, where time-to-go is computed

Prom Eq. (18). Since this -equation is com-
plicated, however. it is difficult to select the
value of the navigation constant N. In order to
choose N, it is wuseful to linearize Ea. (14a)
about a <correct collision course. For sim-
plicity, we will consider the problem in two

dimensions. Pig. 3 shows the engagement model for
linearization, where the target is flying along
the reference trajectory. In Pig.3 0O is the
origin ol the inertial f{rame. M, indicates the
position that a missile would have had at time ¢
in the correct trajectory case and M displays the
actual position of a missile at Lime t. Puor Pio
and x, are the correct angles such that M, and
Tl become the correct, collision courses for
missile and a target, respectively. Prom Pig. 3.

we have
P = Tag t BT, (19)
3,=V,, +a8 (20)
AT, =26, + Y6, (21)
AP, = e, t e, (22)
B=7,- T - &7y (23)
= Bo=%, -7 (24)

Substituting Egs. (19). (20). (23). (24) into the
numerator of Eg. (14a) and neglecting terms higher
than second orders in ar, and 4V, . we obtain
Vo= B ) xB= (Vo + AV )RV ) x (F, — Prg - O70)
={(V,, - V) 1o} x (B, - a7
(R - Vo) x o7, r AV, x B, (26)
Then. we have
(P~ WP xBY x P, = (P - b)) x B) x (Py t O7,)
- Voox (WY, -V xa 1 AV, x R,) (26)

]

Substituting Egs. (21). (22) into [Eaq. (26), we
obtain

((V, - k) xR x V5 -V, (zRsing,,, | kzV sinu,
t yRoose,, - kyV cosu, tV,y)e, (27)

Substituting Eq. (27) into Eq (l14a)., we have
W
R

P ( - ZRsing,,, - zkV sing,

~ YReose,, | yRV cosp, - V,ay)e, (28)
Since the external force on the missile is not
applied in the direction of e,. except lor the
constant. acceleration a, we have

z(t) =0 (29)
Assuming x(0)=z(0)=0, we obtain

x{t) =0 (30)
On the other hand, we have

FF=ve, (31)
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Substituting Eqs. (30). (31) into Eq. (28). we have

. NV ocosep,,. NV
y = 7—.—"‘—R—My+ Rg"‘( -Vt RV cospy )y (32)
Let us define V, and W as follows:
Vo, =V, cose,, - V cose,, (33)
W= (RW% ¢ V2 _ 28V V cosp,)™ " (34)
Pig. 4 Definition Vm e

of W

V, becomes the <closing velocity and W is the

length of the side of the triangle, as shown in
Rig. 4. From Pig. 4, we obtain

Vo - RV cosu, =Woose,, (35)
From Eqs. (33) and (35), Eqg. (32) can be written as
N NV, 0089, .
v= ——LR—(er%y)
Voo W
= -Np(v+py) (36)

where the parameter N, is defined by

@

NV cosp,.
Ny=—p—" (37)

o
As is obvious from Eq. (37), N, is the same ex-
pression as Lhe effeclive navigation constant in
the case ol PN. Thus we also call N, an effec-
tive navigation constant in this paper. Eq. (36)
is the small perturbation equation €or Eq. (14a).
The initial conditions for a launch error are

given by
y(0) =0, #(0) =V,(0)r, (38)

and the miss distance is given by
MD = y(t,) (39)

As mentioned earlier, we have assumed until now
that lhere are no missile dynamic lags. However.
if we assume that the missile dynamics can be
represented as a linear system with transfer
operator Y(s), where s is the operator ds/dt and
Y(s) is the ratio of two polynomials in s. then
the perturbation equation for the generalized
guidance law becomes. instead of Eg. (36),.

" V, .
b= MY G By (40)

As a specific example, consider the <case of a
missile with a simple time lag 7, . Thus let

_ 1
Y(s5) = [+ T.5 (41)
Substituting Eqg. (41) into Eq. (40), we obtain
ng:/"t&= ’Na%g(.y+g?/) (42)

Let us consider solving Eq. (42) numerically for a
launch error Fao From Eq. (38), the initial
values become

y(0) =0, (0)=V,.(0)r, ¥(0)=0 (43)
In order to solve Eq. (42), we assume |, is given
by
tgo=1, - ¢ (44)
where (; is the total flight lime. V_ and Vv, are
given by
Vo=V, ta,l (45)
V=V tat (46)

where V,, and V, are the initial values of V,
and V,. Letting V., and V,, be the average
velocities ol the missile and target. re-
spectively., we have

a,t

Via = Voo t 51 (A7)
a,t

Vie=Vio ‘zf (48)

Then, the average closing velocity V_, becomes

Ve = V089, - V0080 ,, (48)
The relative distance is given by

R + I
=Vialy - { (Vo + 578 )0050,,
a, =
- (Vg t 51 )c0se ) 4 (50)

If Vi Vie @
gomputed froin the lollowing eguation:

a,. u, and 1, are given, Pre 1S

-

. 7,{sinua(V,ol, t a,tj/Z)}
L — h

Pme = SIN (bl)
where
a
h={(Viol, t it 4 Vot + Gnt})2
2V ot 4 D) (ol t G yo0su,)® ® (62)

Figs.5 6 and 7 show the results obtained by
integrating Eg. (42) numerically lor the case
where V,_,-288m/s.  V,,=288m/s.  a,=164m/s a0,
7,=0. 4sec  and u,=90deg. Pig. 5 illustrates the
dimensionless miss distance y(t.)/ V7T, VS.
dimensionless time of flight ¢./T, lor N,=3. 4, 5
and 6. Pigs. 6 and 7 show lhe deviation histories
Irom the correct position and the lateral ac-
celeration command histories in normalized form
lor N=3 4.5 and 6, where ¢; is set equal to
4sec. Though Lhese three ligures were obtained
for u,=90deg, other computation results have
shown that. the lorm of Lhe curves does not depend
significantly on the values of g, In other
words. Figs.5, 6 and 7 show the typical miss
distance. deviation hislories and acceleration
command histories. respectively, and a reasonable
N, can be determined from Lhese ligures. In this
exmple, 4 to 5 is considered the appropriate
range in value €or N,
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Pig. 7 Normalized acceleration commands histories

Simplified Construction of the Guidance Law

In order 1o construcl the true guidance law
given by Ea. (14), we must measure or estimate
Ve Vi a, a,. R and o, and compute tgo from
Eq. (18) in real time. In general, however, most
present tactical missiles do not carry the kind
of instruments needed to measure all of these
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In this section.

variables. Thus
realize Eq. (14).

becomes very difficult to

let us cosider

Lhe real mechanization of Eq. (14). The term
V.-EV, in Eq. (14a) can be rewritten as
o - o 1+¢g,
A A emV,
_(EEEN oy (Bmsd)p (53)
"l +e, m = Vel b t En) T

Subslituling Eq (53) into Eq (14a)

N(L e (P, -V xB) x P,
11 €, R?

we oblain

-

Wm0 (VxR x P,
1+e, R?
term represents proportional navigalion
N(l+ve )/ (Lve,)
the second term represnts pure pursuit. navigation
We
lwo
R and
and &,

(B4)
The [irst

with the navigation constant and

with the navigation constant N(e,-e,)/(1+e,)

to determine the
Ve Vi oa

to compute

and
Though
in order

need the values of E, E,

navigation constans a,.

m

¢, must be measured

precisely,

E
we do not necessarily need the correct
This if the

change from the

the guidance

is because even
somewhat

values of e, and e,

navigation constants

optimal values, the perf{ormances of
law will not be
if ¢,
launcher or the parent aircraft before

the of t V,

aflTected significantly There

fore, a, ap V,, and V, are given from the

launch. we

can, estimate values g0° and V, as

follows:
=1

t J
V’=\/n i

(55)
(66)
(B67)

1

go

[« 4

m

V,=V,, 1 a,t

Using these values. we can compute and from
Egs. (12) and (13) and

The block

E E

simply mechanize Eq. (b4).

diagram representation of [a. (54) is
depicted in Pig. 8. llere, the effective naviga-
tion constant N, defined by Eq (37) is used
instead of N. We call this implementation the

simplified guidance law. 1In Pig.8 K

pursuit guidance and

p» represents

the gain for pure is chosen
so that achieved with the simpli-
that with the true

possible.

the trajectory

fied guidance law approachs
guidance law as
if dt)

two

nearly as In other

words. the relative distance

K

represents

between the trajectories, is chosen to

b
minimize the Tollowing PI:

i
PI=["ace) di (58)
Q
Application 1o a Short Range AAM
Let us apply the true guidance law and the
simplified guidance low to the simple model of o

short range air-to-air missile (SRAAM) and com-
that achieved with PN.

Since most SRAAM have solid rocket motors. their

pare the results with




(o2 1+ &y + 1 MISSILE

Je=t NeVe = —t—
1+Em T‘ G\ cosd)m DYNAMICS

Pig. 8 Block diagram for the simplified
guidance law

he assumed nearly const-
On the other hand, the
target velocity can be considered nearly constant
difficult to
during the short
that both the
their

axial accelerations can
ant during boost phase.
because it is very change sig-
nificantly the target wvelocity
intercept lime. Let us assume

missile and the target are particles.

trajectories are limited to two dimensions and
the total dynamics of the guidance system includ-
ing the missile dynamics. a noise filter and so
on is given by a first order lag with time const-
ant 0. 4sec. The velocity of the target is const-
ant at 288m/s. The
sile is 288m/s and the

These are the same data

initial wvelocity of the mis-
is 164m/s®.

that were used to obtain

acceleration

Pigs. 5, 6 and 7. Then, based on our previous
discussion, we set N,=4.5. Pigs. 9 and 10 are the
graphs used t0 decide K,. Fig. 9 shows Pl vs.

K, From this figure

the optimal K, is'0.2

where p=80deg and ¢ ,=4sec.
for u=90deg. Pig. 10 dis-
plays the optimal K, vs. #.  Though the optimal
value of K, depends on x« as shown in Fig. 10, we

set K,=0.2 because a broadside attack is the most

200

0 1 L 1
0 01 02 03

Kp
Fig. 9 Pl vs. K,

05
0.4
0.3
0.2 N

62 T—

n

Ol

o] 50 100 150
M (deg)

0 WIMAL Kp

Fig. 10 Optimal K, as a function of u

severe case lor a missile. K, is also a function

of ty However, simulation results have shown
that the optimal value of K, does not depend very
much on ¢,

Lion results, where the target is flying straight

Pig. 11 displays one of the simula-

and the missile is launched along the collision

course The figure shows that the missile guided
by the true guidance law flies straight without
acceleration commands. The trajectory achieved
with PN is curved and requires large acceleration
commands The effective navigation constant For
PN was set equal to 4 5 The trajetory achieved
with the simplified guidance law is also curved,
hut the deviation from the

deviation with PN

ideal trajectory is
Also,
commands are smaller

much smaller than the
the required acceleration
Figs 12, 13 arid 14 show the launch boundaries lor
the miss distance and the maximum lateral load
respectively
Pig 12 is based on the true guidance law. Fig. 13
is with the simplified guidance law and Pig 14 is
with PN

flying straight and the

Factor specified as 3m and 30g.

Here it is assumed that the target. is

missile is launced ag-

ainst the target without lead angle, other con-

dilions are the same as those described before

The inner launch envelope Jlor SRAAM must sim-
ultaneously satisly al least these two
heundaries Pig 15 compares the three inner
launch envelopes achieved with the different

show that the
on the boundary

guidance laws Pigs 14 and 15

envelope witti PN mainly depends

of the maximum load factor

0 ) T
0 05 1 5 2 (km)
(a)
40
SIMPLIFIED

— ~ PN_
2 TRUE
« 20
o
~
U -
i

O 1 1 i 1
2 i 3 4
9
B TIME(sec)
& - 201
)
=
T L
o §

-40%
(b)

Pig 11 Missile and target trajectories and
lateral load factor histories
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(m) ) Nmax=30g
’V (m) MD=3 m
r e T

Nmax=30g A
MD=3m . { ™~

RIY=s

i 1
<ol 1000 (m)
TARGET PATH

Fig. 12 The launch boundaries for miss and

maximum lateral load factor to be L ' '10‘00' — '2(;<§rcr>')
; TARGET PAT
3m and 30¢g, respectively
(True guidance law) Pig. 14 'The launch boundaries for miss and

maximum lateral load factor to be

3m and 30g. respeclively

Nmax=30g
(m)L //MD=3m (Proportional navigation)
(m)
2000F "~ PN
L~ RS SIMPLIFIED
TRU
~
1000 (m) \
TARGET PATH 4 |
Y/ /
Pig. 13 The launch boundaries for miss and Y /,’
maximum lateral load factor to be (\
3m and 30¢g. respectively | .
(Simplified guidance law) - TARGET PATH 1000 2000 (m)

Pig. 15 Inner launch envelopes of AAM
Conclusion

A new generalized guidance law for collision perturbation equation of the lrue guidance law
courses has been presented. When the missile and has shown that, the definition of an effective
target axial accelerations or decelerations are navigation conslant is the same as that in the
constant, there exists a rectilinear collision case of PN. Also. the appropriate value of the
course. The guidance law presented, which is navigation constant can be defined by integrating
called the true guidance law, gives the theoreti- the small perturbation equation. The guidance
cal guidance acceleration commands to guide a laws presented as well as PN were applied to a
missile on the collison course. The implementa- simple model of a short range air-to-air missile
tion of the true guidance law requires values of with constant acceleration. From simulations,
missile velocity, missile axial acceleration, Lhe inner launch envelopes were generoted and the
target velocity. target axial acceleration. the following results were oblained.

relative distance between the missile and the 1) The missile guided by Lhe true guidance
target and the target flight-path angle to LOS. flies straight and hits the target without [urth-
In general. however, most present tactical mis- er acceleration commands, provided there
siles do not <carry instruments Lo measure all initial heading error.

these variables. Thus. it is very difficult to 2) The Lrajectory achieved with PN is quite
realize the true guidance law. Therefore. this curved. and large acceleration commands
paper has presented a method for approximately required near the (rajectory end even if the
implementing the true guidance law by use of only missile is launched along a collision course.

Lhe target and missile initial velocities and 3) The trajectory with the simplified guidance
accelerations, and the initial values of time-to- law is also curved. but the deviation from the
go. which are given from a launcher or a parent true collision <course is far smaller than
aircraft at launch. This implementation is with PN. Also, the required acceleration com-
called the simplified guidance law. The small mands are smaller.

1578




4) The inner launch envelope has shown that the
guidance laws presented provide an overall per-
forrnance improvement over PN.
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